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Abstract 
Research reports show that the accuracies of many explicit friction factor 
models, having different levels of accuracies and complexities, have been im-
proved using genetic algorithm (GA), a global optimization approach. How-
ever, the computational cost associated with the use of GA has yet to be dis-
cussed. In this study, the parameters of sixteen explicit models for the estima-
tion of friction factor in the turbulent flow regime were optimized using two 
popular global search methods namely genetic algorithm (GA) and simulated 
annealing (SA). Based on 1000 interval values of Reynolds number (Re) in the 
range of 3 84 10 1 10Re× ≤ ≤ ×  and 100 interval values of relative roughness 
( D ) in the range of 6 210 5 10D− −≤ ≤ × , corresponding friction factor (f) 
data were obtained by solving Colebrook-White equation using Microsoft 
Excel spreadsheet. These data were then used to modify the parameters of the 
selected explicit models. Although both GA and SA led to either moderate or 
significant improvements in the accuracies of the existing friction factor 
models, SA outperforms the GA. Moreover, the SA requires far less com-
putational time than the GA to complete the corresponding optimization 
process. It can therefore be concluded that SA is a better global optimizer 
than GA in the process of finding an improved explicit friction factor model 
as an alternative to the implicit Colebrook-White equation in the turbulent 
flow regime. 
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1. Introduction 

The Colebrook-White model, given in Equation (1), has been widely accepted 
and used in engineering practices as sufficiently accurate for the calculation of 
pipe friction factor (f) in the turbulent flow regime [1] [2]. 

1 2.512log
3.71

D
f Re f

 
= − +  

 

                   (1) 

However, due to the implicit nature of Colebrook-White equation, it requires 
an iterative solution method such as the Newton-Raphson where numerous cal-
culations are required for long pipelines and network of pipes to obtain the value 
of f as a function of Reynolds Number (Re) and relative roughness of the pipe 
( D ). This method is time-consuming and complicated. Moody provided a 
diagram called Moody chart [3], as a graphical solution of Colebrook equation. 
Although the chart eliminates the requirement for iteration, obtaining data from 
this chart and interpolating the friction factor values is error-prone. Moreover, it 
is inconvenient for computer simulation. In order to overcome these drawbacks, 
various explicit friction factor models have been developed using diverse para-
meter estimation methods. 

In comparison with the iterative solution of Colebrook-White equation, the 
explicit models differ in their accuracies, complexities and relative computation-
al efficiencies (see [4] [5] [6]). Most of the existing explicit friction factor models 
were developed using local optimization methods. Cojbasić and Brkić [7] se-
lected two models proposed by Serghides [8] and, Romeo and Co-workers [9] 
and have been proven to be among the most accurate explicit models by Win-
ning and Cooles [10] to modify their parameters using genetic algorithm (GA), a 
global optimization technique. After successful optimization, the accuracies of 
these models were improved 53 and 16 times, respectively. Thus, Brkić and Ćojbašić 
[11] made efforts to improve the accuracies of several explicit models by mod-
ifying their parameters using genetic algorithm (GA). Although GA has been 
used to improve the accuracies of several existing explicit friction factor models, 
the computational burden associated with its use has not been discussed. Souza 
and Co-workers [12] used simulated annealing, another global optimization al-
gorithm to directly obtain the parameters of very few explicit friction factor 
models. Unfortunately, the authors were silent about the computational burdens 
associated with the use of SA and its use for explicit friction factor modelling 
and optimization has yet to be widely studied. 

Consequently, using the model accuracy and the computational time of the 
search algorithm, as the performance indicators, this study investigates exten-
sively the effectiveness of the GA and SA for the parameters estimation of several 
explicit friction factor models. 

2. Theoretical Background 
2.1. Genetic Algorithm 

Genetic algorithms are one of the evolutionary computational intelligence tech-
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niques, inspired by Darwin’s theory of biological evolution. Genetic algorithms 
are very powerful tools for optimization. It is a method for solving both con-
strained and unconstrained optimization problems that is based on natural se-
lection, the process that drives biological evolution. The genetic algorithm re-
peatedly modifies a population of individual solutions. At each step, the genetic 
algorithm selects individuals at random from the current population to be par-
ents and uses them to produce the children for the next generation. Over succes-
sive generations, the population “evolves” toward an optimal solution. Genetic 
algorithm (GA) can be applied to solve a variety of optimization problems that 
are not well suited for standard optimization algorithms, including problems in 
which the objective function is discontinuous, non-differentiable, stochastic, or 
highly nonlinear. The genetic algorithm can address problems of mixed integer 
programming, where some components are restricted to be integer-valued. The 
fundamental details about this algorithm are beyond the scope of this study; in-
terested Reader is referred to MathWorks’ Global Optimization Toolbox User 
Guide [13].  

In genetic algorithm, the function that needs to be optimized is called fitness 
function. The fitness function which is the explicit model is coded and passed as 
a function handle input argument to the main genetic algorithm function. While 
coding the initial numerical coefficient is specified, “x”. These are the numbers 
of variables in the fitness function. These x components are provided with lower 
and upper bounds for GA to search for the best optimal solution. These upper 
and lower bounds are within the neighborhood of the initial values. 

2.2. Simulated Annealing 

Simulated annealing (SA) is a method for solving unconstrained and bound- 
constrained optimization problems. SA is one of the most flexible techniques 
available for solving hard combinatorial problems. The main advantage of SA is 
that it can be applied to large problems regardless of the conditions of differen-
tiability, continuity, and convexity than are normally required in conventional 
methods. Annealing is a heat treatment process where a material is subjected to 
high temperature, with subsequent cooling, so as to obtain high-quality crystals 
(i.e., crystals whose structure form perfect lattices). During the cooling process, 
it is assumed that thermal equilibrium (or quasi equilibrium) conditions are 
maintained. The cooling process ends when the material reaches a state of min-
imum energy, which, in principle, corresponds with a perfect crystal. It is known 
that defect-free crystals (i.e., solids with minimum energy) are more likely to be 
formed under a slow cooling process. The two main features of the simulated 
annealing process are:  

1) The transition mechanism between states and  
2) The cooling schedule.  
When applied to combinatorial optimization, simulated annealing aims to 

find an optimal configuration (or state with minimum “energy”) of a complex 

https://doi.org/10.4236/msce.2022.1012001


S. B. Alabi, A. U. Ekpenyong 
 

 

DOI: 10.4236/msce.2022.1012001 4 Journal of Materials Science and Chemical Engineering 
 

problem. The objective function of an optimization problem corresponds with 
the free energy of the material. An optimal solution is associated with a perfect 
crystal, whereas a crystal with defects corresponds with a local optimal solution. 
The analogy is not complete, however, because in the annealing process there is 
a physical variable that is the temperature, which under proper control leads to 
the formation of a perfect crystal.  

When simulated annealing is used as an optimization technique, the temper-
ature becomes simply a control parameter that has to be properly determined in 
order to achieve the desired results. The temperature affects two aspects of the 
algorithm: the distance of a trial point from the current point and the probability 
of accepting a trial point with higher objective function value. 

Temperature can be a vector with different value for each component of the 
current point. The initial temperature is a scalar. Temperature decreases gradu-
ally as the algorithm proceeds. The slower the rate of temperature decreases, the 
better the chances of finding the optimal solution. The fundamental details 
about this algorithm are beyond the scope of this study; interested Reader is re-
ferred to MathWorks’ Global Optimization Toolbox User Guide [13]. 

3. Materials and Method 
3.1. Data Generation 

Sixteen explicit models with excellent performance and high precision which can 
be used as alternative to Colebrook white equation were selected from the lite-
rature and analyzed. The friction factor (f) of the equations were generated using 
Microsoft Excel spreadsheet with 1000 interval values of Reynolds number (Re) 
in the range of 3 84 10 1 10Re× ≤ ≤ ×  and 100 interval values of relative roughness 
( D ) in the range of 6 210 5 10D− −≤ ≤ × . Subsequently, the Re and D  
data were used to iteratively solve Colebrook-White equation (Equation (1)). 

3.2. Error Estimation 

The measure of deviation of each explicit model prediction from the iterative 
solution of Colebrook-White equation can be based on absolute error, mean 
square error (MSE), average error and absolute relative error (%). In this paper, 
we focused on the maximum absolute relative error (MARE) of each explicit 
model to estimate their level of accuracy. The data obtained in Section 3.1 were 
used to measure each deviation. Absolute relative error is computed using the 
formula given in Equation (2)  

  ( ) colebrook explicit

colebrook

Absolute Relative Error % 100
f f

f

−
= ×           (2) 

3.3. Optimization  
3.3.1. Genetic Algorithm Optimization 
The optimization with the genetic algorithm was carried out using GA tool in 
the Global optimization toolbox in MATLAB installed HP Intel® Pentium® CPU 
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N3540 @ 2.16 GHz Windows 10 Laptop Computer. The data obtained in section 
3.1 were used in the optimization process to obtain new parameters for each ex-
plicit model. The models before and after optimization with GA as well as the 
time for the completion of each optimization process are presented in Table 1 
and Table 2, respectively. 

 
Table 1. Explicit models to Colebrook-White equation before and after optimization with genetic algorithm (GA) and simulated 
annealing (SA). 

Model/Reference Model before optimization Model after optimization with GA Model after optimization with SA 

Chen [14] 
10

1.1098

0.8981

1 5.0452 12log log
3.7065 2.8257

5.8506

D Ref

D Re

 = − −  

  ⋅ +    




 

10

1.078

0.908

1 4.975 12.002log log
3.7 3.185

5.495

D Ref

D Re

 = − −  

  ⋅ +    




 

10

1.02

0.869

1 5.262 12.002log log
3.707 3.111

5.504

D Ref

D Re

 = − −  

  ⋅ +    




 

Barr [15] 10 0.7
0.52

14.518log
1 72log

3.7 11
29

Re

Df
Re Re

D

 
     = − + 

    +        




 

10 0.842
0.605

14.571log
1 7.1142.001log

3.69 11
30.407

Re

Df
Re Re

D

 
     = − + 

    +        




 10 0.821

0.586

14.56log
1 7.0132.001log

3.697 11
29.224

Re

Df
Re Re

D

 
     = − + 

    +        




 

Papaevangelou  
et al. [16] 

( )4

2

0.9142

0.2479 0.0000947 7 log

7.366log
3.615

Re
f

D Re

− −
=

  +    


 ( )3.677

2

0.905

0.246 0.0000982 7.192 log

6.756log
3.556

Re
f

D Re

− −
=

  +    


 ( )3.889

2

0.912

0.247 0.0000982 7.008 log

7.174log
3.593

Re
f

D Re

− −
=

  +    


 

Avci and  
Karagoz [17] ( )

2.4

6.4

1 0.01 1 10

f

In Re In Re
D D

=
   

  − + +       

 
 

( )
2.418

6.609

1.082 0.009 1.286 9.896

f

In Re In Re
D D

=
   

  − + +       

 
 

( )
2.434

6.831

1.076 0.01 1.289 8.098

f

In Re In Re
D D

=
   

  − + +       

 
 

Offor and  
Alabi [4] 

1.092

10

2

1.9752log
3.71 3.93

7.627
395.9

D Df In
Re

Re

−

   −    = − +      

+ +  

 

 

1.086

10

2

1.9722log
3.712 3.992

7.541
402

D Df In
Re

Re

−

   −    = − +      

+ +  

 

 

1.088

10

2

1.9722log
3.707 3.861

7.533
397.41

D Df In
Re

Re

−

   −    = − +      

+ +  

 

 

Shacham [18] 
1 5.02 14.52log log

3.7 3.7D Re D Ref
  = − − +    

   1 5.133 14.0282.007 log log
3.68 3.71D Re D Ref
  = − − +    

   1 5.125 13.52.008log log
3.65 3.72D Re D Ref
  = − − +    

   

Sousa et al. [12] 0.87

1 5.16 5.092log log
3.7 3.7D Re D Ref
  = − − +    

   0.873

1 5.15 5.062.001log log
3.697 3.71D Re D Ref
  = − − +    

   0.867

1 5.203 5.0782.001log log
3.7 3.7D Re D Ref
  = − − +    

   

Manadilli [19] 10 0.983

1 95 96.822log
3.7R DRf
ε = − − +  

 10 0.981

1 95.01 98.6232.015log
3.693R DRf

ε = − − +  
 10 0.983

1 94.913 96.7422.012log
3.72R DRf
ε = − − +  

 

Zigrang and 
Sylvester [20] 

10 10

10

1 5.022log log
3.7 3.7

5.02 13log
3.7

D Re Df

Re D Re

ε ε

ε

 = − − ⋅ 


 − ⋅ −    

 
10 10
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1 5.0011.999log log
3.72 3.63

4.91 11.5log
3.9

D Re Df

Re D Re

ε ε

ε

 = − − ⋅ 

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10 10
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1 5.0341.999log log
3.719 3.65

5.11 12.5log
3.715

D Re Df

Re D Re

ε ε

ε

 = − − ⋅ 

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Ghanbari  
et al. [21] 

2.1691.042 0.91522.7311.52log
7.21

f
D Re

−
      = − +     

       

  
2.21.047 0.932.6391.463log

7.568
f

D Re

−
      = − +     

       


 

2.1531.098 0.962.8761.482log
6.335

f
D Re

−
      = − +     

       


 

Swamme  
and Jain [22] 10 0.9

1 5.742log
3.7D Rf
ε = − +  

 10 0.895

1 5.3982.009log
3.78D Rf
ε = − +  

 10 0.889

1 5.2192.017 log
3.708D Rf

ε = − +  
 

Fang et al. [23] 
21.1007

1.1105 1.0712

60.525 56.2911.613 ln 0.237f
D Re Re
ε

−
     = − +      

 
21.1004
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60.5 56.691.617 ln 0.231f
D Re Re
ε

−
     = − +      

 

21.095
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Romeo et al. [9] 0.9924 0.9345

1 5.0272 4.5672log log
3.7065 3.827

5.3326log
7.7918 208.815

D D
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D
Re

ε ε
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
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1 5 4.7922log log
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5.01log
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D D
Re Ref

D
Re

ε ε

ε

 = − − − 


      ⋅ +     +    

 
1.008 0.973

1 5.002 4.3762log log
3.71 3.807

5.422log
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D D
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Re

ε ε

ε

 = − − − 


      ⋅ +     +    

 

Sonnad and 
Goudar [24] 

1

1 0.45870.8686ln s
s

Re
f s +

 ⋅ =   
 

 

where ( )0.124 ln 0.4587s Re Re
D
ε

= ⋅ ⋅ + ⋅  

1

1 0.4680.868ln s
s

Re
f s +

 ⋅ =   
 

 

where ( )0.126 ln 0.422s Re Re
D
ε

= ⋅ ⋅ + ⋅  

1

1 0.4660.868ln s
s

Re
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 ⋅ =   
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D
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Continued 

Serghides [8] 
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Buzzelli [25] 
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Table 2. Performance of the optimized explicit friction factor models. 

Models/Reference 

Maximum  
absolute relative 

error before  
optimization (%) 

Maximum absolute 
relative error after 
optimization using 

GA (%) 

Maximum absolute 
relative error after 
optimization using 

SA (%) 

Time taken for  
GA optimization 

Time taken for  
SA optimization 

Chen [14] 0.3559 0.1422 0.1315 5 hrs 5 mins 30 mins 

Barr [15] 0.5260 0.2113 0.1907 4 hrs 55 mins 45 mins 

Papaevangelou et al. [16] 0.6974 0.5471 0.4594 9 hrs 35 mins 1 hr 15 mins 

Avci and Karagoz [17] 3.0302 1.7975 1.5102 4 hrs 20 mins 35 mins 

Offor and Alabi [4] 0.0664 0.0594 0.0583 6 hrs 35 mins 1 hr 20 mins 

Shacham [18] 0.8678 0.6153 0.5479 2 hrs 45 mins 25 mins 

Sousa et al. [12] 0.1658 0.0983 0.095 5 hrs 25 mins 40 mins 

Manadilli [19] 2.8232 1.3991 1.3413 1 hr 6 mins 22 mins 

Zigrang and Sylvester [20] 0.1255 0.0854 0.0522 5 hrs 12 mins 17 mins 

Ghanbari et al. [21] 2.7744 1.4083 0.9634 1 hr 45 mins 20 mins 

Swamme and Jain [22] 3.4347 1.7477 1.630 2 hrs 26 mins 25 mins 

Fang et al. [23] 0.5997 0.3919 0.3391 1 hr 26 mins 18 mins 

Romeo et al. [9] 0.1462 0.0102 0.0032 3 hrs 34 mins 20 mins 

Sonnad and Goudar [24] 0.5394 0.0618 0.0479 2 hrs 40 mins 15 mins 

Serghides [8] 0.1255 0.0023 0.0017 4 hrs 20 mins 16 mins 

Buzzelli [25] 0.1255 0.0669 0.025 12 hrs 46 mins 

3.3.2. Simulated Annealing Optimization 
Simulated annealing uses temperature parameter to control its global search. 
The temperature parameter starts off high and is slowly cooled during each ite-
ration step. As it is in GA, the explicit model to be optimized is the objective 
function. Each explicit model is coded with all numerical variables taking input 
argument, “x”. For the minimization of the objective function, it is passed in a 
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function handle to the objective function as well as specifying the start point for 
each variable. Since it is a bound constraint, the lower and upper bounds for 
each variable is imputed as a vector. The range of the values is arbitrary and at 
neighborhood of the initial values. The algorithm searches within the range for 
the best points that optimize the objective function. Data from section 3.1 were 
used for the optimization of each model, where optimized parameters were ob-
tained for each input argument, x.  

3.4. Performance Evaluation of the Optimized Explicit Models 

The deviations of the outputs of the original explicit models and the optimized 
explicit models from the output of Colebrook-White equation were obtained. 
The results in terms of maximum absolute relative errors (MAREs) are summa-
rized in Table 2. Moreover, the times taken for the optimized solutions to be 
obtained for both GA and SA are also presented in Table 2. 

4. Discussion 

From Table 2, it is observed that the performances of the optimized models us-
ing both GA and SA improve either moderately or significantly as they give rise 
to lower MAREs when compared with those of the original models before opti-
mization. It is noteworthy that MAREs obtained for the SA-optimized models 
are lower than those for GA-optimized models which indicate that SA is a supe-
rior optimizer when compared to GA in terms of accuracy.  

Furthermore, from Table 2, it is seen that the times taken by GA to find the 
optimal solutions for each model are significantly larger than the corresponding 
times taken by SA. Thus, it is obvious that it is computationally cheaper to use 
SA for the optimization of the explicit friction models. 

Therefore, since SA leads to more accurate explicit friction factor models and 
requires less computational times than the GA, it can be concluded that SA is a 
better optimizer than GA in the process of finding an improved explicit friction 
factor model as an alternative to the implicit Colebrook-White equation. 

5. Conclusion and Recommendation 

Existing reports show that the performances of the explicit friction factor models 
developed in lieu of the Colebrook-White equation improve when genetic algo-
rithm (GA), a global optimization method was used to modify their parameters. 
Unfortunately, the computational costs associated with this process was neither 
investigated nor reported.  

Consequently, this study has successfully investigated the computational bur-
den associated with the use of GA in optimizing the parameters of several exist-
ing explicit friction factor models. Moreover, the effectiveness of Simulated An-
nealing (SA), another global optimization search algorithm was investigated. 

Although both GA and SA led to either moderate or significant improvements 
in the accuracies of the existing friction factor models, SA outperforms the GA. 
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Moreover, the SA requires far less computational time than the GA to complete 
the corresponding optimization process.   

It can therefore be concluded that SA is a better global optimizer than GA in 
the process of finding an improved explicit friction factor model as an alterna-
tive to the implicit Colebrook-White equation. 

The current work is limited to the use of GA and SA. It is therefore recom-
mended that the effectiveness of global optimization methods other than the GA 
and SA should be investigated for estimating the parameters of the explicit fric-
tion factor models.  
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