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Abstract 
Accurate prediction of stress-strain behavior of metals as a function of arbi-
trary temperature and strain rate paths has remained a challenge. The Me-
chanical Threshold Stress constitutive model is one formalism that has 
emerged following several decades of research. Vast experience has accumu-
lated with the application of the Mechanical Threshold Stress model over a 
wide variety of pure metals and alloys. Out of this has arisen common trends 
across metal systems. The magnitude of activation energies presents one ex-
ample of this, where these variables consistently increase in magnitude as the 
obstacle to dislocation motion transitions from short range to long range. 
Trends in strain hardening are also observed. In Face-Centered Cubic metals 
the magnitude of strain hardening scales with the stacking fault energy; 
trends in Body-Centered Cubic metals are less clear. Model parameters de-
rived for over twenty metals and alloys are tabulated. Common trends should 
guide future application of the MTS model and further model development. 
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1. Introduction 

The Mechanical Threshold Stress (MTS) constitutive formulation is an inter-
nal-state variable model that computes stress as the sum of the contributions 
from individual obstacles to dislocation motion [1] [2] [3]. These contributions 
are characterized by the threshold stress σ̂  that is the stress at 0 K required to 
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promote dislocation motion past the particular obstacle. Obstacle populations 
include solutes, precipitates, the Peierls barrier in Body-Centered Cubic metals, 
and other dislocations, e.g., stored dislocations. This section provides a brief re-
view of the theory and operative equations that comprise the MTS model. 

The most general expression for the yield stress as a function of temperature 
and strain rate is 

( )1
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where σa is an athermal stress, due for instance to the contribution of the inte-
raction of grain boundaries, ˆiσ  is the threshold stress for obstacle population i, 
si is a factor between 0 and 1 that characterizes the influence of temperature and 
strain rate on the stress required to overcome the obstacle, μ is the shear mod-
ulus, μo is the shear modulus at 0 K, and n is the number of obstacle populations 
contributing to the stress. A general form for si follows from work of Kocks et al. 
[4]: 
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where T is the test temperature, ε�  is the test strain rate, b is the Burgers vector, 
k is Boltzmann’s constant, goi is the normalized activation energy, and oiε� , qi, 
and pi are constants. These last four variables are specific to the obstacle popula-
tion (i) of interest, although as will be shown, these variables show common 
trends. Equation (1) and Equation (2) specifically apply to the yield stress in an-
nealed metals. These equations are referred to as the “Yield Stress” Kinetics 
analysis (YSA). 

In deformed metals, Equation (1) is written as 
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where a threshold stress term ˆεσ  arising from the contribution of mobile dis-
locations with stored dislocations is added (with its associated s-value). A recent 
paper has addressed the challenge of applying Equation (3) to a material sup-
plied with an existing dislocation density from, for instance, a final warm work-
ing operation [5]. 

Application of the MTS model to a variety of Body-Centered Cubic (BCC), 
Face-Centered Cubic (FCC), and Hexagonal Close Packed (HCP) metals as well 
as to austenitic stainless steels and superalloys has been thoroughly reviewed [2]. 
Section 2 through Section 5 summarize trends observed in these analyses. In 
particular assessed values of the normalized activation energies (Equation (2)) 
and mechanical threshold stresses (Equation (1)) are compared and displayed in 
several tables. 

Equation (3) introduced an additional mechanical threshold stress ˆεσ . The 
increase of ˆεσ  with strain results from the rising difficulty of moving disloca-
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tions through the array of stored dislocations. This process is referred to as 
“evolution”, which is used interchangeably with the term “strain hardening”. 
The increase of ˆεσ  with strain is described differentially, using a modified 
Voce equation: 

( ) ( )
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where θII is the stage II hardening rate, e.g., of a single crystal, ˆ sεσ  is the satura-
tion value of this threshold stress and κ is a constant, usually equal to one or two. 
Note that the saturation threshold stress has a temperature and strain-rate de-
pendence. This is unique from that defined for the stress in Equation (1) and 
Equation (2). The kinetics are specified by a dynamic recovery model proposed 
by Kocks. [6] 
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where ˆ soεσ  is the saturation stress at 0 K, sogε  is the applicable normalized 
activation energy, and soεε�  is a constant. Equation (4) and Equation (5) are re-
ferred to as the “Evolution” Kinetics Analysis (EA). 

Section 6 reviews trends in the parameters ˆ soεσ , k, and sogε  across several 
metals and alloys. These trends are displayed both graphically and in tabular 
form. The unique contribution of this paper is in the description of common 
trends in both the Yield Stress Kinetics analysis (YSA) and the Evolution Kinet-
ics Analysis (EA) that could guide application of the MTS model to other metals 
and alloys. Inspection of the operative equations introduced above indicates a 
number of model variables. One objective of this paper is to specify ranges for 
many of these variables and to conclude with a listing of the independent va-
riables in the MTS formalism (see Appendix). 

2. Application of the YSA When Two Strengthening  
Mechanisms Are Active 

One of the challenges in applying the model is the selection of the operative 
strengthening mechanisms, which defines the number n in Equation (1). In a 
pure metal, such as 0.9999 Cu, n may equal 0. That is, there is no strengthening 
contribution from solutes in this highly pure metal. In most FCC metals, the 
strengthening from solute additions, whether intentional or not, can be signifi-
cant. However, the strengthening contributions of all of the impurities are diffi-
cult to assess. For most of the metals and alloys analyzed, it has been assumed 
that n equals 2; that is, two strengthening mechanisms are dominant. Under this 
assumption, Equation (1) becomes 
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Note that nowhere has it been firmly established that the contributions from 
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the two obstacle populations sum linearly. This question was addressed by Fol-
lansbee and Gray in the Ni-C system [7] where the fit using Equation (6), or 
more simply 

1 2σ σ σ= +                             (7) 

was compared to that using 

2 2
1 2σ σ σ= + .                          (8) 

The conclusion was that there was no improvement in the agreement with 
data using Equation (8) rather than Equation (7). Going forth, the linear sum-
mation of individual stress components has been assumed. 

In the BCC systems, obstacle population 1 was assumed to be the Peierls bar-
rier [8]. This is characterized by very short-range dislocation interactions with a 
low value of go1 (or gop). The term “short-range” relates to the area swept out by 
the dislocation as it encounters an obstacle [4]. A second strengthening contri-
bution was assumed to arise from dislocation interactions with impurity atoms. 
These were longer-range interactions with a moderate value of go2 (or goi). Some 
FCC and HCP systems were adequately assessed using a single strengthening 
contribution, presumably from solute interactions, again characterized by a 
moderate value of goi. Several others, as described in a following section, were 
better described using two strengthening mechanisms. 

It is very difficult to ascertain which solute-dislocation interaction is responsi-
ble for the observed strengthening. In the Ni-C system [7], the alloys were spe-
cifically supplied with three different carbon concentrations. The highest con-
centration was 1900 parts per million (ppm) C, which is well above the trace 
amounts of other elements, which are typically less than 200 ppm. The effect of 
C on strengthening in Fe is well known, as is the effect of O and Al on the 
strengthening in Ti. But in other systems, there may be numerous elements with 
small, but similar, concentration levels. In these metals, there may be insufficient 
information on strengthening due to a specific solute, and the validity of the ap-
proximation that these all can be described using a single solute strengthening 
mechanism is unknown. 

For example, the chemical analysis of the molybdenum studied by Briggs and 
Campbell [9] reported 14 ppm O, 12 ppm N, 10 ppm Fe, 70 ppm Si, 100 ppm W, 
and trace amounts of H and Cu. The analysis published by Follansbee [8] pro-
ceeded with a 2-obstacle population model. Clearly the Peierls barrier is one of 
these; the other represents the contributions of dislocation interactions with the 
impurity elements. It is an approximation to assume these can all be lumped into 
a single threshold stress ˆiσ  with a single value of goi. However, there is insuffi-
cient information to do otherwise. This would require an experimental cam-
paign with intentionally variable solute additions. That is, molybdenum alloys 
with 30 ppm O, 50 ppm O, and 70 ppm O with all other elements unchanged, 
might yield information about the specific role of O in strengthening. This 
would indeed be an extensive campaign. 
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3. Extracting YSA Model Constants from Data Sets 

In this section, the procedure to extract the model parameters ˆiσ  and goi will 
be reviewed. One starts with a collection of stress-strain measurements as a 
function of test temperature and strain rate. These measurements should be in a 
material that is in the annealed condition with a low starting dislocation density. 
The focus here is on the yield stress. Analysis of the hardening behavior general-
ly follows. With knowledge of the Burgers vector and the temperature-dependent 
shear modulus [2] (pp. 136-137)1, the yield stresses are plotted according to Eq-
uation (1) with n = 1, when a single strengthening mechanism applies, or n = 2 
when two strengthening mechanisms apply. Figure 1 shows the measurements 
of Briggs and Campbell [9] which cover a strain rate range from 1.7 × 10−4 s−1 to 
100 s−1 and temperatures from 77 K to 600 K. Note that the plot exhibits a dis-
tinct curvature. This suggests that a two-parameter analysis is in order. Since this 
is a BCC metal, the Peierls barrier serves as one of the obstacle populations. The 
net effect of the, albeit low, concentration of impurities (the chemical concentra-
tion detailed above translates to a purity level of 0.9996) likely contributes to the 
second obstacle population. The procedure requires the analyst to select values 
of ˆ pσ , gop, ˆiσ , and goi that provide a good fit with the measurements. Figure 2 
shows the derived model fit along with the measurements. For this fit, of ˆ pσ  = 
1541 MPa, gop = 0.07, ˆiσ  = 428 MPa, and goi = 0.27. As expected, the Peierls 
barrier, with a low go value and a high threshold stress, dominates. The streng-
thening contribution due to the impurities is much less and the go value suggests 
this is a longer-range dislocation-obstacle interaction. The tempera-
ture-dependence demonstrated by the Peierls barrier is quite high; in fact, its 
contribution goes to zero at ~500 K. (This is somewhat strain-rate dependent; at 
higher strain rates this strengthening contribution would persist to higher tem-
peratures.) 
 

 
Figure 1. Briggs and Campbell measurements [5] [9] in pure 
molybdenum analyzed according to Equation (6) and Equa-
tion (2). 

 

 

1To assist the reader, many of the following references to [2] include the table (T), figure (F), or page 
number(s). 
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Figure 2. Briggs and Campbell measurements [5] [9] in pure molybde-
num along with the two-obstacle population model fit. 

 
Figure 3 shows the analysis of yield stress measurements in pure Zinc. Mea-

surements reported by Risebrough in 99.999% pure material with a grain size of 
20 μm [10] and measurements reported by Liu, Huang, Wu, and Zhang in ma-
terial with the same purity but with a grain size of 70 μm [11] are plotted on the 
same coordinates used in Figure 1 and Figure 2. Because of the large grain size 
difference, a lower value of σa (5 MPa) was used for the Liu et al. analysis than 
for the Risebrough analysis (10 MP). In this case, the data fall nicely along a 
straight line, suggesting that one strengthening mechanism is operative; this 
strengthening is likely due to interaction of dislocations with impurity elements. 
The analysis yielded ˆiσ  = 181 MPa, and goi = 0.17. 

YSA Cases Where Assuming a Two-Obstacle Model Can Be  
Misleading 

To demonstrate a case where assuming a two-obstacle model can be mislead-
ing, a fictitious alloy was created using the parameters b, σa, μ(T), etc. defined 
for Follyalloy [2] [5]. Figure 4(a) gives the yield stress versus temperature 
and strain rate plot for this alloy. The model shown is a two-obstacle analysis 
with ˆ pσ  = 2500 MPa, gop = 0.19, ˆiσ  = 530 MPa, and goi = 4.2. A red flag 
immediately rises with the high value of goi, which is an unusually high acti-
vation energy.   

Figure 4(b) shows the same data set. In this case the model is a four-obstacle 
analysis with the model parameters shown in Table 1. Included in this table 
are the model parameters for the two-obstacle model. Interestingly, the fit to 
the data set is only slightly better in the four-obstacle analysis than in the 
two-obstacle analysis. The error, defined  

( ){ }1 22Error mσ σ= −∑                        (9) 
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Figure 3. Measurements in pure zinc along with the model 
fit [2] (F 10.3). 

 

 
Figure 4. Model fit measurements in the fictitious Follyalloy [2] [5]. (a) Two-obstacle model analysis; (b) Four-obstacle mod-
el analysis. 
 
Table 1. Analysis of fictitious folly alloy using a two-obstacle population model and a four-obstacle population model. 

 Peierls Population i1 Population i2 Population i3 

σ̂  (MPa) 2000 400 400 300 

goi 0.15 0.8 0.4 1.6 

σ̂  (MPa) 2500 530   

goi 0.19 4.2   

 
is 0.0075 in the two-obstacle analysis and 0.0051 in the four-obstacle analysis. 
The major difference in the model parameters is in the value of the activation 
energies. This is an entirely fictitious material and data set, but it demon-
strates that assuming two active strengthening mechanisms when having 
more than two are active can lead to unrealistic values of the model parame-
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ters, particularly the activation energies. 
In the next section the model parameters assessed for a number of FCC, 

BCC, and HCP metals are tabulated to enable the observation of trends. In 
none of these cases is it assumed that more than two strengthening mechan-
isms are dominant. (This applies to metals in the annealed condition. When 
strain hardening occurs, the stored dislocation density becomes a third 
strengthening mechanism, as defined in Equation (3) when n = 2). While 
there are some “high” values of the activation energy reported, there is no 
case that mirrors the fictitious alloy described in this section. 

4. Model Parameters Assessed in Various Metals 
4.1. YSA Example in Nominally Pure FCC and HCP Metals 

The first class to consider are pure and nominally pure FCC and HCP metals 
and some simple FCC alloys. These would have at most a single activation ener-
gy, which implies a single mechanical threshold stress. Table 2 lists the metals 
that have been examined. Included is the reference to the raw data, the purity 
level, the threshold stress normalized by μo, the normalized activation energy goi, 
and the value of the constant oiε� . Note that in 0.9999 pure copper, there is no 
contribution from impurity elements, i.e., there is no obstacle 1. In the slightly 
less pure (0.9995) copper used by Dalle Torre et al. [12], the impurities intro-
duced an obstacle 1, characterized by ˆi oσ µ  = 0.00010. The same is the case 
for 0.9997+ pure silver. Note that even in highly pure Cd and Zn, a small impur-
ity obstacle seemed to be present. 

The Ni-C alloys analyzed by Follansbee and Gray [7] are characterized by a 
single value of the normalized activation energy (0.20) but ˆi oσ µ  values that 
increase by almost ×10 when the carbon concentration increases from 55 ppm to  

 
Table 2. Model parameters in several FCC and HCP metals analyzed using a single obstacle population model. 

Material Purity 
Reference Obstacle 1 

Data Analysis ˆ i oσ µ  go1 1oε�  (s−1) 

Cadmium 0.9999 [13] [2] (T 10.4) 0.0075 0.20 107 

Zinc 0.99999 [10] [11] [2] (T 10.2) 0.00285 0.17 107 

Copper 0.9999 [1] [1]  None  

Copper 0.9995 [12] [14] 0.00010 0.6 107 

Nickel 0.999/55 ppm C [7] [7] 0.00034 0.20 109 

Nickel - C 1900 ppm C [7] [7] 0.00300 0.20 109 

Copper - Al 2000 ppm Al [2] [2] (T 8.12) 0.00031 0.6 107 

Copper - Al 60,000 ppm Al [2] [2] (T 8.12) 0.00450 0.6 107 

Silver 0.9997+ [15] [16] 0.0020 0.65 107 

Monel 320,000 ppm Cu [17] [17] 0.00224 0.539 107 

    pi1 = 0.5; qi1 = 1.5 
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1900 ppm. The trends in the Cu-Al alloys are very similar. 
It is noteworthy that for all of the materials listed in Table 2 the normalized 

activation energy is in the range 0.017 ≤ goi ≤ 0.06. In these metals, the values of 
pi1 and qi1 are not allowed to vary and the variation of the value oiε�  is of no 
consequence (since oiε ε� � � ). 

4.2. YSA Examples in HCP Metals and an Austenitic Stainless Steel 

The next class of materials to consider includes several HCP metals and alloys 
that seem to be strengthened by two operative strengthening mechanisms. In 
this case Equation (4) applies. Table 3 lists the metals analyzed. The obstacle 
population referred to as “1” has a very low value of go1. Obstacle “2”, however, 
is characterized by a go2 value of 1 or higher. It is interesting that the go1 and go2 
values of Mg and the Mg alloy AZ31 are identical. Only the value of the ˆi oσ µ  
values changes; the threshold stresses in AZ31 are higher than those in pure Mg. 
The same is true in pure Ti in the Ti-6Al-4V alloy. 

The go2 value in pure Ti and Ti-6Al-4V is 1.6, which seems rather high. The 
source of this second obstacle population is unclear. Interestingly, an analysis of 
kinetics in a series of Ti-Al [18] alloys led to the same values of go1 and go2; alloys 
with increasing Al contents showed consistently increasing values of 2ˆ oσ µ . In 
fact, the magnitude of the 2ˆ oσ µ  term for Ti-6Al-4V is very similar to that 
predicted by the variation 2ˆ oσ µ  from the analysis of the Paton et al. mea-
surements. The confusing aspect of this is that the pure Ti analyzed by Doner 
and Conrad [22] did not have even trace amounts of Al, which suggests the high 
go2 value in pure Ti does not arise from dislocation interactions with the Al so-
lute. Recall in the hypothetical material considered in Section 3.1 going from a 
2-obstacle model to a 4-obstacle model led to more realistic go values, as shown 
in Table 1 and Figure 4(b). Figure 5 shows a similar analysis in pure Ti. In this 
case, a third obstacle was arbitrarily added. The 3-obstacle model shows slightly 
better agreement with the measurements, with an error defined by Equation (9) 
improving from 0.0121 MPa for the 2-obstacle model to 0.0084 MPa for the  

 
Table 3. Model parameters in several FCC and HCP metals analyzed using a two-obstacle population model. 

Material Purity 
Reference Obstacle 1 Obstacle 2 

Data Analysis ˆ i oσ µ  go1 1oε�  (s−1) 2ˆ oσ µ  go2 2oε�  (s−1) 

Zirconium 50 ppm O [19] [2] (T 10.12) 0.044 0.15 108 0.005 1 108 

Magnesium 0.9996 [20] [2] (T 10.5) 0.03 0.35 107 0.005 1 108 

Mg AZ31 3 Al 1 Zn [21] [2] (T 10.8) 0.08 0.35 107 0.0095 1 108 

Titanium 
5000 ppm  

Oeq/500 ppm Fe 
[22] [23] [2] (T 10.16) 0.0085 0.25 107 0.0065 1.6 1010 

Ti-6Al-4V  [24] [21] 0.0185 0.25 107 0.0232 1.6 1010 

AISI 316 SS 500 ppm N [25] [26] 0.0080 0.20 108 0.0025 1.7 108 

    pi1 = 0.5; qi1 = 1.5 pi2 = 0.5; qi2 = 1.5 
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Figure 5. Model fits in pure titanium using a two- and a 
three-obstacle population model. 

 
3-obstacle model. Table 4 lists the go and the ˆ oσ µ  values. While somewhat 
improved agreement between model predictions and measurements going from 
a 2-obstacle model to a 3-obstacle model, the improvement does not justify the 
arbitrariness of the model assumption. 

A two-obstacle model is required to capture the curvature observed in the 
plots of yield stress versus temperature and strain rate, as illustrated in Figure 2 
and Figure 3. One of the obstacle populations has a low value of the normalized 
activation energy, with 0.015 ≤ go1 ≤ 0.035 in the metals included in Table 3. 
These activation energies are similar to those observed in Table 2 in pure FCC 
metals and FCC alloys, which suggests the obstacles are solute atoms. The 
second obstacle population is characterized by much higher normalized activa-
tion energies, with 1.0 ≤ go2 ≤ 1.5 in the metals included in Table 3. These 
represent longer-range dislocation-obstacle interactions. It is hard to speculate 
the active strengthening mechanism. This may reflect solute clusters or precipi-
tates, such as carbides or oxides. 

Also included in Table 4 is AISI 316 stainless steel, which is an FCC metal 
with numerous elemental additions. As indicated in Table 4, a two-obstacle 
model has been applied. Obstacle 1 has a goi value characteristic of solution har-
dening. Indeed, both N and O are effective strengthening solutes in these alloys. 
Obstacle 2 shows a high value of go2 (1.7). This may reflect the summation of 
various other solute additions, or it may reflect interaction of dislocations with 
the various carbides that form in these materials. 

4.3. YSA Examples in BCC Metals and Alloys 

The next class to consider is pure BCC metals and BCC alloys. Table 5 shows 
results for six pure BCC metals as well as for AISI 1018 steel. BCC metals are 
strengthened by the Peierls barrier, which is a short-range obstacle. Indeed, the 
gop values are in the range 0.07 ≤ gop ≤ 0.105 for this selection of metals. Each of 
these metals was analyzed using a two-obstacle model [8] and the second ob-
stacle population is assumed to represent dislocation- solute interactions. The go2  
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Table 4. Model parameters in pure titanium for the model fits presented in Figure 5. 

 
Two Obstacle Population Analysis 

Population i1  Population i2 

σ̂  (MPa) 405 400 300 

goi 0.25 0.4 1.6 

Error = 0.021 MPa 

 
Three Obstacle Population Analysis 

Population i1 Population i2 Population i3 

σ̂  (MPa) 343 114 281 

goi 0.26 0.34 1.5 

Error = 0.0084 MPa 

 
Table 5. Model parameters for several pure BCC metals and for AISI 1018 steel using a 
two-strengthening contribution model. 

Material Purity 
Reference Obstacle 1 Obstacle 2 

Data Analysis ˆ i oσ µ  go1 2ˆ oσ µ  go2 

Iron 200 ppm C [27] [8] 0.0193 0.096 0.0046 0.4 

Niobium 0.9984 [9] [8] 0.032 0.10 0.0057 0.37 

Vanadium 0.9986 [28] [8] 0.013 0.10 0.0020 1.0 

Tantalum 0.999 [29] [8] 0.0145 0.081 0.0048 0.40 

Molybdenum 0.9996 [9] [8] 0.0108 0.07 0.0030 0.27 

Tungsten 0.9999 
[30] 
[31] 

[8] 0.0017 0.105 0.0036 0.7 

AISI 1018 
Steel 

~0.99; 
1800 ppm C 

[32] 
[2]  

(T 9.11) 
0.014 0.11 0.0050 1.0 

    pi1 = pi2 = 0.5; qi1 = qi2 = 1.5 

    1oε�  = 108 s−1 2oε�  = 1010 s−1 

 
values in Table 5 are consistent with this; they fall in the range 0.27 ≤ go2 ≤ 1.0. 
The associated values for vanadium and 1018 steel are go2 = 1.0 which is on the 
high side. The source of this high value in vanadium is unclear. In 1018 steel, 
this value may represent the combined contributions of several of the solute ad-
ditions in this metal, as demonstrated in Section 3.1. Certainly, as indicated by 
the values of ˆ p oσ µ , this strengthening contribution decreases strongly with 
increasing temperature and decreasing strain rate. Dislocation-solute atom inte-
ractions essentially define strengthening at high temperatures and low strain 
rates. In Section 3, it was mentioned that the strengthening contribution of the 
Peierls barrier in molybdenum goes to zero at just over 500 K (at a strain rate of 
0.001 s−1). Yet, this metal exhibits considerable yield stresses all the way to 1000 
K at this strain rate. 
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5. YSA Observations of Concentration Dependence in  
Several Metals 

In several of the systems studied, a range of compositions of one of the main so-
lute additions has enabled an assessment of the variation of the threshold stress 
with composition. This was possible in Fe-C [8], Ni-C [7], Fe-Al [2], Zirconium 
[2], and Ti-Al [26]. In addition, experimental studies have been performed to 
analyze the effect of N additions in 316 L stainless steel [33]. Figure 6 shows a 
compilation of the results. Plotted is ˆi oσ µ  versus composition for these five 
alloys. Several theories and experimental studies suggest that the strength in-
crease due to solution hardening should vary as the square-root of the composi-
tion [34]. The strengthening contributions in Figure 6 are plotted versus com-
position to the power of one. The limited data available support a linear model. 
The dashed lines in Figure 6 start close to zero at a zero concentration and show 
increased hardening with an increasing concentration. Carbon in Fe and Al in Ti 
appear to be quite effective strengtheners. Carbon in nickel and nitrogen in 316 
SS are less effective strengtheners. Aluminum in Cu also is an effective streng-
thener. The effect of model assumptions on these observations should be consi-
dered. In Ni-C and Cu-Al, a one-obstacle model has been applied. In the other 
metals plotted in Figure 6, a two-obstacle model has been applied. If in fact, one 
or more additional solute elements contribute to strengthening (i.e., the ˆiσ  
term), then the effects of all of these combine to set the value of ˆiσ . If this were 
the case in Fe-C, then ˆiσ  has been over-estimated. Evidence in opposition to 
this possibility is that at concentrations approaching zero, the strengthening 
contributions all start close to zero. If another solute were contributing to 
strengthening one would expect an intercept at a positive value on the ordinate. 
While for Fe-C, Ti-Al, and 316 SS-N, the intercepts are all positive in Figure 6, 
they are at relatively low values of ˆi oσ µ , and plotting the strength contribu-
tions versus the square-root of the concentration would take the intercepts even 
closer to zero. Nonetheless, the importance of this model assumption needs to be  
 

 
Figure 6. Variation of the threshold stress characterizing 
solute atom interactions with concentration in several 
alloys. 
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considered when evaluating solute strengthening in alloys using the MTS me-
thodology. 

6. Compilation of Observations in Strain Hardening (EA) 

Equation (4) and Equation (5) identified the governing equations for strain har-
dening, which is also referred to as “structural evolution”. The ensuing analysis 
of evolution was referred to earlier as the “Evolution” Kinetic Analysis (EA). Key 
to the application of these equations is the variation of ˆεσ  with strain for 
stress-strain curves at various temperatures and strain rates. The most rigorous 
way to compute the variation of ˆεσ  with strain is to estimate ˆεσ  using sam-
ples prestrained at a specified temperature and strain rate to a specified strain, 
and then reloaded at various temperatures and strain rates. These experiments 
give the variation of yield stress on these prestrained samples with temperature 
and strain rate. Fitting this data set to Equation (3) gives the value of ˆεσ . Re-
peating this pretraining operation at the same temperature and strain rate but to 
different strain levels enables one to estimate the ˆεσ  versus strain curve, which 
can be fit to Equation (4) to give values of qII and ˆ sεσ  for that prestrain tem-
perature and strain rate. This test sequence must be repeated at various prestrain 
temperatures and strain rates to give these model parameters (θII and ˆ sεσ ) at 
these temperatures and strain rates. While this rigorous test sequence necessi-
tates a great number of stress versus strain measurements, this is precisely the 
approach used in copper [1], nickel and several Ni-C alloys [7], and Ti-6Al-4V 
[24]. 

Figure 7(a) shows the compilation of measurements in Oxygen Free Elec-
tronic Copper [1]. The solid lines are drawn according to Equation (4) with κ = 
2. As described above each value of ˆεσ  plotted in Figure 7(a) represents the 
analysis of yield stress measurements at various temperatures and strain rates 
plotted according to Equation (3). The availability of this massive data set  

 

 
Figure 7. Variation of the threshold stress characterizing dislocation interactions with the stored dislocation density as a function 
of strain rate. (a) Measurements in pure copper [2] (F 8.2); (b) Fit of the saturation threshold stress with temperature strain rate 
according to Equation (5) [2] (F 8.3). 
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enabled the optimal selection of model variables in this equation [2]. The se-
lected model variables were pε = 2/3, qε = 1, og ε  = 1.6, and oeε�  = 107 s−1. These 
values were found to work equally well in nickel [7] and Ti-6Al-4V [24]. Accor-
dingly, these values have been used for all metals and alloys; they are not treated 
as variables. Similarly, the measurements in Ni-C [7] led to the selection of si 
parameters in Equation (2) for the solution hardening obstacle population. In 
this case, as shown in Table 2, pi = 0.5, qi = 1.5, and oiε�  = 109 s−1. These values 
have been used for many solution-hardened metals and alloys.  

It is evident that as the strain rate increases the curves in Figure 7(a) trend 
toward higher saturation stresses— ˆ sεσ . Figure 7(b) shows the plot of saturation 
stress versus strain rate according to Equation (5). A value of ˆ soεσ  equal to 710 
MPa forces the dashed line through the origin, as specified by Equation (5). 

A less rigorous procedure for estimating the variation of ˆεσ  with strain is to 
solve Equation (3) for ˆεσ  directly from the stress-strain curve. The operating 
equation for a metal with two obstacle populations (e.g., a BCC metal with a 
Peierls stress and an impurity atom stress) becomes 

( ) ( ) ( )
ˆ ˆ

ˆ , ,
,

po a i
p i

o o

s T s T
s Tε
ε

σµ σ σσσ ε ε
ε µ µ µ µ

 
= − − − 

 
� �

�
.        (10) 

This is the approach taken in evaluating strain hardening in austenitic stain-
less steels [35], Inconel 718 [36], and several other of the metals and alloys de-
scribed by Follansbee [2]. Figure 8 gives an example of this procedure for mea-
surements in Inconel 718 reported by Nalawade et al. [37] at two test tempera-
tures. Measurements at several test temperatures and strain rates enable one to 
evaluate Equation (5) and solve for ˆ soεσ  and sogε . Application of Equation (4) 
to the curves in Figure 7(a) and Figure 8 also gives values of the stage II har-
dening rate θII. This has been observed to have a slight strain rate dependence 
but no measurable temperature dependence given by 
 

 
Figure 8. Deduced variation of the threshold stress characterizing dislocation 
interactions with the stored dislocation density in Inconel 718 at two test 
temperatures [2] (F 12.11). 
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1 2lnII oA A Aθ ε ε= + +� �                       (11) 

where Ao, A1, and A2 are constants.  
In the next sections, assessed values of ˆ soεσ , sogε , and θII (actually Ao) are 

reviewed for several pure metals and alloys. The results are presented in tabular 
form. Included are references to the original data source and references to the 
publications that detail the data analyses. 

6.1. EA Observations in Several FCC and HCP Metals 

Table 6 lists values of ˆ so oεσ µ , sogε , and II oθ µ  (Equation (4) and Equation 
(5)) for several pure FCC and HCP metals and several FCC alloys. Also included 
are the values of κ and soεε�  used in the analyses and reference to the raw data 
and source for the analysis. The values of II oθ µ  (actually, listed in Table 6 is 
Ao from Equation (11), but this is only slightly less than IIθ ) fall generally in the 
range o oA µ  = 0.04 ± 0.01. Kocks and Mecking [38] observed that ˆ so oεσ µ  
correlated with the stacking fault energy γSF in Cu, Al, Ni and Ag. Table 7 lists 
the values of these parameters reported by Kocks and Mecking along with addi-
tional values reported Cu, Ni, Ag, and other FCC alloys; these values tend to fall 
directly in line with the Kocks and Mecking values. Figure 9 gives the updated 
plot of ˆ so oεσ µ  versus γSF. The alloys tend to have lower values of γSF, which is 
consistent with a model proposed by Lee et al. [39]. The correlation shown in 
Figure 9 is a very interesting result that allows for predictions of ˆ so oεσ µ  for 
an unknown FCC metal or alloy, given that γSF is known. Of course, measure-
ments of γSF can be quite variable and open to interpretation. An excellent re-
view of these measurements along with estimates of the most “likely” values for 
several FCC systems was published by Gallagher [40]2. 

 
Table 6. Model parameters characterizing structure evolution in several HCP and FCC 
metals. 

Material 
Reference 

κ ˆ so oεσ µ  soεε�  
(s−1) sogε  II oθ µ a 

Data Analysis 
Cadmium [10] [2] (T 10.4) 1 0.00578 107 0.0819 0.0404 

Zinc [10] [11] [2] (T 10.2) 1 0.0224 107 0.0335 0.0272 
Copper [1] [2] (T 8.4) 2 0.0155 108 0.301 0.0522 
Nickel [7] [2] (T 8.9) 2 0.0148 108 0.168 0.0541 

Nickel-1900C [7] [7] 2 0.0151 108 1.171 0.0541 
Copper-0.2Al [2] [2] (F 8.45)b 2 0.0188 108 0.282 0.0546 
Copper-6Al [2] [2] (F 8.45) 2 0.0732 108 0.247 0.0546 

Silver [14] [16] 2 0.0245 108 0.285 0.0514 
Monel [17] [19] c 0.0080 108 0.37 0.0395 

aThe numerator is actually A0 in Equation (11). bThere is an error in the caption of Figure 
8.45 in [2]. The value listed in Table 8.13 are the values at 295 K and 0.0015 s−1; the 0 K 
values are listed in this table. cGray et al. [17] use another form of Equation (4) for the 
differential hardening behavior. 

 

 

2The recommended γSF values reported by Gallagher for Cu, Ni, and Ag are the values included in 
Table 7. 

https://doi.org/10.4236/msa.2023.145019


P. S. Follansbee 
 

 

DOI: 10.4236/msa.2023.145019 314 Materials Sciences and Applications 
 

Table 7. Saturation threshold stress and stacking fault energy in several FCC metals. 

Material Reference 
ˆ soεσ  μo b γSF 

γSF/μob 
MPa MPa nm ergs/cm2 

Cu [2] (T 8.4) 710 45,780 0.256 55 0.00469 

Cu-2Al [2] (F 8.45) 975 45,780 0.256 25 0.00213 

Cu-6Al [2] (F 8.45) 3350 45,780 0.256 6 0.00051 

Ni [2] (T 8.9) 1180 85,090 0.249 250 0.01180 

Ag [14] 761 3110 0.289 22 0.00245 

AISI 316 SS [2] (T 11.6) 2600 71,460 0.249 22 0.00169 

Al 

[38]a 

304 28,820 0.286 190 0.02305 

Ni 897 85,090 0.249 275 0.01298 

Cu 783 45,780 0.256 56 0.00476 

Ag 817 31,100 0.289 16 0.00178 

aKocks and Mecking reported γSF/μob. γSF values are computed using μo and b. 
 

 
Figure 9. Variation of the saturation threshold stress with stacking 
fault energy for the FCC met listed in Table versus stacking fault 
energy shear FCC metals listed in Table 7. 

6.2. EA Observations in BCC Metal 

Table 8 lists values of ˆ so oεσ µ , sogε , and o oA µ  for several pure BCC metals 
and AISI 1018 steel. Included in this table are the values of κ and soεε�  used in 
the analyses and reference to the raw data and source for the analysis. The values 
of ˆ so oεσ µ  and sogε  are somewhat dependent upon the value of κ used in the 
analysis. For example, in vanadium when κ is selected as 2 instead of 3, ˆ so oεσ µ  
decreases from 0.00896 to 0.00605 and sogε  increases from 0.233 to 0.377. The 
rows for molybdenum show some variability in the EA values according to the κ 
variable selected as well as the estimate of the strain introduced by prior warm 
work in the material—εww [5]. 
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Table 8. Saturation threshold stress and stacking fault energy in several BCC metals. The 
estimates in molybdenum vary with details of the analysis. 

Material Reference ˆ so oεσ µ  soεε�  (s−1) sogε  II oθ µ a κ 

Niobium [2] (T 9.17) 0.0125 108 0.219 0.0252 2 

1018 Steel [2] (T 9.11) 0.00904 1010 0.468 0.0476 2 

Vanadium [2] (T 9.13) 0.00896 1010 0.233 0.0518 3 

Vanadium  0.00605 1010 0.377 0.0518 2 

Tungsten [2] (T 14.4) 0.00468 108 0.0748 0.0202 2 

Tantalum [41]b 0.00653 108 0.242 0.00507 2 

Molybdenum 
εww = 0.2 

[5] 0.0112 108 0.136 0.0105 1 

Molybdenum 
εww = 0.2 

[5] 0.0111 108 0.206 0.0135 2 

Molybdenum 
εww = 0.1 

[5] 0.0075 108 0.200 0.0144 1 

aThe numerator is actually A0 in Equation (11). bThe cited reference gives the source of 
the data; the analysis was performed in creating this manuscript. The former is also the 
case with the analysis of vanadium for κ = 2. 
 

The values of o oA µ  fall generally in the range o oA µ  = 0.032 ± 0.018. 
This is slightly below the values seen in the FCC metals, and there is more varia-
bility than seen in the FCC metals. This observation may simply reflect the gen-
eral uncertainty in these measurements. The values of ˆ so oεσ µ  do not exhibit a 
clear trend with any physical property. Figure 10 plots ˆ soεσ  versus the shear 
modulus μo. Error bars are shown for the vanadium and molybdenum estimates. 
One could argue that the saturation threshold stress increases with increasing 
modulus, but the confidence in this trend is not high. 

7. Discussion 

This manuscript has outlined application of the MTS constitutive model in sev-
eral FCC, BCC, and HCP metals. Section 1 and Section 2 provided an overview 
of the operative equations. Included in Section 2 was a discussion of how to ap-
ply Equation (1) and select a value of n for an alloy with multiple alloying addi-
tions. The rationale for linearly adding the individual strengthening contribu-
tions was also briefly considered. A critically important feature of the MTS me-
thodology is the distinction of the kinetics affecting the yield stress (where the 
yield stress implies yield following any processing history) evaluated using the 
Yield Stress Kinetics Analysis (YSA), from the kinetics affecting strain harden-
ing, or structure evolution, evaluated using the Evolution Kinetics Analysis (EA). 
A constitutive formalism that does not provide this distinction, e.g., the Johnson  
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Cook constitutive model [42] or the Armstrong Zerilli constitutive model [43] 
can replicate stress levels under constant strain rate and temperature conditions, 
but will be unable to accurately describe instantaneous path changes, e.g., strain 
rate or temperature changes. This, in turn, will affect predictions of instabilities, 
e.g., necking in a tensile test or shear band initiation. 

Section 3 through Section 5 reviewed results of the YSA model application for 
several FCC, HCP, and BCC metals and alloys. For some FCC and HCP metals, 
the yield stress measurements can be modeled using a single obstacle population 
(Table 2). Application of the model to several other FCC and HCP metals ne-
cessitates a two-obstacle population model (Table 3). All of the BCC metals 
analyzed required a two-obstacle population model (Table 5). Common trends 
for the normalized activation energies across all metals and alloys were identi-
fied. Based on these observations, it is concluded that the yield stress kinetic 
analysis is a fairly descriptive constitutive formalism. 

Section 6 reviewed experience with application with structure evolution using 
the EA equations. For FCC metals, there exists a clear variation of ˆ soεσ  with-
stacking fault energy (Table 7 and Figure 9). No trends with sogε  were noted. 
For BCC metals, a weak correlation between ˆ soεσ  and the shear modulus was 
illustrated in Figure 10. For all metals analyzed, the stage II hardening rate (ac-
tually, Ao in Equation (11)), consistently was in the range o oA µ  = 0.037 ± 
0.018. This translates to A0 ≈ μo/27. Kocks and Mecking [38] report that the 
Stage II hardening rate is in the range θII ≈ μo/115, which is 4x less than the esti-
mate here. This difference may reflect the common practice of evaluating Equa-
tion (4) to large-strain behavior rather than near-yield behavior.  

The largest problem with the structure evolution analysis, particularly with 
BCC and some HCP metals, however, is in the generality of Equation (4). This 
equation was based on the Voce equation [44]3. The Voce equation models the  

 

 
Figure 10. Variation of the saturation threshold stress versus shear mod-
ulus in the BCC metals listed in Table 8. 

 

 

3When κ = 1 Equation (4) becomes the Voce equation. 
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Figure 11. Variation of the saturation threshold stress characteriz-
ing zinc where deformation twinning may be active. 

 
balance between dislocation generation and recovery in strain hardening. Estrin 
[45] has derived the Voce equation based on dislocation density contributions. 
The Voce equation—or the slightly modified version with κ equal to 2 in Equa-
tion (4)—provides an adequate fit to the evolution of ˆεσ  with strain in Cu and 
Ni and many other metals (e.g., Figure 7(a) and Figure 8). The Voce equation 
breaks down, however, when strain hardening is accompanied by deformation 
twinning, dynamic strain aging, or stress or strain induced metallurgical transfor-
mations. The effects of deformation twinning were observed in zirconium [2], zinc, 
and several other materials. Figure 11 shows that the variation of ˆεσ  with strain 
in 0.99999 Zn with a grain size of 70 μm [11] is not well-described using Equation 
(4) [2]. It is suspected that deformation twinning is effectively decreasing the grain 
size and leading to an increasing contribution from dislocation interactions with 
grain boundaries (e.g., the σa variable in Equation (1)) [2]. Dynamic strain aging 
was observed to be prevalent in niobium, titanium, austenitic stainless steels, and 
nickel based superalloys [46]. Signatures of the contributions of these metallurgical 
processes in context of the application of the MTS formalism were noted [46]. 

The conclusion is that large deviations from evolution predicted by Equation 
(4) are possible in many metals and alloys. The Evolution Kinetics Analysis that 
comprises the MTS model is not as widely applicable across myriad metals and 
alloys as is the Yield Stress Kinetics Analysis. This conclusion may guide further 
research and modeling of strain hardening, particularly when dislocation storage 
is accompanied by deformation twinning, dynamic strain aging, or stress or 
strain induced phase transformations. 
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Appendix—On the Number of Independent Variables 

The number of independent variables in a constitutive equation is an important 
consideration. The objective is to derive equations with physical significance but 
with the fewest independent variables. A common objection to a proposed set of 
constitutive equations is that, with a great many independent variables, it is 
“easy” to fit the model to a given data set. This Appendix will assess this number 
for the MTS formalism. 

For a metal that can be evaluated using a two-obstacle, 1σ̂  and 2σ̂ , plus an 
evolution obstacle, ˆεσ , Equation (3) with n = 2 and Equation (2) for each of the 
(3) si values is the governing equation for YSA. Equation (4) and Equation (5) 
are the governing equations for EA. Table A1 lists the parameters in these equa-
tions. Some of the parameters are physical constants. Some are identified as “In-
dependent Variables”. For a two-obstacle model, each threshold stress and the 
values of go1 and go2 are listed as independent variables. The corresponding value 
of goε is listed as a “Constrained Variable”, since as outlined in the discussion of 
Figure 7, this value has been taken as 1.6 for all metals and alloys. 

Table 2, Table 3 and Table 5 list values of p1, g1, p2, g2, 1oε� , and 1oε�  used in 
the analyses of the metals and alloys included in these tables. It is evident that 
common values were selected, implying that these variables were not used as  
 
Table A1. MTS model parameters. 

Equation Variable 
Physical  
Constant 

Independent 
Variable 

Constrained 
Variable 

     

3 μ    

 μ0    

 σa    

 1σ̂     

 1σ̂     

2 k    

 goi  (go1) (go2) (goε) 

 b    

 1oε� , 2oε�     

 q1, q2    

 p1, p2    

4 θII    

 κ    

5 ˆ soεσ     

 soεε�     

 sogε     
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fitting parameters. Thus, these parameters in the “Constrained Variable” col-
umn. The same applies to values of soεε�  listed for the evolution analyses for the 
metals listed in Table 6 and Table 8. Indeed, soεε�  values of 108 s−1 and 1010 s−1 
are both included in Table 8. However, these values greatly exceed the test strain 
rates and this variable is contained with a logarithmic ratio in Equation (5), 
which implies this difference is not significant. 

The conclusion is that for a metal that can be described using a two-obstacle 
model, the number of independent variables listed in Table A1 is eight (8). This 
paper has provided further bounds for several of these variables, including g01, 
g02, and θII. 
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