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Abstract 
In this study, the characteristics of Graphite/Epoxy Composites (GECs) are 
evaluated from mechanical perspectives. Different weight percentages of 
graphite were used (0 - 7 wt%) for tensile and hardness experiments. Then 
the findings were discussed to ascertain the optimum mixing ratio of the 
graphite with the epoxy. The primary finding of this study is that the graphite 
weight fraction has a substantial impact on the composites’ mechanical per-
formance. At a low percentage (1 wt%), the graphite has little influence on 
the tensile behaviour. An intermediate weight percentage of the graphite is 
considered optimum for mechanical performance in the epoxy composites as 
it slightly reduces the tensile properties and significantly improves the hard-
ness. Micrographs of the fractured surface of specimens showed many signs 
that clearly explained why fractures had occurred. For instance, when gra-
phite/epoxy composite contained a low proportion of graphite, the cleavage 
failure was very easy to observe because there was no sign of aggregation or 
the detachment of fillers. 
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1. Introduction 

Polymeric composites have turned out to be a superb substitute for metal mate-
rials in several industrial applications [1]. Among the commonly used polymers 
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in various industrial applications is epoxy. Epoxy resins are a class of thermoset-
ting polymers having epoxide end groups. They can provide a better combina-
tion of distinctive properties than other thermosetting resins do; hence, they ful-
fil a wide range of demands in situations where fibres and epoxy resins intermix 
to form composites [2]. Epoxy resins provide high resistance, proper electrical 
insulation, low shrinkage, excellent adhesion, and high bending strength to dete-
rioration from solvents and chemicals; furthermore, they exist in several physical 
forms [3]. Comprehending the features and properties of such materials has be-
come an attractive field of investigation for various research areas in science and 
engineering. In order to find the required properties, the reinforcements in po-
lymeric composites need to be selected early in the design stage. Most of the stu-
dies carried out on polymeric composites in the literature centered on their me-
chanical properties and the characterization of polymeric composites, but con-
sidering the tribological behavior of the material under particular conditions is 
vital, and so is having components that are appropriately designed [4] [5] [6]. 
The optimization of tribological performance and mechanical properties re-
quires a precise selection of composite reinforcement. When the friction coeffi-
cient is low, graphite fillers are considered among the best particles of the solid 
lubricant, which can produce a self-lubricating film [7]. However, the amount of 
graphite needs to be optimized because it may impair properties, such as tensile 
strength, hardness, compressive power, conductivity, water absorption, degrada-
tion, etc. [7] [8] [9] [10]. In other words, the correlation between tribological as 
well as mechanical properties and the amount of filler requires attention. 

In view of the above, the present study focuses on the effect of the graphite 
content on the mechanical behavior of epoxy composites in an attempt to un-
derstand the correlation between them and learn the optimum amount of gra-
phite to include. 

2. Materials Selection and Preparation 

Test specimens of graphite/epoxy composite were prepared to carry out experi-
mental mechanical tests. The prepared specimens were made up of Kinetix 
(H160 medium) and epoxy resin (R246TX) hardener, which formed the resin 
matrix. It was provided by “Australian Calibrating Services Pty. Ltd” (Mel-
bourne, Australia). The graphite filler used in this study was 92% pure, and was 45 
µm in size, as obtained from Chem-supply Pty Ltd, Australia. Hou, Hu [11] re-
ported that bigger sizes of graphite (>45 µm) may help to break down the micro-
structure of the composite. Therefore, the present study focuses on graphite of 45 
µm in size to preserve consistent mechanical properties. The resin mix was pro-
duced by blending the epoxy and the hardener in a ratio of 3:1, according to the 
industrial Standard. Different volume fractions of graphite (1, 3, 5, and 7 wt%) were 
added to the prepared resin mixture to compose the samples of the study, as shown 
in Table 1, and stored for a while until the mixture reached the right consistency. 

The NE and GE specimens were prepared for mechanical testing, according to 
“ASTM D638-99” [12]. Figure 1 illustrates the standard dimensions (in specimen  
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Table 1. Designation of the GECs. 

Material Graphite (G) wt% Matrix (E) wt% 

NE 0 100 

GE1 1 99 

GE3 3 97 

GE5 5 95 

GE7 7 93 

 

 
Figure 1. (a) Specimen dimensions of tensile (b) Used mould for tensile test. 

 
geometry) and the mould used. The resin mixture was poured into the mould 
and when it had solidified, the specimen was peeled off the mould and cured for 
24 hours under the same conditions in the atmosphere. The samples were cured 
in the oven again at a temperature of 50˚C for 24 hours. 

3. Experimental Procedure 

Under ambient conditions, “Modulus of elasticity” (E) and “Tensile strength” 
(S) were measured according to ASTM D638-99 [12], utilizing the Test Star 
“Material Testing System” (MTS 810) equipped with 100 KN. All trials with a 50 
mm gauge length and a 1 mm/minute crosshead speed were performed. Duro-
meter type D was used to determine the hardness according to ASTM D2240 
[13]. The same two tests were repeated and the average values were obtained for 
each set of five samples. The morphology of the failed (fractured) composite 
surfaces was examined using the SEM to identify and analyse the principal fea-
tures of failure. SEM (Philip XL–30) was used to categorize the damage features 
and fracture mechanisms of the failed samples after each test. 

4. Results & discussion 
4.1. Tensile and Hardness Properties of Graphite/Epoxy  

Composites 
4.1.1. Stress-Strain Diagram, Ultimate Tensile Strength, and Modulus of  

Elasticity (E) 
Figure 2 indicates the average tensile stress-strain curves of NE and GE compo-
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site samples. Moreover, Figure 3 presents the summary of UTS (“Ultimate ten-
sile strength”) and the E of the NE and GE composite samples and their standard 
deviation. 

Figure 2 shows that the trend of stress is in general almost the same for all the 
composites since there is a definite region of elastic deformation and a slight 
area of plastic deformation. In other words, the composites exhibited brittle fail-
ure regardless of the graphite percentage. The reason behind this is that both 
materials were brittle, since the epoxy is a thermoset material, and the graphite is 
also considered to be brittle, according to Berto, Lazzarin [14]. However, as re-
gards strain, there is no remarkable difference between the composites. In con-
trast, the UTS shows deterioration with the addition of the graphite fillers. This 
deterioration may have resulted from the low interaction in the graphite fillers 
and the epoxy matrix (Sengupta et al.) Sengupta, Bhattacharya [15] comprehen-
sively reviewed the mechanical properties of several polymer composites based 
on graphite fillers and confirmed that the addition of more than 4% graphite  
 

 
Figure 2. Stress-strain diagrams of graphite/epoxy composites. 

 

 
Figure 3. Ultimate TS and modulus of elasticity of GECs. 
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significantly reduces the UTS of various polymer composites like PLA [16], 
HDPE [17], PMMA [18], EVA [19] and PPE [20]. In these studies, the interac-
tion, distribution, orientation, and size of the graphite have a major impact on 
the mechanical properties. Furthermore, Figure 3 illustrates the UTS and the E 
of GEC samples. This figure demonstrates a reduction in the UTS of the GECs 
since there is a 45% reduction of UTS at the graphite amount of 7 wt%. Such a 
reduction is not desirable from the mechanical point of view. Therefore, a slight 
reduction in the TS could be considered in the design. At 1 wt% and 3 wt% of 
graphite, the UTS is reduced by about 10% and 20%, respectively, since the UTS 
reduces from 55 MPa to 50 MPa and 47 MPa, respectively. However, Figure 3 
also reveals that the existence of the graphite in the composites improves the E 
up to a specific graphite concentration. The Modulus of Elasticity increases with 
increased amounts of graphite content to around 3 wt%, whereas it declines 
when the graphite content exceeds 3 wt%. That is to say, the optimum graphite 
percentage is found to be around 3 wt%., which contributes to achieving the 
highest Modulus of Elasticity. The explanation for this finding is that as the 
graphite content increases the viscosity of the fluid also increases’ this weakens 
the dispersion quality that determines the prospect of forming agglomerations 
and increasing their size in the process of solidification.  

4.1.2. Shore Hardness (SHD) 
The Shore hardness of the composite is illustrated in Figure 4. This indicates the 
impact of the graphite content on hardness. Figure 4 indicates that raises in the 
percentage of graphite increase the composite hardness. The lowest Shore hard-
ness (82.2 SHD) was found with a graphite content of 0 wt%, while the highest 
Shore hardness (84.7 SHD) was found with the content of graphite at its highest, 
7 wt%. The hardness increases monotonically with the graphite concentration. 
This behaviour may be due to the higher hardness in graphite than in epoxy, as 
noted by Suherman, Mahyoedin [21]. 

To a certain extent, the addition of graphite has a positive effect on some me-
chanical properties while it may have drawbacks for others. In the next section, 
the impact of graphite content on the microstructure of the composite and the 
relationship between the microstructural changes and mechanical properties of 
the composite are discussed. 

4.1.3. Fracture Behaviour of the Epoxy Composites 
The micrographs of the failed NG samples after the test are shown in Figure 5. 
There are irregular fracture features and no obstacles or initiators for the cracks. 
The figure clearly reveals a cleavage failure and a river-like pattern, which 
represents the nature of the thermoset epoxy. The existence of the shear lips and 
the detachments (bright and reflective facets) means that the material resisted 
the shear loading and detachments in the molecules occurred. Such failure has 
been reported by some published works [22] in which a plain strain fracture 
mechanism was evident. 
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Figure 4. Shore D hardness of graphite/epoxy composites. 
 

 
Figure 5. Micrographs of the NEC after tensile testing. (sl = shear lips, de = detachment, rl = riv-
er-like pattern). 

 
The micrographs of the failed GE1 samples are shown in Figure 6 (note the 

different magnifications). There are apparent differences between the micro-
graphs of the NE and the GE since there are fewer brittle failure features in the 
GR than in the NE; that is, no acute fracture appears on the surface. In Figure 6, 
there is a river-like pattern and stretching, indicating resistance to the load. 
Shear lips are obvious and micro-cracks are apparent due to the presence of te-
nuous agglomerations of graphite. In other words, the graphite interface with 
the epoxy seems to be acceptable compared to the descriptions in the literature 
on the graphite pallet [15] and nano-clay [23] [24] [25], since there are no voids 
[26] or debonding [27] of the fillers at this weight fraction of the graphite. How-
ever, some researchers have reported that such fillers can initiate cracks [28] [29] 
[30]. In the present work, there is no sign of crack initiation because the fraction 
of graphite is low. 
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The micrographs showing the fractured samples of the epoxy composites with 
3 wt% are shown in Figure 7. The figure indicates signs of shear lips surrounded 
by debris, which seems to come from the graphite fillers. At a higher magnifica-
tion, Figure 7(a) and Figure 7(b) display the graphite at a size of 10 - 20 µm. 
The present work has a filler size of 45 μm. Figure 7 shows signs of stretching, 
indicating an excellent resistance to the load. Further, there is no evidence of 
voids, and no detachment of fillers is observed. This represents a filler’s good in-
terfacial adhesion with the matrix at this low weight content of the graphite. It 
should be noted here that, in the graphite/epoxy composite fabrication process, 
an ultrasonic machine was used for 1 hour before the solidification process be-
gan, to assist the dispersion of the graphite and get rid of the bubbles. This tech-
nique contributes to a better homogenization of composites than other tech-
niques in the literature.  

At the highest proportion of graphite in the epoxy composites (5 wt%), the 
micrographs of the fractured samples display clusters and aggregation of graphite  
 

 
Figure 6. Micrographs of the 1% graphite/epoxy composites after tensile testing. (cr = micro-cracks, sl = shear lips, 
rl = river-like pattern, sz = stretching zone, gp = graphite particle). 

 

 
Figure 7. Micrographs of 3% GECs after tensile testing. (sl = shear lipsrl, sz = stretching zone, gp = graphite par-
ticle). 
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Figure 8. Micrographs of 5% GECs after tensile testing. (gp = graphite particle, de = debonding, ag = aggregation, 
macr = macro-crack, micr = micro-crack, fr = fragmentation). 

 

 
Figure 9. Micrographs of 7% GECs after tensile testing. (de = debonding, ag = aggregation, macr = macro-crack, 
micr = micro- crack, fr = fragmentation). 

 
(Figure 8). It appears that large amounts of aggregated graphite significantly 
damage the microstructure of the composites, leading to debonding and the in-
ception of a fragmentation process. Despite the use of ultrasonics in the fabrica-
tion process, the large percentage of graphite in the composites affected the 
quality of the composite mixing and the integration of the fillers with the resin 
in the curing process. This correlates with published works on nano-clay/epoxy 
[24], graphite pallet/epoxy [15] and graphite/polyester composites [15]. It is 
highly pronounced at 5 and 7 weight percent of graphite in the epoxy compo-
sites, as shown in Figure 8 and Figure 9. In this figure, micro-and macro-cracks 
can be seen. These may have been initiated by the poor interface between the 
large aggregated amount of graphite and the resinous regions. 

5. Conclusions  

The primary results of this study may be summarised in a few points: 
There is a significant impact of the weight fraction of the graphite on the me-

chanical and performance properties of the composites. At a low percentage of 
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graphite (one weight percent), there is not much influence on the tensile beha-
viour and a slight improvement to the hardness performance of the epoxy com-
posites. An intermediate wt% of the graphite is considered optimum for the 
mechanical and performance properties in the EC since it makes a slight reduc-
tion in the tensile properties and modulus of elasticity and a significant im-
provement to the hardness. 
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