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Abstract 
Previous field measurements in rangelands throughout California have shown 
that spreading a relatively thin layer of compost on the soil surface of grass-
lands can enhance water-holding capacity and provide stabilized, slow-release 
nutrients to support long-term belowground carbon capture and storage. 
Compost-treated grasslands have been shown to consistently absorb more 
CO2 from the atmosphere into the plant and soil cover, more than that was 
being lost to microbial respiration for many years after a single organic matter 
application. The purpose of this new study was to optimize the long-term in-
crease and restoration of soil carbon pools across the state of California, based 
on a combination of state-wide satellite image analysis, soil carbon modeling, 
and Machine Learning. 
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1. Introduction 

Agricultural production systems are major sources of greenhouse gas (GHG) 
fluxes from the land to the atmosphere and are currently responsible globally for 
10 to 20 Gt CO2 Eq in GHG emissions each year [1]. It is therefore imperative and 
urgent that farming and grazing practices be reimagined and scientifically proven 
to help reverse soil degradation, biodiversity loss, and GHG emissions. 
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Studies reviewed across different “regenerative” agriculture practices that aim 
chiefly to restore soil organic matter and nutrients, in comparison with conven-
tional practices of tillage and chemical fertilizer use to maximize crop yields, have 
shown that belowground carbon pools can be increased by as much as 3 Mg C 
ha−1 yr−1 [2]. Grassland soils treated with a thin layer (around 1.3 cm thick) of 
composted organic matter have consistently measurable increases in plant pro-
duction and net carbon uptake through the enhancement of available nitrogen 
(N) and water holding capacity [3]. 

In general, field-based evidence of compost’s potential to alter the soil state is 
being increasingly recognized by scientists and policymakers for sequestering car-
bon belowground for decades and conserving water during drought periods [3]-
[5]. In field studies on grazed grasslands of coastal California (Marin County) and 
the Central Valley (Yuba County), a single organic matter application of 14 Mg C 
ha−1 increased and maintained the carbon content of surface soils by between 1.8 
and 2.6 Mg C ha−1, sampled three years following compost application [6]. These 
same compost amendments increased both above- and below-ground plant pro-
duction by 2.1 to 4.7 Mg C ha−1 (compared to uncomposted control plots) over 
the three-year study period. In a meta-analysis of other grassland management 
practices, Conant et al. [7] reported that improved grazing management alone 
could increase the sequestration of soil carbon in rangelands at a rate of only 0.3 
Mg C ha−1 yr−1. In summary, organic amendments, mulching, cover cropping, and 
reduced tillage have been shown to restore soil carbon pools and microbial health 
in farmlands more rapidly than rotational livestock plans [2] [8]. 

Ryals et al. [9] combined field data and the DAYCENT biogeochemical model 
to investigate the GHG mitigation potential of soil compost amendments at their 
same two grazed grassland sites in Marin and Yuba County, California. The DAY-
CENT model [10] was used to test 100+ years of ecosystem C responses to a range 
of compost qualities (carbon to nitrogen [C:N] ratios of 11, 20, or 30) and appli-
cation rates (single addition of 14 Mg C ha−1 or 10 annual additions of 1.4 Mg C 
ha−1 yr−1). Results showed that the compost mass decay through time followed a 
negative exponential decay curve. The proportion of compost-C remaining in the 
soil ecosystem after 10, 30, and 100 years was 68%, 22%, and 1.0%, respectively. 
All compost amendment scenarios led to net GHG sinks that the modeling showed 
to persist for several decades following organic matter addition, reflecting the abil-
ity of compost to act as a slow-release organic fertilizer. Compost amendments 
with lower C:N led to higher C sequestration rates over time. However, these soils 
also experienced greater N2O GHG fluxes. 

As context for the need to make the best use of food waste that cannot be redis-
tributed for human consumption, the California organics recycling law (State Bill 
1383) took effect in 2022 with the main goal of reducing GHG emissions by di-
verting 75% of organic waste from landfills by 2025. As of 2024, CalRecycle (calre-
cycle.ca.gov) reported that 75% of communities have implemented residential or-
ganics collection programs and nearly 100% reported expanding their commercial 
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organics collection programs. Under what is known as “Article 12” of the state 
law, CalRecycle assigns an annual procurement target for each jurisdiction (city 
or county) in the state, who in turn must meet that target by purchasing compost 
and mulch to spread on local soils.  

The purpose of this new study was to assist in planning at the state and local 
levels for future compost applications to selected California rangelands, so as to 
optimize the use of limited resources and maximize the long-term increase and 
restoration of soil carbon pools across the state. The methods applied in this 
study were based on a combination of state-wide satellite image analysis, soil 
carbon modeling, and Machine Learning. The soil carbon modeling methods 
presented in this study were identical to those described by Ryals et al. [9] using 
DAYCENT; however, our new predictions of the lifetime in rangeland soils of 
added carbon applied as compost have been extended to cover the entire state. 
The main objective of this study was to select the optimal property locations in 
California to apply future compost amendments, based on the best scientific 
data and criteria available for the CO2 capture and long-term storage by range-
land soils. 

In a recent literature review, Adugna [11] concluded that many field investiga-
tions have demonstrated that compost has an equalizing effect on annual and sea-
sonal fluctuations regarding the water content and heat balance of soils. In a re-
view of long-term experiments (3 - 60 years), Diacono and Montemurro [4] re-
ported that regular addition of composted organic residues commonly increases 
soil physical conditions and fertility, mainly by improving aggregate stability and 
decreasing soil bulk density. Findings such as these support the principal hypoth-
eses that we have brought to our new remote sensing studies of trends in range-
land productivity, namely that: 1) Years of relatively high rainfall increase average 
daily soil water content and extend the herbaceous growing season, compared to 
relatively low rainfall seasons and years, and 2) Compost application to grasslands 
increases soil water holding capacity to make more precipitation available to her-
baceous plant cover, compared to grasslands not treated with compost additions 
to the soil. 

2. Materials and Methods 
2.1. Surface Soil Carbon Content 

Veloz et al. [12] applied machine learning methods to map soil carbon pools for 
all California rangelands at a 270 m pixel size. Boosted regression as a machine 
learning algorithm was used in a classification tree model that iteratively adds new 
trees to the set, and at each step focuses on explaining the remaining unexplained 
variation from the set of previous trees. The final parameters for the algorithm 
were selected by balancing the ability of the model to explain the variation in the 
input data set (training values) while also being able to accurately predict the data 
set withheld from the training values (i.e., the testing values). 

Soil carbon concentrations were first measured from both 0 - 10 cm and 10 - 40 
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cm depths at 282 grassland sites across California from 2015 to 2021. Samples 
were collected in a standardized way and analyzed at the University of Idaho An-
alytical Lab via dry combustion. Bulk density measurements were also taken at 
each site and used to convert carbon concentrations to stocks on a fixed mass basis 
(Mg C ha−1). 

Input data sets to the Machine Learning model included: 
• Elevation from the Shuttle Radar Topography Mission Digital Elevation Da-

taset, 30 m resolution. 
• Climate data, including monthly average winter minimum temperature (Dec-

Feb) and average summer maximum temperature (Jun-Aug), as well as annual 
precipitation, runoff, recharge, storage, and climactic water deficit, averaged 
over the years 2016 to 2021 from California’s Basin Characterization Model 
v8, 270 m resolution [13].  

• Nine measures of annual vegetative productivity derived from the NASA Mod-
erate Resolution Imaging Spectroradiometer (MODIS) satellite Normalized 
Difference Vegetation Index (NDVI) data; averaged over the years 2016 to 2021, 
250 m resolution [14]. 

• Fractional landcover of bare ground, litter, annual, annual herbaceous, shrub, 
and sagebrush as well as sagebrush and shrub height in 2016 from the National 
land Cover Dataset (NLCD) Rangeland Components dataset, 30 m resolution 
[14]. 

• Soil class, suborder, order, and drainage class; and the weighted average by 
horizon of pH, sand, silt, and clay; bulk density from the Soil Survey Geographic 
Database (SSURGO) Soil Survey Staff from 2022. 

The best boosted regression model results for the 0 - 10 cm soil depth had a 
correlation coefficient (R2) between the observed average soil carbon stocks and 
predicted soil carbon stocks of 0.72 (SE ± 0.022), whereas the best model results 
for the combined 0 - 40 cm soil depth had a correlation coefficient R2 of 0.85 (SE 
± 0.015). 

2.2. Landsat Greenness Index of Live Vegetation Cover 

Bi-weekly Landsat 8 Collection 2 images from the years 2022 to 2024 at 30-m pixel 
size, were used to calculate the normalized difference vegetation index (NDVI) of 
the near-infrared (NIR) and red spectral bands. NDVI provides consistent spatial 
and temporal profiles of herbaceous vegetation biomass according to the equa-
tion: 

( ) ( )NDVI NIR Red NIR Red= − +  

Which resulted in values between −1.0 and +1.0 NDVI units. Negative NDVI 
values are indicative of water bodies, low values of NDVI (near 0.1) indicate bar-
ren land cover, and high values of NDVI (above 0.8) indicate dense green plant 
cover. NDVI has been shown to be an accurate index of herbaceous green cover 
in grasslands of California and can be converted with high accuracy into seasonal 
herbaceous biomass (g C m−2) each year [15].  
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2.3. Soil Fertility Index 

This study used a Soil Fertility Index (FI) map previously generated for the lower 48 
United States by the U. S. Department of Agriculture (USDA) [16]. The FI uses fam-
ily-level Soil Taxonomy information to rank soils from 0 (least fertile) to 19 (most 
fertile). To calculate the FI, the following variables were used to guide expert assess-
ments of fertility among 12 main soil orders: 1) organic matter content, 2) cation 
exchange capacity—CEC, and 3) clay mineralogy, as well as USDA knowledge of 
general land uses in each of the soil orders. 

2.4. Climate Normals for Average Precipitation and Temperature 

This study used the 30-year normal maps previously generated from the PRISM 
project which were used to quantify average annual climate conditions across Cal-
ifornia over the most recent three full decades (1991 to 2020) at 4-km pixel reso-
lution. Long-term average datasets are modeled from weather station records in 
PRISM using a digital elevation model (DEM) as the predictor grid [17]. 

2.5. CASA-Century Model for California Grasslands 

The CASA (Carnegie-Ames-Stanford Approach) carbon cycle model [18] [19] 
predicts the monthly net primary production (NPP) flux of atmospheric CO2 be-
tween plants and soils on a global scale using satellite image inputs from MODIS. 
CASA is the only global carbon model that has consistently used MODIS and 
Landsat products for land cover classes and green vegetation indices as monthly 
inputs to drive the prediction of NPP and soil CO2 emissions in the terrestrial 
biosphere. It is the most well-integrated model of the global carbon and water 
cycles with high-level products from NASA satellite remote sensing missions. 
Moreover, the nominal 8-km grid cell resolution of the CASA model enables lo-
calized studies of ecosystem carbon and water fluxes of interest to public sector 
stakeholders working at nearly every organizational level. CASA NPP model cal-
ibration has been validated repeatedly, first globally by comparing predicted an-
nual NPP to more than 1900 field measurements of NPP by Potter et al. [18]. More 
recently, Jay et al. [14] validated CASA NPP estimates using 17 Ameriflux tower 
flux sites located across North America. 

The CASA soil model design is based closely on the DAYCENT model [10] and 
includes three-layer (M1 - M3) heat and moisture content computations: surface 
organic matter (SOM), topsoil (0.3 m), and subsoil to grassland rooting depth (1 
m). These layers can differ in soil texture, moisture holding capacity, and carbon–
nitrogen dynamics. Water balance in the soil is modeled as the difference between 
precipitation or volumetric percolation inputs, monthly estimates of evaporation, 
and the drainage output for each layer. First-order equations simulate exchanges 
of decomposing plant residue (metabolic and structural fractions) at the soil sur-
face. CASA also simulates surface soil organic matter fractions that vary in age 
and chemical composition. Active (microbial biomass and labile substrates), Slow 
(chemically protected), and Passive (physically protected) fractions of the soil or-
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ganic matter are represented in the model. Along with moisture availability and 
organic residue quality, estimated soil temperature in the M1 - 3 layers controls 
soil organic matter decomposition rates at the monthly time step. 

Following the DAYCENT modeling approach reported by Ryals et al. [9] for 
the present study, compost amendments to rangelands across California were 
simulated starting with a single amendment of 14 Mg C ha−1 added to the CASA 
soil organic pools. Compost is a source of stabilized organic matter, more prone 
to be incorporated for years into soil than are additions of fresh manure, which 
rapidly mineralize [20]. Hence, for these CASA model runs, it was assumed that 
compost was nearly identical in protected chemical properties and stabilized mi-
crobial products to the CASA-Century model’s Slow C pool, with residence times 
in a temperate zone soil profile typically ranging from 20 to 60 years [18]. Using 
monthly PRISM climate inputs, CASA was then run to simulate the lifetime decay 
function of a one-time compost application with C:N ratio of 20 - 30 (for close-
to-zero N2O emission risk) [9]. 

2.6. Landsat NDVI Trend Analysis 

The linear trend (positive or negative) in bi-weekly NDVI values at every 30-m 
Landsat pixel location across all of California was calculated in Google Earth En-
gine from the wet seasons (October to May water year) of 2021 to 2024 as a green-
ing regression slope coefficient, following the approach described by Potter and 
Alexander [21]. According to NOAA’s National Centers for Environmental In-
formation, 2021-22 was the driest water year ever recorded in the state (dating 
back to 1895), whereas 2022-23 recorded one of the four wettest seasons in the 
modern history of the state. This historic and abrupt trend upward in seasonal 
precipitation totals and available soil water in grasslands for annual growth pro-
vided a surrogate to test the central hypotheses outlined in this study: Future com-
post applications to grassland ecosystems will increase available soil water to her-
baceous plants in the same manner that years of high annual precipitation makes 
added soil water available for elevated plant growth. 

2.7. Statistics 

Zonal statistics for simulated compost lifetime and NDVI trends were computed 
within the boundaries of California counties (Figure 1, with name labels), and 
eventually for selected river and creek drainage basins, using the geographic in-
formation systems application QGIS. The population mean, standard deviation, 
and maximum values were computed for the set of raster pixels that intersected 
each polygon-delineated layer. 

3. Results 
3.1. CASA Slow C Pool Size 

The counties estimated by the CASA model with the highest average Slow C pool 
sizes (in excess of 70 Mg C ha−1) were all located in northern California (Figure 
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1), from the Del Norte to Sonoma county lines (Table 1). Other counties located 
further south and with relatively high average Slow C pool sizes (in excess of 50 
Mg C ha−1) included Santa Cruz, Tuolumne, Tulare, and Santa Barbara. Counties 
with the highest geographic variability in Slow C pool sizes included Humboldt, 
Mendocino, Siskiyou, Tuolumne, Tulare, and Santa Barbara. Counties with the 
lowest Slow C pool sizes included Solano, Yolo, Contra Costa, San Diego, San 
Mateo, Stanislaus, San Joaquin, Merced, and Alameda. This ranking of counties 
with the highest average Slow C pool sizes represents the CASA model’s synthesis 
of the combined effects of climate conditions that favor relatively high annual 
NPP and the soil types that favor high levels of long-term carbon sequestration in 
a chemically protected form. 

 

 
Figure 1. California county map. 

 
Table 1. Top 25 counties for soil Slow C pool size, sorted by mean values. 

County 
County Area 

(km2) 
Mean 

(Mg C ha−1) 
Standard Deviation 

(Mg C ha−1) 
Maximum 

(Mg C ha−1) 

Del Norte 2,626 147 19 184 

Humboldt 9,585 123 36 170 

Mendocino 8,797 97 30 119 

Trinity 8,141 88 18 136 

Siskiyou 16,413 76 29 163 

Shasta 10,110 75 17 111 

Lake 3,545 73 22 106 
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Continued 

Plumas 6,828 71 14 114 

Sierra 2,626 71 18 101 

Santa Cruz 1,050 71 15 84 

Tuolumne 5,777 68 29 142 

Sonoma 4,070 68 25 110 

Nevada 2,495 67 26 103 

Alpine 1,970 66 15 99 

Napa 2,232 62 16 90 

El Dorado 4,333 61 24 95 

Calaveras 2,626 58 28 106 

Tulare 12,343 57 41 156 

Placer 4,070 56 26 105 

Mariposa 3,939 54 29 107 

Santa Barbara 7,747 54 36 129 

Lassen 12,080 54 15 88 

Glenn 3,414 53 29 94 

Tehama 7,747 53 19 102 

Marin 1,576 52 26 89 

3.2. Compost Lifetime in the Soil 

Statewide map results (Figure 2) from the CASA model show the number of years 
for practically 100% of the 14 Mg C ha−1 of applied compost tonnage to decompose 
(i.e., its full lifetime in the soil), with the light green shades showing time periods 
in the 20 - 50 years range and the dark green shades in the 80 - 90 years range. For 
most Marin County grazed rangelands, CASA estimates of the compost lifetime 
were between 40 - 60 years, consistent with the Ryals et al. [9] DAYCENT model 
results for these coastal rangeland sites near Nicasio (at 38.06˚ N, 122.71˚ W). In 
comparison, grassland sites measured for soil carbon at the Sierra Foothill Re-
search and Extension Center (SFREC) by Ryals et al. [9] in Yuba County (at 39.24˚ 
N, 121.30˚ W) were predicted by the CASA model to have a compost lifetime in 
the soil of over 100 years. This longer compost lifetime resulted mainly from a 
shorter growing season with lower annual mean temperatures and higher summer 
evapotranspiration in Yuba County, compared to Marin County. 

The counties with large areas of rangeland (in excess of 90,000 ha) that were 
mapped using the CASA model with the shortest average lifetime of 14 Mg C ha−1 

applied compost in the soil were ranked as Mendocino, Lake, Napa, Sonoma, and 
Santa Barbara (Table 2). Counties with notable rangeland acreage and with the 
longest average lifetime (greater than 85 years) of 14 Mg C ha−1 applied compost 
to the soil were San Benito, Stanislaus, Mariposa, Modoc, Alameda, San Joaquin, 
and Merced. This ranking of counties by compost lifetime in the soil represents 
the CASA model’s estimation of the combined effects of climate conditions and 
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soil types that favor the most rapid (to the slowest) decomposition rates of organic 
matter added as compost to rangeland soils. Areas of counties with the longest 
average lifetime represent those where compost applied to rangeland soil surfaces 
will persist for the longest period of time, largely as a result of climate conditions 
(drier annually and hotter in the summer) that are relatively unfavorable to rapid 
litter/soil carbon decay. 

 

 
Figure 2. CASA model predictions for the number of years for all of a 14 Mg C 
ha−1 of applied compost tonnage to decompose. 

 
Table 2. Counties with the shortest lifetime for the complete decay of 14 Mg C ha−1 applied 
compost to rangeland soil surfaces, sorted by mean values. 

County Rangeland Area (ha) Mean (years) Standard Deviation (years) 

Del Norte 10,016 28 20 

Mendocino 106,033 29 19 

Humboldt 84,870 33 18 

Santa Cruz 21,906 47 25 

San Mateo 44,156 48 84 

Lake 181,441 50 16 

Napa 110,662 53 17 

Sonoma 173,189 54 23 

Marin 71,325 55 49 

Santa Barbara 305,291 56 40 

Plumas 13,924 57 8 

Glenn 159,345 58 23 

Shasta 322,262 60 15 
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Continued 

Colusa 143,700 67 28 

Monterey 714,048 70 25 

Lassen 458,833 73 17 

Siskiyou 297,753 74 19 

Tehama 481,162 74 23 

San Luis 
Obispo 

733,986 76 31 

Tulare 252,475 80 32 

Calaveras 114,803 83 16 

Santa Clara 186,150 85 60 

Yolo 99,159 85 30 

3.3. Change in NDVI from Dry to Wet Years 

Statewide map results (Figure 3) from Landsat NDVI time series analysis show 
the strongest response of rangelands to the transition from an historically extreme 
dry year (2021-2022) to two wet years (2023 and 2024) occurred in the northern 
Sacramento Valley and the eastern side of the Central Valley south to around 
Fresno. Other regions that showed a strong greening trend with increasing rainfall 
were in the grasslands north and east of San Francico Bay, the southern Santa 
Clara Valley, and on the central coastal prairies from San Simeon to Morro Bay. 

 

 
Figure 3. Landsat NDVI time series analysis results as the greening linear regression 
slope coefficient (monthly rate of change) over the wet seasons (October to May 
water year) of 2021 to 2024, showing positive trends in the darkest green shades 
and negative trends in brown shades. 
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The counties with the strongest positive response and among the lowest geo-
graphic variability in rangeland NDVI from extreme dry to wet years were ranked 
in Table 3 as Calaveras, Tuolumne, Marin, Sacramento, Amador, and Yuba. Coun-
ties with the highest geographic variability in response of rangeland NDVI from 
extreme dry to wet years (2022 to 2024) included San Joaquin, Sonoma, Plumas, 
Stanislaus, and Santa Cruz. Counties with the lowest response of rangeland NDVI 
from extreme dry to wet years included Monterey, Tulare, Santa Barbara, Glenn, 
Napa, and San Luis Obispo. This ranking of counties by rangeland NDVI response 
to varying yearly precipitation (most positive to most negative) reflects the soil 
types and potential grassland productivity that should also favor a positive of re-
sponse of soil carbon sequestration following compost applications in rangelands 
across California. 

 
Table 3. Counties ranked by positive response of rangeland NDVI from extreme dry to wet 
years (2022 to 2024). 

County Mean Change in NDVI Standard Deviation 

Calaveras 1.98 1.32 

Tuolumne 1.89 1.24 

Marin 1.86 1.89 

Sacramento 1.82 1.74 

Amador 1.74 1.30 

Nevada 1.64 1.40 

Placer 1.60 1.68 

Yuba 1.52 1.59 

Mariposa 1.50 1.04 

El Dorado 1.46 1.29 

Madera 1.39 1.21 

Sonoma 1.36 1.77 

Tehama 1.13 1.61 

Butte 0.96 1.80 

San Joaquin 0.91 1.90 

Mendocino 0.90 1.26 

Plumas 0.86 3.56 

Contra Costa 0.81 1.57 

Merced 0.76 1.66 

Alameda 0.75 1.39 

Sutter 0.75 1.98 

Solano 0.69 2.68 

San Francisco 0.67 1.40 

Stanislaus 0.59 1.95 
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Continued 

Santa Cruz 0.57 2.36 

San Mateo 0.56 1.23 

Santa Clara 0.54 1.80 

Siskiyou 0.33 1.79 

Del Norte 0.32 1.89 

Humboldt 0.30 1.24 

Yolo 0.18 2.02 

San Benito 0.15 1.06 

 
The coastal rangeland sites near Nicasio in Marin County studied by Ryals et 

al. [9] for soil carbon dynamics had a strong NDVI response to varying yearly 
precipitation, with a regression slope between +1.5 and +2.6 from 2022 and 2024, 
whereas grassland sites at the SFREC in Yuba County showed a very strong NDVI 
response with a regression slope of +2.9 from 2022 and 2024. 

3.4. Surface Soil Carbon Pools 

The counties with large areas of rangeland (in excess of 90,000 ha) that were 
mapped using Machine Learning methods by Veloz et al. [12] with high soil car-
bon content (percent by volume to 10 cm depth) were ranked as Siskiyou, Men-
docino, Sonoma, Alameda, Shasta, Lassen, and Santa Clara (Table 4). Counties 
with notable rangeland acreage and low geographic variability in soil carbon con-
tent included Marin, Santa Cruz, Contra Costa, and Santa Clara. Counties with 
notable rangeland acreage and among the lowest soil carbon content included 
Stanislaus, San Joaquin, Glenn, San Luis Obispo, San Benito, and Merced, all at 
lower than 0.8 percent on average and commonly with a maximum surface soil 
carbon content no higher than 1.6 percent. 

 
Table 4. Top counties for soil carbon content within the 0 - 10 cm surface layer, sorted by 
mean values. 

County Rangeland area (ha) Mean (%) Standard Deviation (%) Maximum (%) 

Del Norte 8,916 1.65 0.42 3.39 

San Mateo 37,595 1.48 0.38 2.65 

Humboldt 81,072 1.46 0.38 3.37 

Plumas 12,583 1.45 0.40 3.05 

Marin 61,936 1.35 0.25 2.46 

Santa Cruz 21,032 1.17 0.25 2.31 

Siskiyou 277,822 1.12 0.60 6.65 

Mendocino 99,567 1.12 0.26 2.49 

Sonoma 161,597 1.08 0.26 2.90 

Alameda 95,266 1.07 0.18 2.08 
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Continued 

Shasta 307,704 1.05 0.48 4.31 

Lassen 448,546 1.03 0.30 3.77 

Contra Costa 84,302 1.01 0.16 2.07 

Santa Clara 184,546 1.00 0.17 2.01 

Nevada 20,959 0.95 0.14 1.72 

Napa 99,742 0.94 0.25 3.09 

Santa Barbara 281,051 0.93 0.22 2.26 

Solano 82,443 0.92 0.24 1.92 

Modoc 664,323 0.91 0.31 4.02 

Sutter 25,092 0.89 0.31 2.51 

Butte 116,968 0.88 0.26 3.30 

El Dorado 45,096 0.85 0.15 1.91 

Yuba 52,816 0.84 0.19 2.31 

Monterey 653,009 0.82 0.19 2.20 

Lake 170,550 0.82 0.18 2.74 

Tehama 469,257 0.81 0.29 3.79 

Calaveras 109,663 0.80 0.14 1.85 

Yolo 87,764 0.80 0.16 1.57 

Colusa 140,223 0.80 0.16 1.64 

3.5. Soil Fertility Index 

Statewide mapping of the USDA Soil Fertility Index (Figure 4) relatively high values 
in the Modoc National Forest region, the northern Sacramento Valley, the southern 
Santa Clara Valley, and on the Central Coast prairies from Marin to Morro Bay. The 
counties with the highest Soil Fertility Index on average in California were ranked 
as San Benito, Kings, Ventura, Marin, Santa Cruz, and Monterey (Table 5). Coun-
ties with notable rangeland acreage and averaged among the lowest Soil Fertility 
Index included Merced, Sonoma, Siskiyou, Santa Barbara, Humboldt, and Santa 
Clara. Both the coastal rangeland sites in Marin County and in Yuba County studied 
by Ryals et al. [9] for soil carbon dynamics had high Soil Fertility Index values that 
ranged between 13 - 14 in the grasslands of these locations. 

 
Table 5. Counties ranked by soil fertility index values, sorted by majority class values. 

County County Area (km2) Majority Mean Standard Deviation 

San Benito 3,599 15 10 5.7 

Kings 3,605 15 9 4.5 

Ventura 4,807 15 10 4.3 

Marin 1,532 14 10 5.1 

Santa Cruz 1,156 14 13 3.4 

Monterey 8,584 14 11 5.0 
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Continued 

Lassen 12,227 12 11 4.3 

Plumas 6,769 12 8 4.4 

Glenn 3,437 12 9 3.9 

Sutter 1,575 12 12 3.0 

Placer 3,885 12 7 4.1 

Yolo 2,644 12 10 3.5 

Solano 2,357 12 10 4.0 

San Joaquin 3,693 12 11 3.6 

Contra Costa 2,080 12 10 5.0 

Stanislaus 3,927 12 9 3.5 

Alameda 2,126 12 9 5.3 

Modoc 10,885 11 11 4.7 

Colusa 2,996 11 11 3.3 

Napa 2,048 11 9 4.3 

San Luis Obispo 8,597 11 10 4.2 

Mendocino 9,096 10 10 3.4 

Sierra 2,490 10 9 3.7 

Nevada 2,525 10 8 4.2 

El Dorado 4,632 10 6 4.1 

Calaveras 2,683 10 9 2.8 

Fresno 15,565 10 7 4.6 

 

 
Figure 4. Map of the USDA Soil Fertility Index for California. 
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4. Discussion 

In merging all of the mapping results from this study to identify optimal range-
lands in California for future compost applications, we combined the: 1) high av-
erage NDVI response in rangelands to increased annual rainfall, 2) relatively low 
current soil carbon contents, and 3) relatively high soil fertility. From these selec-
tion criteria combined (in that order), the optimal counties for future compost 
applications were determined to be: Marin, San Benito, Calaveras, Tuolumne, San 
Joaquin, Stanislaus, Sacramento, Amador, Yuba, and Mendocino counties. De-
pending on site-specific soil fertility assessments, rangelands in Merced and Sonoma 
could also fall into the category of optimal locations for future compost applica-
tion. 

In the final selection of optimal property locations for future compost applica-
tions, topography must be considered as well, particularly the presence of steep 
slopes. As a general rule, hillsides with slopes in excess of 30% should be avoided 
to alleviate concerns over erosion of applied organic matter and nutrient runoff 
[22]. Mapping and filtering of steep slopes is a routine analysis function using 
digital elevation models (DEMs). 

It should be noted that the CASA-simulated decay function for applied compost 
tonnage does not take into account the (roughly) 1 - 2 Mg C ha−1 yr−1 of additional 
soil carbon that commonly follows this level of compost application to rangelands 
[1]. A “state change” in the plant-soil growing system seems to occur with com-
post amendments. Data from field measurements indicate that these ecosystems 
have been transformed from a relatively low-nutrient, low-water holding capacity, 
and low-aeration status to elevated states of all these soil properties [2] [4]. If this 
enhanced grassland carbon capture effect of 1 - 2 Mg C ha−1 yr−1 lasts for at least 
10 years after a one-time compost application, then one can add another two dec-
ades to the Slow C soil carbon lifetime of compost estimated in this modeling 
study. 

Field-based evidence of compost’s potential to alter the soil state is being in-
creasingly recognized by scientists and policymakers for reducing GHG from waste 
sent to landfills, sequestering carbon belowground for decades, and conserving 
water during drought periods [4]-[6]. Well-documented changes in grassland 
ecosystems after compost application have been summarized in Figure 5. Soil nu-
trient levels, microbial activity, water holding capacity, drainage, and aeration are 
all improved rapidly after a thin layer of composted organic matter has been ap-
plied to the soil surface [3]. 

California State Bill (SB) 1383 is being implemented under “Article 12” as CalRe-
cycle assigns annual procurement targets for compost and mulch for each juris-
diction (city or county) in the state. In the first year after SB 1383, organic waste 
diverted for recycling increased from 9.9 to 11.2 million tons. Nevertheless, rural 
counties with large open spaces and rangeland acreages will have different and 
diverse processes for determining how compost should be delivered to or picked-
up by landowners and managers and applied to their soils. In one mode, growers 
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and ranchers anywhere in the state can purchase compost on behalf of their juris-
diction to help meet Article 12 procurement targets. In other cases, non-profit 
organizations (NGOs) can help jurisdictions meet their SB 1383 procurement re-
quirements by navigating the compost procurement process, meeting reporting 
requirements, and increasing farmers’ and landscapers’ purchasing power for 
compost. The Association of Compost Producers (ACP) has created a map of SB 
1383-compliant composters in California (available online at  
http://www.healthysoil.org/compostproducermap) who are able to collaborate 
with jurisdictions and direct service providers (DSPs) to meet their compost pro-
curement goals. Other NGOs (http://www.zerofoodprint.org/sb1383) offer lists of 
organic recycling facilities with complete local addresses and products for sale. 

Two of the counties targeted from the results of this planning study as optimal 
for extensive future compost application on grasslands, namely Amador and Ca-
laveras have less than two local organic waste recycling facilities listed by the ACP 
or by Zero Foodprint within their jurisdiction, whereas Mendocino and Yuba 
have only three such facilities. Promoting the expansion of local compost produc-
tion facilities will be needed to accelerate the state’s GHG reduction goals while 
building prosperous, equitable, and resilient communities [23]. CalRecycle issued 
permits for seven solid waste facilities from October 2022 to December 2023 that 
included new compost, in-vessel digestion, and transfer/processing facilities. Pres-
ently, the state has 210 operating organics processing facilities, including 169 com-
posting facilities, 24 biomass operations, and 17 anaerobic digestion facilities (with 
21 more under construction). CalRecycle estimates that nearly 100 new or ex-
panded anaerobic digestion facilities must come online to help meet the organic 
waste processing demand, resulting in the diversion of about 15 million tons of 
organic waste and the production of roughly 5 million additional tons of compost 
per year by CalRecycle [24]. 

 

 
Figure 5. Changes in the grassland ecosystem after compost application. 
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5. Conclusions 

Compost-treated grasslands soils have been shown to consistently absorb and 
store more CO2 from the atmosphere than that will be lost to microbial respiration 
for decades after the organic matter application. We have used a combination of 
state-wide satellite image analysis, soil carbon modeling, and Machine Learning 
methods to select the optimal property locations in California to apply future 
compost amendments. Based on the best scientific data available to account for 
controls on carbon pools in soils, the counties that should be targeted first for 
future rangeland compost applications are Marin, San Benito, Calaveras, Tuolumne, 
San Joaquin, Stanislaus, Sacramento, Amador, Yuba, and Mendocino. Potential 
ranch locations for these organic amendment projects can be examined in detail 
and selected from the interactive geographic information system (GIS) created 
from our study results. 
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