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ABSTRACT 
The oldest Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the 
sum of two primes”) has remained unproven since 1742. The recent proof [1] connected 
Goldbach’s Conjecture with the fact that every positive composite integer n strictly larger 
than 3, is located at the middle of the distance between two primes. The present paper con-
tains explicit additional and complementary details of the proof, insisting on the existence 
and the number of Goldbach’s representations of even positive integers as sums of pairs of 
primes. 

1. INTRODUCTION 
The basic elements of the multiplicative number theory are the prime numbers (positive integers di-

visible only by 1 and themselves). There is a mixture of randomness and hidden regularity in their beha-
vior ([2-4]). The oldest conjecture in number theory is considered to be that of Christian Goldbach. As 
shown in [5], in his letter to Leonhard Euler, dated 7 June 1742, Christian Golbach mentioned that every 
integer greater than 5 can be written as the sum of three primes. Euler replied in a letter dated 30 June 
1742 reminding Go7ldbach of an earlier conversation they had in which Goldbach remarked that his orig-
inal conjecture was that every even integer greater than 2 can be written as the sum of two primes. In this 
letter, Euler stated: “That … every even integer is the sum of two primes, I regard as a completely certain 
theorem, although I cannot prove it.” As Goldbach considered 1 to be a prime, today his conjecture is 
known as stating that: “Every even integer larger than 4 is the sum of two primes.” Goldbach’s Conjecture 
has been verified for larger and larger even integer but still remained unproven. 

If Goldbach’s Conjecture is true then to every even positive integer 4n >  there correspond two 
primes p and q such that: n p q= + . Assuming p q≤ , this implies that: 

2 2n p q n− = − , 

showing that either: 2n p q= = , or, if p q< , that 2n  is located at the middle of the distance between 
the two primes. 

Conversely, if n is a prime then 2n n n= +  and Goldbach’s Conjecture is true. If n is a positive 
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composite integer strictly larger than 3, located at the middle of the distance between two primes p q< , 
then: 

n p q n− = − , 
implying that: 

2n p q= + . 

Therefore, if n is a prime, or a positive composite integer 3n > , and every such an integer is located 
at the middle distance between two primes, then 2n is the sum of two primes and Goldbach’s Conjecture is 
true for every 2 6n ≥ , and therefore, for every 2 4n > . 

In [1] there is the proof that every positive composite integer n, strictly larger than 3, is located at the 
middle of the distance between two primes and, implicitly, that Goldbach’s Conjecture is true for 2n as 
well. The present paper is a follow up of paper [1], bringing additional and complementary details of the 
proof of Goldbach’s Conjecture, insisting on the existence and the number of Goldbach’s representations 
of the positive even integers as sums of pairs of primes. 

2. THE FRAMES OF SYMMETRIC ODD POSITIVE INTEGERS 
Assume that n is an odd composite positive integer strictly larger than 3. 
 
Frame I for n odd composite positive integer: 
 

 
 
The odd integers from the interval [ ]0,2n , symmetric with respect to n, are put in two Groups, as 

shown in Frame I. Each column contains two odd integers, symmetric with respect to n, called matching 
integers, whose sum is equal to 2n. Except n, which is the center of symmetry, the even numbers from the 
interval [ ]0,2n  are not included in Frame I. Also, the odd integer 2 1n −  is also missing from Frame I 
because it matches the integer 1 which is not relevant in this context. The smallest integer from Group 1 is 
matched with the largest integer from Group 2 but the difference between the matching integers gradually 
decreases by a constant rate equal to 4. 

In each Group of Frame I, there are primes or odd composite positive integers. Let us notice that if 
ip  is a prime factor of n and an integer 1s  from any Group is a multiple of ip , then its matching integer 

2s  is also a multiple of ip  because: 

1 2 2s s n+ =  

As a consequence, if an odd integer 1s  from a Group is relative prime with n then its matching in-
teger 2s  is also relative prime with n. An odd prime which is not a factor of n can match with an odd 
prime or with an odd composite integer relative prime with n but not with an odd composite positive in-
teger divisible by an odd prime factor of n. An odd composite integer can match with a prime or with 
another odd composite integer but the two odd composite integers must be either relative prime with n or 
divisible by the same od prime factor of n. 

In Frame I, the number of odd integers from Group 1 is: 

( )( ) ( )2 2 2 1 4 2 1IN n n = − − + =  −  +   , 

and in Group 2 the number is the same: 

( ) ( )( ) ( )2 3 1 2 1 4 2 1IN n n n = − − + + =  −  +   , 
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where [ ]x  is the integer part of the real number x. 
The number of primes in Group 1 is: ( )2 1nπ − − , where ( )xπ  is the number of primes not ex-

ceeding the real number x. The number of primes in Group 2 is: ( ) ( )2 3 1n nπ π− − + . 
As n is an odd composite integer, let: 

1
1

rk k
rn p p=   

be the prime factorization of n, where 1, , rp p  are odd primes. 
The primes relative prime with n from Frame I are grouped into three disjoint Classes: 
Class 1 is the set of primes relative prime with n belonging to the interval ( )(2, 2 3n −  . 
Class 2 is the set of primes relative prime with n from Frame I belonging to the interval 

( ) ( )( 2 3, 2 3 3n n− −  . 
Class 3 is the set of primes relative prime with n from Frame I belonging to the interval 

( )( 2 3 3,2 3n n− −  . 
The primes from Class 1 have odd composite multiples in both Groups. The primes from Class 2 have 

odd composite multiples only in Group 2. The primes from Class 3 have no odd composite multiples in 
the corresponding Frame I. Let us mention that if the square of the smallest prime from Class 2 exceeds 
2 3n −  then all the odd composite multiples relative prime with n are generated by primes relative prime 
with respect to n from Class 1. 

Assume that n is an even composite positive integer strictly larger than 3. Its Frame is: 
 
Frame II for n even composite positive integer: 
 

 
 
All the comments made about Frame I remain valid for Frame II as well. Briefly, in Frame II, the 

number of odd integers from Group 1 is: 

( )( ) ( )1 2 2 1 3 2 1IIN n n = − − + =  −  +   , 

and in Group 2 the number of odd integers is the same: 

( )( ) ( )2 3 2 1 3 2 1IIN n n n = − − + =  −  +   . 

The number of primes in Group 1 is: ( ) 1nπ − , where −1 is needed because the prime 2 does not be-
long to Group 1 and cannot be counted. The number of primes in Group 2 is: ( ) ( )2 3n nπ π− − . 

As n is an even composite integer, 
1

12 rk kk
rn p p=  , 

is the prime factorization of n, where 1, , rp p  are odd primes. 
The primes relative prime with n from Frame II are grouped in three disjoint Classes: 
Class 1 is the set of primes relative prime with n from Frame II belonging to the interval  

( )(2, 1 3n −  . 
Class 2 is the set of primes relative prime with n from Frame II belonging to the interval  

( ) ( )( 1 3, 2 3 3n n− −  . 
Class 3 is the set of primes relative prime with n from Frame II belonging to the interval  

( )( 2 3 3,2 3n n− −  . 
The primes from Class 1 have odd composite multiples in both Groups. The primes from Class 2 have 

odd composite multiples only in Group 2. The primes from Class 3 have no odd composite multiples in 
the corresponding Frame II. Let us mention that if the square of the smallest prime from Class 2 exceeds 

https://doi.org/10.4236/ns.2019.1112036


 

 

https://doi.org/10.4236/ns.2019.1112036 339 Natural Science 
 

2 3n −  then all the odd composite multiples relative prime with n are generated by primes relative prime 
with respect to n from Class 1. 

When n is given, its corresponding Fram contains the prime factors of n, the primes relative prime 
with n, the odd composite multiples of the prime factors of n, and the odd composite multiples of the 
primes that are relative prime with n. Obviously, all prime factors of n are located in Group 1. Denote by a 
the number of prime factors and their odd composite multiples from Group 1. Let b be the number of odd 
composite multiples of the prime factors of n from Group 2. Let 1s  be an odd integer from Group 1 and 

2s  be an odd integer from Group 2. They match if they are symmetric with respect to n, which means: 

1 2 2s s n+ = . 

This equality shows that if 1s  is a prime factor of n then 2s  has to be an odd composite multiple of 
this prime factor. If 1s  is an odd composite multiple of a prime factor of n then 2s  is an odd composite 
multiple of the same prime factor of n. On the other hand, if 1s  is a prime relative prime with n then 2s  
may be only a different prime relative prime with n or an odd composite multiple relative prime with n of 
a different prime relative prime with n. If 1s  is an odd composite multiple relative prime with n then 2s  
may be either a prime relative prime with n and relative prime with 1s  or an odd composite multiple rel-
ative prime with n of a prime relative prime with n and relative prime with 1s . This elementary analysis 
shows that the prime factors of n and their odd composite multiples match together and that a b= . 

Remark: If 2kn =  there are no odd prime factors of n and there are some differences. As there are 
no odd prime factors of n, we have 0a b= = . If 1s  is an integer from Group 1 and 2s  a matching in-
teger from Goup 2, we have: 

1 2 2ks s+ = . 

If 1s  is a prime, then 2s  cannot be a multiple of 1s  because this would make 1s  to be a prine 
factor of 2k , which is absurd. Similarly, if 2s  is a prime, then 1s  cannot be a multiple of 2s . Also, 1s  
and 2s  must be relative prime because if they have a common prime factor p, it would be a factor of 2k  
as well, which is absurd. 

Except the prime factors of n and their odd composite multiples, Group 1 contains N a−  odd in-
tegers representing 11π  primes relative prime with n from Class 1, 21π  primes relative prime with n 
from Class 2, 31π  primes relative prime with n from Class 3, and 1m  distinct odd composite multiples 
relative prime with n of primes relative prime with n from Class 1. The number of primes relative prime 
with n in Group 1 is: 

1 11 21 31π π π π= + + . 

Except the odd composite multiples of prime factors of n, Group 2 contains N b−  odd integers 
representing 32π  primes relative prime with n from Class 3 and 2m  distinct odd composite multiples 
relative prime with n of primes relative prime with n from Class 1 and Class 2. The number of primes rela-
tive prime with n in Group 2 is: 

2 32π π= . 

The rate of generating odd composite multiples relative prime with n of primes relative prime with n 
is lower than the rate of generating odd integer spaces between odd composite multiples to accommodate 
other primes relative prime with n. If, for instance, p is a prime relative prime with n, from Class 1, it ge-
nerates its odd composite multiples at a rate of 1 p  and leaves extra spaces in between its multiples for 
other primes at a rate of ( )1 1 p− . From this number of odd composite multiples of p we have to discount 
those odd multiples of p that are not relative prime with n. If we have two primes p and q, relative prime 
with n, from Class 1, then if p and q have a common odd composite multiple relative prime with n it has 
to be taken only once because we count the distinct odd composite multiples relative prime with n gener-
ated by the primes from Class 1 in Group 1 and by the pries from Class 1 and Class 2 in Group 2. There-
fore, the rate of generating odd composite multiples relative prime with n by primes relative prime with n 
is slower than the rate of generating interspaces to accommodate other primes relative prime with n in 
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Group 1 and Group 2. In general, the process of generating odd composite multiples becomes slower when 
we discount the odd composite multiples divisible by prime factors of n and count only distinct odd com-
posite multiples of primes relative prime with n from Class 1 in Group 1 and from Class 1 and Class 2 in 
Group 2. As the rate of generating distinct odd composite multiples relative prime with n by primes rela-
tive prime with n from Class 1 in Group 1 and from Class 1 and Class 2 in Group 2 is smaller than the rate 
of generating other primes in between the odd composite multiples generated by the primes from Class 1 
and, eventually, from Class 2, we have: 

1 2 1 2m m π π+ < +                                      (1) 

Finally, let m be the number of matching odd composite multiples relative prime with n of primes 
relative prime with n. 

3. THE PROOF OF GOLDBACH’S CONJECTURE 
As the proof of Goldbach’s Conjecture is the same for each of the two Frames, let us simplify and un-

ify the notations. In this section: N is the number of odd integers from Group 1 or Group 2; 1π  is the 
number of primes from Group 1 that are not prime factors of n; 2π  is the number of primes from Group 
2; 1m  is the number of distinct odd composite multiples in Group 1 of the prime numbers from Class 1; 

2m  is the number of distinct odd composite multiples in Group 2 of the primes from Class 1 and Class 2; 
m is the number of matching pairs of odd composite multiples relative prime with n from Group 1 and 
Group 2; a is the number of multiples of prime factors of n in Group 1; b is the number of multiples of 
prime factors of n in Group 2. We have: 

1 1 2 2N m a m bπ π= + + = + + . 

As a b= , we get: 

1 1 2 2m mπ π+ = + , 

and, adding m to both sides, we have: 

1 1 2 2m m m mπ π+ + = + +  

or, equivalently, 

( ) ( )1 2 2 1m m m mπ π− − = − − .                              (2) 

But 1m m−  is the number of odd composite multiples relative prime with n from Group 1 that 
match primes from Group 2 and 2m m−  is the number of odd composite multiples relative prime with n 
from Group 2 that match primes from Group 1. Then, there are matching primes from Group 1 and 
Group 2, and, therefore, Goldbach’s Conjecture is true, if and only if: 

( )1 2 0m mπ − − > , and ( )2 1 0m mπ − − > ,                          (3) 

which is true because: 
a) If: 

( )1 2 0m mπ − − < , 

then there are not enough primes in Group 1 to match the odd composite multiples relative prime with n 
from Group 2 that are supposed to match primes from Group 1. 

b) If: 
( )2 1 0m mπ − − < , 

then there are not enough primes in Group 2 to match the odd composite multiples relative prime with n 
from Group 1 that are supposed to match primes from Group 2. 

c) If: 
( ) ( )1 2 2 1 0m m m mπ π− − = − − = , 
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then we have: 

2 1 1 2m m π π− = −  

which contradicts the inequality (1). 
Therefore, the inequalities (3) are true, proving that Goldbach’s Conjecture is true, and the number 

(2) gives the number of Goldbach solutions for 2n. 

4. NUMERICAL EXAMPLES 
From computational point of view, it is quite easy to deal with prime numbers. In Wolfram’s software 

Mathematica ([6]), for instance, there are two useful functions: Prime[n], giving the n-th prime number, 
and PrimePi [x], giving the number of primes not exceeding the real number x, known in number theory 
as the function ( )xπ . Goldbach solutions for the even integer 2n may be obtained online, by typing on 
GOOGLE: “Goldbach Conjecture Calculator - Tester - Online Tool - dCode.” Typing “Prime Counting 
Function Calculator - Online Software Tool”, we can choose: “Prime Counter ( )nπ  Calculator”, or 
“Prime Factors Decomposition”, or “Multiples of a Number”, or “Divisors of a Number.” 

 
Example 1. Let 250 2 5n = = ×  The corresponding Frame II is: 
 

 
 

 
 
The bold numbers represent primes. Tne numbers followed by the asterisk * are odd multiples of the 

prime factors of n. The other integers are odd multiples of the primes relative prime with n. 
We have: 

24N = , 5a b= = , 

{ }3,Cl 7,ass 31 11,1= , 11 4π = , 

{ }17,19,2Class 2 3,29,31= , 21 5π = , 

{ }37,41,43,47,53,59,61,67,71,73,79,8Clas 3,3 7s 89,9= , 

31 4π = , 32 10π = , 1 13π = , 2 10π = , 

1 6m = , 2 9m = , 2m = . 

1 2 1 215 23m m π π+ = < + = . 

The number of matching primes, or the number of Goldbach solutions for 100, is: 

( )11 21 31 2 6m mπ π π+ + − − =  

or, equivalently, 

( )32 1 6m mπ − − = . 

Indeed, they are: (3, 97), (11, 89), (17, 83), (29, 71), (41, 59), (47, 53). 
Let us notice that in the two pairs of matching odd composite multiples, namely, 
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91 51
9 49

 

the components are relative prime multiples of primes from Class 1. 
Example 2: In the previous example, the Frame was given and examined afterwards. It is possible, 

however, to reverse this approach and to show that the primes from Class 1 generate the entire corres-
ponding Frame. Let 33n = . The corresponding Frame I, containing the pairs of odd positive integers 
symmetric with respect to 33, has Group 1 containing the odd positive integers from 3 to 31, going for-
ward, and Group 2 containing the odd positive integers from 35 to 63, going backwards. Thus: 

1) 33n = . 
2) The odd prime factors of n are 3 and 11. 
3) The odd multiples of the prime factors in Group 1 are: 3, 9, 11, 15, 21, 27. 
4) The odd multiples of the prime factors in Group 2 are: 39, 45, 51, 55, 57, 63. 
5) Class 1 consists of the primes from the interval ( )( ( ]2, 2 3 2,31 3n −  = , relative prime with n, 

namely: {5, 7}. 
6) There is only one odd composite multiple of the primes from Class 1 relative prime with n in 

Group 1, namely: 25. 
7) All odd positive integers from Group 1 not mentioned at steps 2, 3, 5, and 6 are prime numbers, 

namely: 13, 17, 19, 23, 29. 
8) As the smallest prime, relative prime with respect to n, larger than the primes from Class 1, namely 

13, has the square larger than 2 3 63n − = , this means that in Group 2, except the integers listed at step 4, 
we have only prime numbers and odd composite multiples of the primes from Class 1. 

9) The odd composite multiples of the prime numbers from Class 1 in Group 2 are: 35, 49. 
10) All the integers from Group 2 not mentioned at steps 4 and 9 are prime numbers, namely: 37, 41, 

43, 47, 53, 59, 61. 
11) Summarizing, the Frame of the number 33n =  is shown below: 
 

 
 
Example 3: In the Frame corresponding to 33 3 11n = = ×  given in the previous example, we have: 

1 10π = , 2 7π = , 6a = , 6b = , 0m = , 1 1m = , 2 2m = . 

Let illustrate in this example why the inequality: 

1 2 1 2m m π π+ < + , 

holds. We notice that: 
The prime factor 3 has 4 odd composite multiples in Group 1, namely 9, 15, 21, 27, and 5 odd com-

posite multiples in Group 2, namely 39, 45, 51, 57, 63. 
The prime factor 11 has 0 odd composite multiples in Group 1, and 1 odd composite multiple, 55, in 

Group 2. 
Thus, the prime factors 3 and 11 have a total of 4 odd composite multiples in Group 1 and 6 odd 

composite multiples in Group 2. Counting the prime factors 3 and 11 themselves among the odd mul-
tiples, we get that the number of odd multiples of the prime factors in Group 1 is 2 4 6a = + =  and the 
number of odd multiples of the prime factors in Group 2 is 6b = . 

Class 1 is the set of primes relative prime with n from the interval ( )( ( ]2, 2 3 2,31 3n −  = , namely 
{5, 7}. 
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The prime 5 from Class 1 has 2 odd composite multiples in Group 1, namely 15 and 25, and 3 odd 
composite multiples in Group 2, namely 35, 45, and 55. 

The prime 7 from Class 1 has 1 odd composite multiple, namely 21, in Group 1, and 3 odd composite 
multiples in Group 2, namely 35, 49, 63. 

As we are interested only in the odd composite multiples that are relative prime with n, we notice 
that: 

The prime 5 from Class 1 has 1 odd composite multiple relative prime with n, namely 25, in Group 1, 
and 2 odd composite multiples relative prime with n, namely 35 and 55, in Group 2. 

The prime 7 from Class 1 has no odd composite multiples relative prime with n in Group 1 and 2 odd 
composite multiples relative prime with n in Group 1, namely 35, 49. 

As 35 is a common odd composite multiple relative prime with n of both 5 and 7, it has to be counted 
only once. 

Therefore, the primes 5 and 7 from Class 1 generate the following distinct odd composite multiples 
relative prime with n: 25 in Group 1 and 35, 49 in Group 2. Thus, 1 1m = , 2 2m = , and we have: 

1 2 1 23 17m m π π+ = < = + , 

confirming the inequality (1). 

5. CONCLUSION 
Goldbach’s Conjecture is the oldest conjecture in number theory. It states that every even integer 

strictly greater than 4 is the sum of two primes. There have been many empirical verifications of it, up to 
astronomic numbers, but it has remained unproven since 1742. The paper [1] formulated an equivalent 
property about a hidden symmetry of primes stating that for every positive composite number n, strictly 
larger than 3, there are two primes symmetric with respect to n. The paper [1] contained a proof of this 
prime symmetry property and, implicitly, of Goldbach’s conjecture for 2n as well. The present paper is a 
follow up of paper [1] bringing explicit new and complementary details about the proof given in [1], in-
sisting on the existence and the number of Goldbach representations of even positive integers as sums of 
pairs of primes. 
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