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Abstract 
Hydrophobic Val derivative Schiff base copper(II) complexes and dipeptide 
(AlaAla, GlyGly) derivative Schiff base copper(II) complexes were introduced 
into egg white lysozyme. X-ray crystal structure analysis revealed amino acid 
derivative Schiff base copper(II) complexes were obtained. Herein we discuss 
primarily on the binding mode of copper(II) of the complexes obtained with 
egg white lysozyme. The electron density of copper(II) ions was confirmed by 
X-ray crystal structure analysis. The Val derivative Schiff base copper(II) 
complex was weakly bound at Arg114 of egg white lysozyme. In other cop-
per(II) complexes, binding of copper(II) ions with dissociated ligands to var-
ious residues was observed. The binding sites of copper(II) ions were com-
pared with computational scientific predictions. 
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1. Introduction 
1.1. Metal Binding and Theoretical Approach 

Metal ions are abundant on earth, and in excess amounts they are toxic within 
biopolymers, but in stoichiometric amounts they play an important role as cata-
lysts by binding with proteins. Artificial metalloproteins have two properties 
(homogeneous metal catalysis and enzyme catalysis), and they have the ability to 
impart new catalytic functions to polymers by incorporating metal-containing 
moieties into the protein scaffold [1] [2] [3] [4].  
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In addition, unlike metal complexes that use simple amino acids or peptides 
as ligands, there are four main synthesis strategies (covalent bonding, supramo-
lecular bonding, coordination bonding, and metal substitution) [5]. However, 
computational scientific design of metal ion-protein interactions is not always as 
well established as for drug-organic compound ligand-receptor proteins due to 
the complex electronic structure of metals. Formation of coordination bonds is 
generally not simple by considering steric situations as well as thermodynamic 
conditions of protein molecules. 

Recently, using deep learning, methods for predicting the position of metal ions 
in protein structures (using Protein Data Bank (PDB)) have been developed to ac-
curately predict the positions of metal ions within proteins [6]. For example, an 
experimental dataset of high-resolution crystal structures containing zinc sites was 
used to train a geometric predictor and a deep learning predictor [7]. These train-
ings are based on experimental zinc(II) ion sites. The coordination environment is 
extracted and the metal is extracted from the protein environment which has been 
voxelized. The process of visualizing a three-dimensional object by combining 
two-dimensional image pixels with the smallest unit of a small cube may be used 
in three-dimensional graphics. It is a fully convolutional two-dimensional Convo-
lutional Neural Network (CNN) trained to predict density. The metal is placed at 
the geometric center of the high scoring residue according to the probability map. 
The final ranking of the sites is obtained using a probability map. 

1.2. Experimental Methods in Conventional Crystallography 

By the way, the heavy atom isomorphic replacement method is a phase determi-
nation method that is widely used for protein structural analysis for a long time 
[8] [9]. In this method, in addition to native crystals, crystals with heavy atoms 
(metal ions, metal complexes, polynuclear metal complex clusters, etc.) bonded 
to specific sites of the protein are prepared. This method determines the phase 
from the difference in intensity of diffraction data, which sometimes resulted in 
forming artificial metalloproteins consequently [10]. It is also confirmed by 
means of not only X-ray crystallography but also X-ray fluorescence [11] when a 
heavy atom compound permeates through a single crystal from a solution, it 
usually binds specifically and gradually to proteins [12]. 

2. Results and Discussion 
2.1. Introducing Complexes into Crystals 

Comparing the co-crystallization method (adding a heavy atom solution before 
crystallization) and the soaking method (heavy atom replacement method), it 
was found that the electron density of heavy atoms was not observed in the 
co-crystallization method, and that in the soaking method. Although the electron 
density of heavy atoms was confirmed, it was often not introduced into proteins. In 
other words, we have experienced that it is difficult to efficiently introduce metal 
ions into protein molecules without complex transport and dissociation processes. 
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2.2. Binding Sites and Features 

Docking calculations of hen egg lysozyme and copper(II) ions Schiff base com-
plexes were performed using computational chemistry simulations (Figure 1). 
Previous reports have indicated that ALA and HIS scores were relatively high for 
amino acid side chains in lysozyme. Furthermore, binding simulation predic-
tions [13] have revealed that copper(II) ions are likely to be incorporated into 
ALA and HIS of lysozyme. However, results obtained from our tentative expe-
rimental study did not show this tendency. The prediction program has been 
improved to utilize AlphaFold2 and Protein Structure Database to acquire pre-
dicted structures to perform metal ion docking and predict binding residues 
[14]. The results were compared with experimental results based on the score 
values of amino acid side chains (Table 1). The result obtained indicated that in 
some cases the copper(II) ions dissociated from the ligands and were incorpo-
rated into hen egg lysozyme (Figure 2(a)). Additionally, copper(II) complexes 
were observed near amino acids with potentially coordinating side chains 
(Figure 2(b) and Figure 2(c)) [15] [16] [17]. Interestingly, ion dissociation from 
the ligand was more facilitated into the protein crystal than the “bare” ion from 
dissolution of some copper(II) salts. 
 

 
Figure 1. Copper(II) binding residues of lysozyme by MIB simulation [13]. 

 

 
(a)                                (b)                                 (c) 

Figure 2. Copper(II) ion from (a) ALA-ALA (b) GLY-GLY and (c) VAL derivative Schiff base copper(II) complexes binding 
sites with lysozyme based on tentative X-ray crystallography. 
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Table 1. Copper(II) binding residues of lysozyme after soaking copper(II) complexes. 

Entry Copper(II) binding residues 

1 TRP108, VAL109 

2 GLU35 

3 ALA42, THR43, GLN41 

4 ARG73, ASN74, CYS64, ASN65, ARG61, SER60, SER72 

5 THR69, PRO70 

6 ARG21, GLY22 

7 GLY126, CYS127, ARG128 

8 ASN59 

9 LYS13, LEU129 

10 GLN121, ALA122 

11 ASP18, LEU17, ASN19 

12 ASP87, ILE88 

13 THR69, PRO70, ARG68 

14 ILE58, ASN59 

15 ILE78 PRO79, ASN74 

16 THR69, PRO70, ARG68, GLY67, SER72 

17 ASP119, ARG125 

18 ILE58, ASN59 

19 ASN113 

20 LEU56, GLN57, ILE55, GLY54, TYR53 

21 ASN65 

22 PRO70, GLY71 

3. Conclusion 

As far as we have investigated with this method so far, in this way, we have not 
observed the coordination mode of copper(II) ions binding to neighboring three 
or more amino acid residues that exhibits the blue-purple color of the so-called 
biuret reaction. 
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