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Abstract 
The Boulon Djounga eastern perimeter is part of the Tiawa operating permit 
of the Société des Mines du Liptako (SML), located in the central southwes-
tern part of Liptako (Niger). In this study, we used field data, Reverse Circu-
lation (RC) surveys and chemical analyzes of gold to determine the characte-
ristics of gold and its mineralization style. The eastern perimeter of Boulon 
Djounga is represented by a succession of metabasalts and metasediments 
both intersected by intrusions of quartz and dolerite dykes, and covered by 
sandstone and clayey rocks. Gold is present in low contents (0.00 - 0.30 ppm) 
in the sedimentary cover and in medium (0.30 - 1.00 ppm) or high contents 
(1.00 - 4.534 ppm) in the metasediments, and in the gray quartz veins and lo-
cally in the volcanics. It exists in a disseminated state or in a concentrated state 
in the surrounding areas in the form of discrete grains associated with sul-
phurous minerals (pyrite: FeS2, chalcopyrite: CuFeS2 or arsenopyrite: FeAsS). 
The presence of gold in the quartz veins, and the NE-SW and NW-SE orien-
tations of the ore bodies suggest that the eastern Boulon Djounga gold mine-
ralization would be established during a late magmatic extensive phase. 
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1. Introduction 

The synoptic study of gold mineralization in West Africa has made it possible, 
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on the one hand, to associate the occurrences of gold with rocks belonging to 
Paleoproterozoic greenstone belts dated to approximately 2.1 Ga [1] and, on the 
other hand, to consider them as being the consequences of the Eburnean oroge-
ny [2] [3] [4] [5]. Classes of deposit indices, increasingly numerous in the meta-
sedimentary basins of the West African Craton, are related to the deformed and 
metamorphosed formations in the greenschist facies [6]. According to Castaing 
et al. [7], more than 80% of gold extracted from the West African subsoil comes 
from rocks forming greenstone belts. Thus, numerous deposits, associated with 
greenstone belts or metasedimentary basins, have been recognized in Ghana [8] 
[9] [10] [11], Burkina Faso [2] [12], Mali [6] [13] [14], Senegal [15], Ivory Coast 
[16] [17] and Morocco [18] [19]. 

The characteristics of orogenic type deposits are numerous and are defined in 
terms of structural and lithological controls, as well as in terms of mineral para-
genesis. However, supergene alteration of orogenic deposits is among the most 
important controlling agents and/or major players in the genesis of non-orogenic 
gold concentrations in time and space [6]. Paleoplacers (non-orogenic deposits 
of alluvial types) are the most widespread representatives of this type of deposits 
reported in Ghana [11] [20], Mauritania [21], Ivory Coast [22], Burkina Faso 
[23] [24] and Mali [25] [26]. 

In Niger, although the two types of deposits (orogenic and non-orogenic) 
have been recognized in the Liptako base and in the sedimentary basins through 
gold panning and industrial gold exploitation activities by the Société des Mines 
du Liptako (SML), research work on gold mineralization still remains very li-
mited. Generally speaking, the available bibliographic data consists mainly of 
technical reports [27]-[32] and does not provide broad visibility regarding the 
structural characteristics, lithological and paragenetic of the gold deposits re-
vealed. 

Indeed, through its mining complex, the Société des Mines du Liptako has 
been mining gold since October 2004. In order to maintain the level of produc-
tion, this company looked for additional deposits in 2016. Thus, RC type mining 
survey work was undertaken in the eastern perimeter of Boulon Djounga to de-
velop the deposit highlighted by previous work [32]. To do this, samples of drill 
cuttings were collected, then thin and polished sections were made for petro-
graphy and microscopy analysis of the mineralization, in addition to the deter-
mination of gold contents [33]. All the work undertaken in the sector [29] [30] 
[31] [32] [33] recommends that most of the exploited deposits appear in the 
heart of hinge folds oriented towards the south. It is also shown that in the Sa-
mira deposit, the ore bodies draw lenticular contours [31], which dipped varying 
from 40 to 45°towards the ENE [31], or towards the NE [32]. Furthermore, pe-
trographic and mineralogical studies do not make a significant contribution to 
models of the empirical relationships that control the distribution of gold mine-
ralization, despite the importance of such studies in the interpretation of styles 
of gold mineralization [12] [18]. The objective of this study is to determine the 
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geological characteristics of the gold deposits of the eastern Boulon Djounga de-
posit, in terms of the lithogeochemical and mineralogical aspects of this sector. 

2. Geological Setting  
2.1. Liptako Geological Setting 

The Société des Mines du Liptako (SML), commonly called Samira, is located in 
the southwestern Center of Nigerien Liptako (Figure 1; [34]). The Nigerien Lip-
tako corresponds to the northeastern border of the Baoulé-Mossi domain be-
longing to the Léo-Man Dorsal [35]. The basement formations of this Birimian 
domain were granitized, metamorphosed and stabilized between 1.8 Ga and 1.6 
Ga [36] [37]. 

The basement of the Nigerien Liptako is made up of two geological groups, 
notably the greenstone belts of Gorouol, Diagorou-Darbani and Sirba, intersected 
by the granitoid plutons of Téra-Ayorou, Dargol-Gothèye and Torodi (Figure 2; 
[38]). The Liptako greenstone belts are made up of meta-volcanosediments, me-
tasediments, metabasites and meta-ultrabasites [28] [39]-[48]. Conversely, gra-
nitoid plutons are made up of calc-alkaline rocks including a series of Tonalites, 
Trondhjemites, Granodiorites (TTG) and acidic to intermediate rocks of various 
nature including diorites, syenites, granites and dacites [49] [50] [51]. All of the 
Birimian rocks are cross-cutted by dykes of pegmatites, quartzo-feldspars-rich 
veins and dolerite dykes [40] [48]; all these rocks are being covered by sedi-
mentary formations of various ages [52] [53] [54] [55]. It is accepted that in  
 

 
Figure 1. General geological map showing the main gold showings of West Africa and the study area: Sa-
mira (Modified from [34]). The red star represents the Samira Gold mine domain. 

https://doi.org/10.4236/nr.2024.151003


G. R. Noura et al. 
 

 

DOI: 10.4236/nr.2024.151003 31 Natural Resources 
 

 
Figure 2. Simplified geological map of the Niger Liptako (Modified from [38]). The Sirba 
greenstone belt is the host formation of the Samira Tiawa permit. 
 
the Léo-Man ridge, most of the gold showings discovered are located in the green-
stone belts of the Baoulé-Mossi domain up to including the Nigerien Liptako 
[34] [56], as opposed to the archaean domain of Kenema-Man which presents 
few clues (Figure 1). 

2.2. Eastern Boulon Djounga Geological Setting 

The eastern Boulon Djounga perimeter is located in the Sirba greenstone belt, 
the geological formations hosting the Tiawa permit of the Samira mine (Figure 
2). The Sirba greenstone belt is composed of metabasites (basalts, dolerites and 
gabbros), metasediments (schists, siltstones, pelites, quartzites, greywackes, con-
glomerates) and locally by plutonic magmatic rocks (granites, granodiorites, dio-
rites, rhyodacites, rhyolites and granophyres) [28] [39] [57]. These rocks are me-
tamorphosed in greenschist facies in the axial zone of the greenstone belts rising 

https://doi.org/10.4236/nr.2024.151003


G. R. Noura et al. 
 

 

DOI: 10.4236/nr.2024.151003 32 Natural Resources 
 

to amphibolite facies in the vicinity of plutons with local partial melting [57]. 
In the Tiawa exploitation permit and particularly in the eastern perimeter of 

Boulon Djounga, the area is formed of mafic volcanics with intercalations of me-
tasediments and volcanosediments (Figure 3). These formations are intersected, 
in places, by gabbro and dolerite veins and dykes as well as small granitoid and 
felsic plutons [31] [58] [59]. 

Geological mapping work and core surveys, as well as interpretations of Re-
mote Sensing and Airborne geophysics data, have shown that the gold deposits 
of the Société des Mines du Liptako are located on a distinct horizon of metase-
diments, commonly called the “Samira Sedimentary Sequence” [29] [30] [31] 
[32] [58] [59]. This sequence is subdivided into four (4) distinct groups from the 
grain size and the nature of the composite material. These include weakly me-
tamorphosed interbedded sandstones and greywackes, fragmentary metasedi-
ments, interbedded and laminated metavolcanics, and both granoclassified and 
interbedded metasediments (Figure 4). 

 

 
Figure 3. Geological map of the Tiawa Permit (SML [32]). The red rectangle represents the 
study area. 
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Figure 4. Simplified geological diagram of the Samira sedimentary sequence (SML [32] 
modified). 

3. Material and Methods 

The cuttings were collected during twelve (12) RC surveys carried out in the 
prospect of eastern Boulon Djounga. The RC surveys were distributed into three 
(3) cross sections (CT001, CT002, CT003) oriented N-S. Each cross section has 
four (4) boreholes, spaced of 100 m (Figure 5).  

The soundings, with a depth varying from 90 m to 97 m, bear the names 
16BJE000 to signify a BJE drilling from 2016 and serial numbers (here: 001 to 
012). For each excavated material from a one-meter borehole, the excavated raw 
materials are collected in a white plastic bag, which is attached to the cyclone 
spillway. The dried and weighed spoil is then dumped into a divider so that it is 
homogenized and divided into parts, which pass through weirs of the divider 
and collected in two trommels (iron boxes). The aliquots (3 to 5 kg) of cuttings 
from the trommels are placed in plastics for chemical analyses. Likewise, we take 
a quantity which we wash and sieve. Refusals are entered into a box for field de-
scription. 

The series of samples collected is the subject of operations to describe the raw 
debris and laboratory works. The description of the raw cuttings makes it possi-
ble to determine the petrography, the alteration profile of the rocks and that 
oxidation of sulphides at each hole. This is done according to three parameters 
depending on the images of the same petrographic composition, including major 
lithology, abundance of certain minerals, and laterite boundary. The laboratory 
work consisted of the preparation of thin sections, their observation under an 
optical microscope with transmitted light and the chemical determination of 
gold at the SGS Burkina SA Laboratory (Ouagadougou, Burkina Faso). Litho-
logical logs and the vertical and lateral extents of the ore bodies were designed  
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Figure 5. Location of Reverse Circulation (RC) surveys in the eastern sector of Boulon Djounga 
(SML [33] modified). The cross sections, with the 12 boreholes (16BJE000), spaced of 100 m, are 
indicated as CT001, CT002 and CT003. 

 
and correlated on the three (3) cross sections (Figure 5) by insertion of petro-
graphic data and chemical assay results. 

4. Results 
4.1. Petrography 

The macroscopic description of RC drilling cuttings and spoils, the lithological 
logs and thin sections in polarized light analyzed demonstrates that the study 
perimeter is made up of several lithologies, listed as follows from top to base:  

Laterites 
This is the summit level made up of the armor and the carapace. The two sub-

levels are both composed of a mixture of ferruginous sandstone and argillaceous 
sandstone of brick-red color, of massive structure and rich in hematite, iron 
nodules, goethite and gibbsite (Figure 6(a) and Figure 6(b)). The armor and the 
carapace have variable thicknesses depending on the geomorphological profile. 
The thicknesses highlighted on the three cross sections (CT001, CT002 and CT003) 
are between 0 and 20 m (Figures 7-9). The different structures observed in the 
upper part of the ferruginous zone of the lateritic regolith are massive pisolites 
fabrics pisolites and iron nodules or vesicles. 

Spotted clays 
They are a massive level presenting several colors (red, brown or yellow spot-

ted with white). This level corresponds to the clay layer presenting a shade of 
color between kaolin, hematite and limonite (Figure 6(a) and Figure 6(b)). Its 
thickness according to the three cross sections is between 1 m and 2 m (Figures 
7-9). 
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Figure 6. (a) and (b) description of the cuttings, (c) samples of dolerite dykes, (d) samples of metabasalt ((e) (f)) photomicrographs 
of the dolerite and metabasalt dykes. Ser: sericite; Opx: orthopyroxene; Cpx: clininopyroxene; Pl: plagioclase, Ep: epidote, Qz: 
quartz, Hb: hornblende. 
 

Metasediments 
They are essentially schistose and present several colors (gray, yellowish gray, 

greenish gray, green, brown and beige). Among the minerals observed, we could  
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Figure 7. Correlation of the lithological logs of the CT001 cross section and delineation of the ore body within the metasediments. 
The red rectangle represents the mineralized body. 

 

 
Figure 8. Correlations of lithological logs of cross section CT002 and delineation of the ore body within metasediments and 
mafic volcanics. The red rectangle represents the mineralized body. 
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Figure 9. Lithological log correlations of cross section CT003 and delineation of the ore body within the metasediments. The red 
rectangle represents the mineralized body. 

 
distinguish quartz, chlorite, sericite and pyrite. The description of the cuttings 
shows that they correspond to chlorite, sericite or epidote schists, greywackes, 
sandstone pelites or gresopelites (Figure 6(a) and Figure 6(b)). The schistosity 
is well marked in the shales and crude in the sandstone pelites, sandstones and 
greywackes. The levels occur locally in intercalation with mafic volcanics. The 
metasediments occur at depths between 20 m and 86 m (Figures 7-9). 

Quartz veins 
They are white or gray in color and are characterized by a vein structure 

(Figure 6(a) and Figure 6(b)). They cross-cut the metasediments and volcanics 
over thicknesses of approximately 1 m (Figures 7-9). 

Graphite-bearing sediments 
They have a thickness of 6 m, a black color and a schistose structure (Figure 

6(b)). Alternating with meta-sediments, graphite-bearing sediments were ob-
served only in the borehole 16BJE000. They correspond to the sedimentary ho-
rizon bearing the Samira gold mineralization. 

Mafic volcanites 
They have a black or green tint and a massive or schist structure in places 

(Figure 6(a), Figure 6(b) and Figure 6(d)). The black color characterizes healthy 
massive rocks, in which white quartz and pyrite are observed. The other colors 
are observed on altered volcanics, rich in chlorite and/or epidote. When the lat-
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ter are schist, they represent chloritoschist/epidote schists. Microscopic observa-
tion of a thin section of a volcanic sample taken at 40 m in borehole BJE009 
shows a mineralogical composition represented by plagioclase, amphibole, epi-
dote, sericite and quartz (Figure 6(d) and Figure 6(f)). This mineralogical com-
position is typical of a basalt. A sample of grey dolerite dyke with massive struc-
ture, cutting the volcanics at 45 m in borehole 16BJE008, indicates that it is made 
up of pyroxene, plagioclase, sericite and hornblende (Figure 6(e) and Figure 
6(f)). The lack of schistosity on the dolerite dykes indicates that they correspond 
to Birimian late-magmatic events. 

The petrographic results show that the lithologies of the Boulon Djounga Est 
perimeter have undergone hydrothermal and meteoric alteration processes. The 
evolution of the mineral phases shows primary minerals (pyroxene and plagioc-
lase) transformed on the edges into hornblende, chlorite or epidote and in the 
center into sericite, during hydrothermal alteration. Meteoric alteration affected 
the rocks in the form of ferralitic and silico-aluminous processes and consisted 
respectively of the hydrolysis of ferromagnesian minerals (amphibole, pyroxene, 
chlorite) and plagioclase. 

4.2. Chemical Assays of Gold 

The gold chemical assay results are given in ppm for each 1 m pass of drilling 
progress and are recorded in Table 1. The grades obtained on the twelve bore-
holes vary from 0 to 4.534 ppm. The average grades (X) per survey vary from 
0.032 to 1 ppm and the average grade for all 12 surveys is 0.14 ppm. 

 
Table 1. Gold chemical assay result in ppm. The interesting contents have been indicated in bold in the table. CNR designates 
“cuttings not recovered” during the survey. Σ and X are respectively the sum and the average of the ppm contents obtained at each 
borehole. 

Chemical analysis results per one meter pass (Au in ppm) 

Depth 
(m) 

16BJE001 16BJE002 16BJE003 16BJE004 16BJE005 16BJE006 16BJE007 16BJE008 16BJE009 16BJE010 16BJE011 16BJE012 

1 CNR CNR 0.007 CNR 0.021 0.002 CNR CNR 0.008 0.009 0.017 0.016 

2 CNR 0.006 0.007 0.002 0.002 0.006 0.014 0.002 0.006 0.018 0.023 0.008 

3 0.026 0.006 0.007 0.002 0.009 0.002 0.010 0.002 0.022 0.011 0.002 0.010 

4 0.012 0.005 0.008 0.002 0.006 0.002 0.018 0.076 0.022 0.015 0.007 0.009 

5 0.002 0.006 0.008 0.008 0.013 0.011 0.025 0.031 0.011 0.013 0.002 0.094 

6 0.006 0.006 0.011 0.008 0.014 0.002 0.036 0.013 0.020 0.035 0.033 0.008 

7 0.006 0.012 0.017 0.030 0.022 0.006 0.026 0.041 0.018 0.039 0.031 0.011 

8 0.010 0.017 0.019 0.020 0.062 0.006 0.057 0.007 0.013 0.068 0.052 0.041 

9 0.021 0.035 0.032 0.017 0.040 0.009 0.019 0.002 0.023 0.022 0.042 0.042 

10 0.013 0.024 0.024 0.011 0.030 0.011 0.047 0.068 0.016 0.012 0.048 0.036 

11 0.014 0.043 0.022 0.006 0.030 0.012 0.056 0.009 0.026 0.027 0.045 0.036 

12 0.022 0.033 0.021 0.008 0.088 0.011 0.034 0.030 0.039 0.029 0.044 0.037 
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Continued 

13 0.024 0.029 0.030 0.023 0.014 0.014 0.049 0.002 0.055 0.050 0.024 0.020 

14 0.042 0.035 0.032 0.031 0.020 0.012 0.062 0.002 0.054 0.030 0.026 0.028 

15 0.056 0.047 0.048 0.056 0.020 0.013 0.040 0.022 0.039 0.025 0.020 0.020 

16 0.077 0.029 0.055 0.041 0.008 0022 0.031 0.027 0.022 0.031 0.027 0.016 

17 0.055 0.019 0.035 0.042 0.040 0.027 0.057 0.046 0.022 0.029 0.026 0.024 

18 0.128 0.038 0.059 0.061 0.025 0.014 0.029 0.028 0.051 0.032 0.041 0.030 

19 0.042 0.021 0.367 0.065 0.021 0.019 0.018 0.049 0.014 0.036 0.067 0.043 

20 0.028 0.034 0.035 0.102 0.013 0.008 0.035 0.428 0.012 0.037 0.030 0.025 

21 0.128 0.050 0.062 4.534 0.008 0.007 0.020 4.432 0.008 0.035 0.036 0.037 

22 0.595 0.023 0.016 0.198 0.006 0.018 0.118 0.512 0.008 0.018 0.058 0.013 

23 0.236 0.010 0.012 0.076 0.008 0.041 0.169 0.078 0.009 0.021 0.011 0.061 

24 0.260 0.013 0.013 0.027 0.016 0.022 0.197 0.056 0.010 0.026 0.030 0.020 

25 0.036 0.011 0.026 0.015 0.014 0.006 0.270 0.053 0.010 0.016 0.066 0.062 

26 0.078 0.017 0.174 0.436 0.002 0.008 0.294 0.974 0.006 0.012 0.213 0.020 

27 0.042 0.007 0.014 0.233 0.006 0.006 0.345 0.108 0.018 0.011 0.015 0.007 

28 0.034 0.008 0.825 0.639 0.002 0.008 0.139 0.101 0.017 0.006 0.050 0.007 

29 0.014 0.002 0.103 0.097 0.002 0.002 0.015 0.092 0.006 0.014 0.054 0.022 

30 0.080 0.012 0.018 0.011 0.008 0.020 0.073 0.111 0.002 0.017 0.028 0.189 

31 0.009 0.005 0.021 0.062 0.002 0.006 0.273 0.021 0.008 0.006 0.028 0.343 

32 0.020 0.007 0.015 0.052 0.002 0.031 0.397 0.008 0.002 0.002 0.010 0.393 

33 0.007 0.012 0.200 0.050 0.011 0.002 0.099 0.012 0.002 0.009 0.072 0.029 

34 0.016 0.013 0.107 0.039 0.006 0.002 0.062 0.163 0.002 0.023 0.015 0.050 

35 0.002 0.011 0.091 0.034 0.014 0.002 0.028 0.020 0.005 0.008 0.014 0.589 

36 0.002 0.010 0.193 0.006 0.006 0.002 0.059 0.013 0.013 0.025 0.017 0.202 

37 0.002 0.008 0.162 0.002 0.013 0.010 0.083 0.024 0.006 0.026 0.033 0.057 

38 0.002 0.009 0.180 0.002 0.013 0.020 0.051 0.011 0.002 0.024 0.085 0.005 

39 0.002 0.024 0.125 0.006 0.004 0.002 0.020 0.021 0.009 0.042 0.038 0.049 

40 0.010 0.015 0.293 0.006 0.050 0.002 0.076 0.013 0.002 0.021 0.119 0.093 

41 0.047 0.015 1.354 0.007 0.011 0.002 0.018 0.041 0.002 0.024 0.165 0.329 

42 0.007 0.010 1.324 0.002 0.002 0.008 0.031 0.010 0.002 0.029 0.307 0.066 

43 0.002 0.002 0.321 0.007 0.007 0.002 0.004 0.169 0.002 0.002 0.424 0.053 

44 0.002 0.006 0.076 0.013 0.002 0.006 0.007 0.025 0.006 0.153 0.057 0.020 

45 0.002 0.054 0.064 0.007 0.002 0.018 0.084 0.019 0.021 0.237 0.032 0.013 

46 0.002 1.102 0.079 0.002 0.002 0.027 0.042 0.006 0.002 0.303 0.035 0.038 

47 0.012 0.581 0.052 0.002 0.002 0.009 0.061 0.014 0.002 0.740 0.108 0.012 

48 0.006 0.238 0.029 0.007 0.002 0.006 0.007 0.014 0.022 0.553 0.195 0.063 

49 0.024 0.023 0.021 0.002 0.002 0.002 0.178 0.008 0.035 0.342 0.044 0.045 

50 0.014 0.116 0.012 0.002 0.002 0.007 0.279 0.002 0.029 0.073 0.013 0.047 
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Continued 

51 0.024 0.067 0.012 0.002 0.012 0.002 0.033 0.002 0.057 0.050 0.007 0.013 

52 0.050 0.039 0.011 0.010 0.002 0.855 0.013 0.008 0.055 0.068 0.010 0.008 

53 0.032 0.016 0.007 0.014 0.029 0.416 0.037 0.013 0.016 0.034 0.036 0.032 

54 0.036 0.164 0.015 0.023 0.030 0.035 0.070 0.019 0.028 0.016 0.023 0.048 

55 0.009 0.394 0.008 0.021 0.016 0.025 0.035 0.031 0.202 0.018 0.024 0.041 

56 0.002 0.265 0.002 0.036 0.018 0.014 0.024 0.065 2.108 0.027 0.012 0.008 

57 0.002 0.152 0.002 0.033 0.007 0.011 0.024 0.036 1.184 0.030 0.011 0.002 

58 0.002 0.085 0.002 0.045 0.007 0.016 0.034 0.035 0.292 0.018 0.015 0.002 

59 0.002 0.016 0.002 0.022 0.002 0.042 0.032 0.055 0.026 0.025 0.009 0.004 

60 0.013 0.090 0.002 0.011 0.009 0.023 0.015 0.031 0.079 0.012 0.008 0.050 

61 0.026 0.012 0.002 0.016 0.043 0.054 0.018 0.046 0.046 0.654 0.002 0.002 

62 0.006 0.015 0.002 0.034 0.012 0.024 0.012 0.026 0.069 0.040 0.002 0.002 

63 1.406 0.026 0.002 0.035 0.011 0.018 0.064 0.013 0.115 0.041 0.009 0.007 

64 0.676 0.013 0.002 0.046 0.972 0.064 0.045 0.006 0.079 0.064 0.005 0.002 

65 0.018 0.014 0.006 0.015 0.081 0.061 0.019 0.042 0.096 0.045 0.002 0.008 

66 0.104 0.012 0.007 0.011 0.301 0.148 0.002 0.028 0.020 0.020 0.016 0.023 

67 0.060 0.014 0.006 0.021 2.827 0.107 0.021 0.023 0.068 0.032 0.011 0.015 

68 0.002 0.014 0.007 0.060 0.079 0.011 0.084 0.004 0.095 0.025 0.020 0.006 

69 0.028 0.008 0.002 0.019 0.046 0.007 0.036 0.017 0.033 0.017 0.006 0.010 

70 0.006 0.010 0.002 0.006 0.780 0.006 0.042 0.010 0.079 0.038 0.026 0.002 

71 0.088 0.048 0.007 0.002 0.294 0.002 0.040 0.002 0.041 0.005 0.024 0.002 

72 0.094 0.007 0.002 0.007 0.067 0.002 0.025 0.010 0.129 0.002 0.011 0.002 

73 0.062 0.029 0.002 0.002 0.008 0.020 0.002 0.010 0.169 0.006 0.010 0.002 

74 0.045 0.015 0.007 0.002 0.018 0.007 0.002 0.006 0.093 0.002 0.008 0.002 

75 0.019 0.017 0.002 0.008 0.012 0.002 0.033 0.010 0.017 0.002 0.006 0.002 

76 0.007 0.010 0.002 0.002 0.010 0.011 0.035 0.007 0.009 0.002 0.002 0.006 

77 0.016 0.009 0.005 0.006 0.019 0.006 0.016 0.186 0.010 0.002 0.007 0.002 

78 0.037 0.002 0.002 0.020 0.021 0.022 0.023 0.017 0.011 0.009 0.025 0.005 

79 0.049 0.006 0.002 0.029 0.884 0.012 0.022 0.010 0.006 0.002 0.020 0.002 

80 0.123 0.002 0.002 0.046 0.326 0.010 0.002 0.009 0.011 0.002 0.025 0.008 

81 0.031 0.002 0.002 0.002 0.106 0.012 0.007 0.010 0.002 0.002 0.010 0.002 

82 0.019 0.009 0.002 0.009 0.065 0.019 0.038 0.008 0.002 0.002 0.018 0.014 

83 0.008 0.008 0.002 0.009 0.080 0.098 0.153 0.018 0.002 0.002 0.014 0.017 

84 0.008 0.002 0.002 0.007 0.049 0.046 0.636 0.024 0.008 0.011 0.019 0.002 

85 0.018 0.028 0.002 0.002 0.082 0.028 0.208 0.028 0.002 0.002 0.017 0.002 

86 0.019 0.002 0.002 0.002 0.061 0.040 0.090 0.016 0.002 0.006 0.012 0.002 

87 0.010 0.002 0.007 0.007 0.038 0.018 0.045 0.008 0.002 0.002 0.006 0.015 

88 0.010 0.007 0.002 0.002 0.020 0.023 0.092 0.009 0.008 0.002 0.036 0.002 
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Continued 

89 0.011 0.002 0.002 0.002 0.015 0.053 0.041 0.007 0.006 0.002 0.002 0.002 

90 0.007 0.006 0.002 0.002 0.010 0.022 0.071 0.011 0.007 0.025 0.002 0.002 

91     0.006    CNR    

92     0.007    0.002    

93     0.009    0.021    

94     0.002    0.007    

95     0.002    0.002    

96         0.008    

97         0.008    

Σ 5.462 4.498 6.985 7.759 8.820 2.905 6.403 8.932 6.093 4.750 3.507 3.866 

X 0.062 0.050 0.078 0.087 0.087 0.032 0.072 1.000 0.063 0.053 0.039 0.043 

 
By superimposing these contents on the lithological logs, we notice that low 

contents (0.00 - 0.30 ppm) are frequently observed in laterite, white quartz veins 
and mafic volcanics while medium ones (0.30 - 1.00 ppm) and high contents 
(1.00 - 4.534 ppm) are hosted by metasediments and gray quartz veins, with 
some interesting passes in the mafic volcanics (Figures 7-9). 

The highest content (4.534 ppm) was observed in fragment metasediments in 
16BJE004 (Table 1). In gray quartz veins and mafic volcanics, gold is frequently 
associated with sulphurous minerals (pyrite: FeS2, chalcopyrite: CuFeS2 or arse-
nopyrite: FeAsS). It is found in a disseminated state in the surrounding areas 
because grains of gold were not observed in the cuttings or in the thin sections. 

4.3. Lithological Logs 

Correlations of lithological and synthetic logs from three cross sections (CT001, 
CT002, CT003) show a lithological succession composed of six (6) levels from 
bottom to top. These are mafic volcanics or metabasalts, graphite sediments, me-
tasediments, variegated spotted clay with lateritic armor and carapace. The me-
tabasalts and metasediments are affected by metric-thick quartz intrusions. 

Depending on the grain size and the sedimentary or metamorphic structures 
present, three units of the Samira sedimentary sequence were identified in the 
eastern sector of Boulon Djounga. These are laminated, graded and interstrati-
fied metasediments, metavolcanic intercalations and fragment metasediments 
(Figures 7-9). The disappearance of certain lithological levels from one survey 
to another could be due to tectonic deformations that affected the rocks. This 
can be noticed on the summit volcanics to the south of cross sections CT001 and 
CT003. 

The superposition of the grades obtained on each borehole along the corres-
ponding lithological logs (Table 1) made it possible to delimit the vertical and 
lateral extent of the ore bodies, but also to highlight the lithological control of 
the gold mineralizations in the eastern perimeter of Boulon Djounga (Figures 
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7-9). The ore bodies are characterized by a low dip on the scale of cross sections 
and a variable thickness depending on the nature of the surrounding environ-
ment. 

5. Discussion 

The hoarding of gold in Niger in recent decades has made it necessary to take 
into account and above all a better understanding of the mineralization of the 
Samira gold prospect (South-West Liptako of Niger). In light of this, more eco-
nomically viable deposits could be brought into production. This study of an 
area of great diversity of major structures and geological formations, namely the 
eastern perimeter of Boulon Djounga, is part of this perspective.  

Analyzes of lithological logs (macroscopy of cuttings, thin sections and step- 
by-step correlations) reveal a lithological sequence formed of mafic volcanics or 
metabasalts which, topped by graphite sediments, are intruded by metric-scale 
quartz veins. Then, there are metasediments which, in addition to being affected 
by quartz intrusions, are laminated, granoclassified and interstratified. The sum-
mit part is composed of variegated spotted clays on its wall and roof, armor cov-
ered with a lateritic carapace. In agreement with Eggleton [60], this is the part of 
the lateritic profile showing ribbons of different colors whose red tint corres-
ponds to hematite, the yellow tint to limonite and the white tint or gray with 
kaolin. The differentiations highlighted in this study are similar to the descrip-
tions made by previous authors [31] [32] [58] [59] in the Tiawa and Saoura ex-
ploitation permits of the Société des mines du Liptako (SML). Also, just like 
Gilder [61] demonstrated in his mineralogical study on the physical characteris-
tics of gold in the Samira deposits, the gold appears as discrete grains of size be-
tween 1 and 50 μm. 

Gold mineralization at Samira is mainly developed in fragmental sediments, 
particularly those in proximal contact with volcanic intercalations. This is con-
sistent with the conclusions of Placer Dome Inc. [31], who put forward the hy-
pothesis that the geological control of the gold mineralizations in the Boulon 
Djounga would be ensured by volcanics which provide a good barrier imperme-
able to hydrothermal liquids during the placement of gold. Scattered throughout 
the surrounding areas, gold mineralization is associated with sulphurous miner-
als (pyrite, chalcopyrite, arsenopyrite). The same similarity has been reported in 
certain types of deposits described in Ghana by Leube et al. [62] and Oberthur et 
al. [63], who reported that disseminated gold is in metasediments just like quartz 
veins. Furthermore, the characteristics of these mineralizations (i.e., the disse-
mination of gold in volcanic rocks and quartz veins) are similar to the metallo-
genic attributions of types II and IV deposits described by Milési et al. [34] and 
type II mentioned by Milési et al. [1] and Mcmahon et al. [64]. 

The very high contents (4.432 ppm and 4.534 ppm), obtained in the metase-
diments of drilling 16BJE004 and in the volcanics of drilling 16BJE008, indicate 
that gold also exists in a concentrated state, as was indicated by Béziat et al. [2] 
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in an orogenic deposit in Burkina Faso. In this typical case, for [2], gold occurs 
in both forms namely disseminated and concentrated. However, it remains that 
the presence of numerous native gold grains can also be associated with pyrite 
(FeS2 (traces Ni, Co, Cu, Ag, Au)), as reported by El-Desoky et al. [65] in the 
granites of the Hamash goldmine (South Eastern Desert of Egypt). 

From the presence of gold-bearing quartz veins in the volcanics or metasedi-
ments and the analysis of the vertical and lateral extents of the ore bodies 
(Figures 7-9), it appears that the geometry of the deposits indicates a pervasive 
structural control of the gold mineralization by an extensive phase. These results 
are in line with those of the work of [6] [65] [66], who point out that gold-rich 
vein structures are in fact associated with large faults forming a conjugate net-
work in relation to the main shear zones. 

In this expectation, the ore bodies which have NE-SW and NW-SE orienta-
tions would be compatible with the extension directions of the third phase of 
deformation D3 responsible for brittle shear and the establishment of gold mi-
neralizations in the Libiri perimeter of the Société des Mines du Liptako [67]. 
Also, just as in the Kplessou-Toumodi (Ivory Coast) [66], the intrusion of proto-
litic rocks accompanied by multiple fractures controls the arrival of hydrother-
mal fluids. According to the work of Nikiema [68], the hydrothermalism which 
allowed the remobilization and drainage of gold-rich solutions towards the fra-
gile shear corridors (oriented NNE–SSW and NE–SW) would be synchronous 
with the extensive deformation phase D3. As summarized by Placer Dome Inc. 
[31], this phase could be the equivalent of the P2 phase and could be interpreted 
the phase that exerted structural control over gold mineralizations at the level of 
the Samira sedimentary horizon. 

The evolution of the mineral phases shows that the association of minerals 
accompanying gold in the study area differs from the results obtained in certain 
non-orogenic West African deposits, in which gold is associated with carbonates 
[69], skarns [70] or copper porphyries [71]. Several works [65] [72] [73] [74] have 
demonstrated that orogenic deposits mainly form at the boundaries of tectonic 
plates and are linked to periods of crustal growth marked by intense magmatic 
activity conducive to the circulation of fluids. Thus, orogenic deposits would be 
linked to shear corridors and the commonly accepted genesis model is that of a 
continuum of fluid circulations from the ductile stage to the brittle stage [6]. For 
Groves et al. [73], the mineralizations would form after the peak of metamor-
phism, subsequent to the compressive deformation phase. Then, the presence of 
metamorphic minerals (chlorite and epidote; Figure 6(f)) reflects that gold mi-
neralization affects supra-crustal terrains metamorphosed in green schist to 
amphibolite facies [6] [73]. 

Here we find the context of a certain mineral paragenesis associated with gold 
and the nature of the surrounding areas which indicate that there were at least 
two hydrothermal phases of establishment of gold mineralization. On the basis 
of a report on the exploratory petrography of Samira, the first phase is of synse-
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dimentary exhalative origin and, during which, disseminated gold was emplaced 
in the metasediments [75]. The second phase has been evoked by [30], who con-
cluded and emphased that it has a hydrothermal or late-orogenic character and 
is distinguished by and through the sulphurous minerals in the gray quartz veins 
and volcanics. In summary, the results obtained from this study are consistent 
with typical first phase gold mineralization, but comparison with more outcrops, 
drill core and face samples from an operating underground mine should be 
sought. Also, it is accepted that the supergene alteration of the base shear zones 
obviously favors a certain redistribution of gold contents [76]. Therefore, the re-
lationship between the indices of gold mineralization, thermotectonic pheno-
mena and the rocks carrying this mineralization could certainly be constrained 
by the study of concentrations [77], but additional information would be re-
quired using isotopic data (e.g. Pb, Sr and Sm-Nd). 

6. Conclusion 

The Société des Mines du Liptako (SML) has been operating an open-pit gold 
mine since 2004. Since 2016, faced with a problem of depletion of reserves, this 
company has been looking for new deposits in order to maintain the level of 
production. Thus, at the level of the “Samira Sedimentary Sequence”, a RC 
drilling campaign over the entire eastern Boulon Djounga prospect made it 
possible to rely on numerous cuttings to ensure the lateral continuity and the 
structural context of the lithologies in depth. In order to fully exploit the use of 
cuttings as a tool and medium for providing information on gold grades in re-
served areas, this study focused on the devices and mechanisms governing the 
style of mineralization and the characteristics of gold in the Sirba greenstone 
belt. For this, after a description of the samples of cuttings taken, thin sections 
were made for microscopic observations. And, to design strings (or mineralized 
envelopes), metallurgical operations (or chemical analyses) made it possible to 
determine the gold content in ppm for each representative sample of a pass. 
The petrographic analysis demonstrated that the eastern perimeter of Boulon 
Djounga corresponds to a succession of metabasalts intercalated with fragmen-
tary metasediments, then laminated, granoclassified and interstratified, in addi-
tion to intrusions of quartz and dolerites. These lithologies are covered by ferru-
ginous and argillaceous sandstones and spotted clays. The observation of symp-
tomatic minerals of low pressure and low temperature such as epidote, chlorite, 
sericite show that the metamorphism which prevailed within the study area is 
the green schist facies, sometimes reaching amphibolite facies due to the pres-
ence of hornblende. The gold mineralizations are disseminated or concentrated 
and are hosted in metasediments, gray quartz veins or metabasalts. The impor-
tance of the lithological control of gold by the metasediments could be explained 
by the fact that the metabasalts of the top and base played a barrier role during 
the ascent of gold-rich hydrothermal fluids. This circulation of fluids would have 
caused the establishment of quartz with gold and sulphides, and the pseudo-
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morphosis of primary minerals (plagioclase, pyroxene) into secondary minerals 
(sericite, chlorite, epidote). It is imperative that future studies combine sampling 
at the working face with a more rigorous evaluation of the effect of particle ag-
gradation events in alteration corridors, particularly at the level of vein walls 
(quartz, dolerites and pegmatites) which are determinants of high gold concen-
trations in surface and in the underground conditions. After all, RC drilling 
techniques could well be combined with logging and isotopic data to even better 
ensure lateral continuity and the context of the lithologies carrying gold minera-
lization deeply.  
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