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Abstract 
Climate change has become one of the most serious challenges facing mankind 
in the 21st century. Due to the diversity and complexity of climate policies and 
their dynamic adjustment during implementation, the uncertainty of climate 
policies has become one of the important factors affecting the market. As the 
world’s largest consumer of commodities, China’s climate policy adjustment 
has an impact on the decision-making process of commodity market partici-
pants, which changes the demand structure of commodities and thus affects 
their yields. In this paper, TVP-SV-VAR and DLNM are used to investigate the 
nonlinear lagging effects of climate policy uncertainty, energy and agricultural 
commodity prices in China. 
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1. Introduction 

Climate change has become a major global challenge in the twenty-first century, 
with rising global temperatures and extreme weather events profoundly affecting 
economic, social and environmental systems. Evidence shows that climate change 
not only threatens the living environment of human beings, but also poses a seri-
ous challenge to the global economic system. Against this backdrop, governments 
have launched climate policies to promote the energy transition, but the imple-
mentation of these policies is subject to multiple uncertainties: differences in pol-
icy objectives, asynchronous implementation steps, and unpredictability of de-
tailed adjustments, which together have led to increased volatility in market ex-
pectations. The concept of Climate Policy Uncertainty (CPU) was first introduced 
by Gavriilidis, (2021) to measure the uncertainty associated with the formulation, 
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implementation, and adjustment of climate change-related policies. This uncer-
tainty can impact investor expectations, interfere with corporate production de-
cisions, and change consumption behavior patterns. Especially in the context of 
globalization, CPU may trigger abnormal price fluctuations in the commodity 
market (energy, agricultural products, etc.), which are transmitted through the 
industrial chain and have actually evolved into an important trigger that exacer-
bates instability in the financial market. 

In recent years, as governments and international organizations have gradually 
increased their policy efforts to address climate change, the uncertainty of climate 
policy has increasingly become one of the factors affecting the global market. Es-
pecially in the process of clean energy transition, the impact of climate policy un-
certainty on the energy market is particularly significant. As the global energy 
structure gradually transforms to renewable energy, the traditional energy sector 
is facing transformation pressure, and the demand and price of fossil energy such 
as oil and natural gas are gradually restricted. At the same time, although the rapid 
development of the new energy market has provided a new growth engine for the 
global economy, the policy uncertainty it faces makes it difficult for investors and 
producers to accurately foresee the future direction of the market. In addition to 
energy markets, the impact of climate policy uncertainty on agricultural markets 
cannot be ignored. Agricultural production is inherently dependent on climatic 
conditions, and extreme weather, climate change and natural disasters pose a di-
rect threat to crop growth. At the same time, changes in climate policy may further 
exacerbate the volatility of agricultural markets by altering agricultural produc-
tion methods, land-use policies and the global trade environment. In recent years, 
with the acceleration of global agricultural production and financialization, the 
volatility of agricultural commodity prices has gradually increased, and climate 
policy uncertainty has become an important factor affecting agricultural com-
modity markets. The impacts of climate change on agricultural and energy mar-
kets are global, and the implementation of climate policies has implications on an 
international scale. For example, global emission reduction targets, carbon market 
mechanisms and renewable energy policies are all relevant to energy and agricul-
tural markets. Therefore, studying the impact of climate policy uncertainty in 
these two markets can provide a theoretical basis and practical guidance for the 
formulation of global climate policy and the coping strategies of countries. 

In order to reduce carbon emissions, the traditional energy sector faces huge 
losses, and the lack of preparedness in the new energy sector may lead to the trans-
mission of these risks to financial institutions, thus triggering systemic financial 
shocks (Stroebel & Wurgler, 2021; Battiston & Martinez-Jaramillo, 2018). The im-
pact of climate policy uncertainty on commodity markets is not only manifested 
in increased short-term market volatility, but also has important implications for 
market expectations and investment decisions in the medium to long term. In 
particular, the impact of climate policy uncertainty is particularly significant in 
commodity markets such as energy, agricultural products and metals. Specifically, 
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climate policy uncertainty affects price volatility in commodity markets through 
a number of channels, including changes in policy expectations, the implementa-
tion of governments’ climate commitments, and market expectations of future 
policy changes. Together, these factors contribute to a more complex and volatile 
environment for commodity markets. Therefore, an in-depth study of the impact 
of climate policy uncertainty on the volatility of commodity markets has both sig-
nificant academic value and far-reaching implications for investment decisions 
and policymaking in practice. 

In recent years, as global initiatives toward carbon neutrality have accelerated, 
the influence of climate factors on renewable energy markets has become more 
apparent. According to Sailor et al. (2008), climate change can substantially re-
duce wind energy output in summer-by as much as 40%-thereby affecting supply-
demand dynamics in the U.S. renewable sector. Similarly, Auffhammer et al. 
(2017) highlighted that climate-related disruptions in the power industry could 
account for a significant share of worldwide economic losses in the energy do-
main. Perera et al. (2020) further demonstrated that extreme weather and climate-
driven shifts in weather patterns undermine both energy consumption patterns 
and the robustness of energy infrastructure. Gernaat et al. (2021) used simulation 
models to show that renewable energy systems heavily reliant on climatic condi-
tions are particularly susceptible to future climate variability. Additionally, Bouri 
et al. (2022) identified climate policy uncertainty (CPU) as a key factor differenti-
ating the market performance of green versus traditional energy stocks. Using 
SVAR modeling, Adeniyi Adeosun et al. (2023) found that rising uncertainty in 
U.S. climate policies does not significantly affect carbon emissions. (Ren et al., 
2022), drawing on data from publicly listed Chinese firms, found that CPU can 
reduce firms’ total factor productivity by constraining access to financial re-
sources. Moreover, several studies (e.g., Diaz et al., 2023; Bartram et al., 2022) 
point out that abrupt shifts in climate policies tend to trigger notable volatility in 
energy firm stock prices. 

In terms of direct linkages between agricultural commodities and energy mar-
kets, climate policy significantly affects agricultural commodity prices through the 
biofuel demand channel, e.g., an increase in corn futures price volatility with a 
higher percentage of biofuel blending in the U.S. Renewable Energy Standard 
(RES). Meanwhile, Kang et al. (2024) find that corn ethanol price volatility affects 
crude oil futures yields through the fuel substitution effect, suggesting bidirec-
tional spillovers between agricultural and energy markets. In terms of policy 
transmission mechanisms, Edame et al. (2011) studied the linkage effects of the 
EU carbon border adjustment mechanism on agricultural and energy markets, 
and found that carbon price increases would have a one-way spillover effect on 
wheat prices through fertilizer cost transmission, while energy price volatility af-
fects cotton planting yields through irrigation costs. In terms of the direct linkage 
between agricultural products and energy markets (Zhang, 2022), based on pro-
vincial-level panel data in China, found that the carbon trading pilot policy has a 
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significant impact on wheat and corn prices through the agricultural production 
cost channel. Li et al. (2023) investigated the impact of photovoltaic (PV) subsidy 
policy on cotton cultivation, and found that agro-photovoltaic (A-PV) projects 
have a significant impact on cotton cultivation in the short term by lowering the 
irrigation tariffs to improve cotton planting returns, but may suppress soybean 
supply elasticity in the long run due to increased land competition. In terms of the 
policy transmission mechanism, C. Chen et al. (2021) analyzed the impact of the 
national carbon market on the power sector, and pointed out that carbon quota 
trading significantly increased the cost pressure on coal-fired power plants, but 
there was a lagged effect in the promotion of PV power generation, and this ad-
justment of the energy structure further affected the energy use pattern of agricul-
tural machinery. In addition, Wang et al. (2023) explored the linkages between 
agricultural products and energy markets under extreme weather events and 
found that a surge in energy consumption for agricultural irrigation during 
drought significantly pushes up electricity demand, which in turn exacerbates the 
transmission effect of energy price volatility on the cost of agricultural products. 

In the energy market, Acemoglu and Rafey (2023) examine the differential im-
pact of carbon tax policies on coal-fired power plants versus photovoltaic power 
generation, but do not explore their spillover effects on agricultural markets. In 
terms of agricultural markets, Searchinger et al. (2008) show that biofuel policy 
significantly affects corn prices through the demand channel, but do not analyze 
its reverse transmission to energy markets. In terms of financial markets, Chen et 
al. (2023) explored the impact of carbon markets on stock indices, but did not 
address the linkages in agricultural markets. F. Zhang et al., (2022) analyzed the 
impact of carbon trading pilot policies on wheat and corn prices based on Chinese 
provincial panel data, but did not explore their international spillover effects. 
Zhong and Pei (2022) used to study the impact of the EU carbon border adjust-
ment mechanism on wheat prices, but did not consider the time-varying character 
of the policy effect. 

The above study provides a valuable perspective for understanding the linkages 
between climate policy uncertainty and agricultural and energy markets, and the 
study could be further extended to consider the impacts of additional climate pol-
icy instruments (e.g., carbon tax, carbon quota trading, etc.) on the linkages be-
tween agricultural and energy markets, especially in the context of the gradual 
adjustment of the global climate policy framework. In addition, given the time-
lag effect of policy uncertainty, more sophisticated dynamic modeling approaches 
should also be considered to more accurately capture the long-term impact of pol-
icy changes on markets. 

2. Methodology 
2.1. TVP-SV-VAR Model 

The time-varying parameter vector autoregressive model (TVP-SV-VAR) used in 
this paper evolved from the structural vector autoregressive model (SVAR). The 
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main difference with the SVAR model is that in the modeling assumptions, there 
is no assumption of homoskedasticity in the TVP-SV-VAR model, which is more 
in line with reality, and it assumes that the coefficient matrices and the covariance 
matrices change in real time, which is better able to capture the relationships and 
characteristics of the variables in the context of different market sentiments, 
avoiding undue smoothing, and is conducive to the delineation of the influence 
relationships between the variables and the This is conducive to characterizing the 
influence of variables and their nonlinear features. These features also make the 
model suitable for measuring the time-varying relationship between climate pol-
icy uncertainty and commodity prices. 

Since the TVP-SV-VAR model is based on the SVAR model, the structural VAR 
model is constructed first: 

 1 1 2 2 , 1, 2, , ,t t t s t s tAy F y F y F y t s s nµ− − −= + + + + = + +   (1) 

where s  is the number of lags; ty  is an observable variable of order 1k × . 

1, , , sA F F  are parameter matrices of k k× ; tu  is used to measure structural 
shocks and ( )~ 0,t tu N Σ . 

Assuming that structural shocks obey recursive identification, matrix A  is as-
sumed to be a lower triangular matrix of order k k× , which can be obtained by 
Cholesky decomposition and serves to better identify the economic structure of 
the model parameters in the form of equation (2): 

 21
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Transform equation (2) by shifting the terms and multiplying both sides of the 
equation by 1A−  to obtain equation (3): 

 1
1 1t t s t s ty B y B y A ε−

− −= + + + Σ  (3) 

where 1
i iB A F−= , 1, ,i s=  ; ( )~ 0,t kN Iε ; Σ  is the standard error matrix 

and is a diagonal matrix, which is structured as in equation (4): 
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In equation (4), σ  is the standard deviation of the structural shock; the model 
transforms to equation (5) by stacking the row vector elements of the lag coeffi-
cient matrix iB  to form a column vector of order 2 1k s× , β , and setting 

( )1, ,t k t t kX I y y− −′ ′= ⊗  , ⊗  to be the Kronecker product: 

 1
t t t ty X Aβ ε−= + Σ  (5) 

where s  is the model lag order and t is the time identity. All parameters in equa-
tion (5) are time-varying, and if we assume that tβ , and tΣ  in the model are 
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time-varying variables, we can get TVP-SV-VAR model as equation (6):  

 1 , 1, 2, , ,t t t t t ty X A t s s nβ ε−= + Σ = + +   (6) 

In equation (6), tβ  is the vector of time-varying coefficients, tA  is the time-

varying parameter matrix, and tΣ  is the covariance matrix of the stochastic per-

turbation term tε . ( )21 31 41 , 1, , , ,t k ka a a a a −
′=   denotes the stacked vector of 

lower triangular elements of tA , where ( )2 expjt jthσ = , the stochastic volatility 

matrix ( )1 2, , , , 1, 2, , ; 1, 2, ,t t t kth h h h j k t s s n′= = = + +   , assumes that the 
parameters in the model obey mutually independent stochastic wandering pro-
cesses: 

 1 1 1, ,t t t t t at t t hta a h hββ β µ µ µ+ + += + = + = +  (7) 
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where 1, 2, ,t s s n= + +  , ( )1 0 0~ ,s N β ββ µ+ Σ , ( )1 0 0~ ,s a aa N µ+ Σ  and 
( )1 0 0~ ,s h hh N µ+ Σ . The model has the following assumptions, assuming that the 

parameters all obey first-order random walks and that the random shocks to the 
time-varying parameters are uncorrelated, and assuming that βΣ , aΣ , and hΣ  
are diagonal matrices in order to simplify the estimation of the model. The tradi-
tional estimation technique based on the likelihood function is no longer applica-
ble due to the stochastic volatility of the parameters in the model. 

This study uses a Markov chain Monte Carlo (MCMC) method based on Bayes-
ian inference to estimate the parameters. The MCMC simulation process is first 
constructed with samples originating from a multidimensional posterior distribu-
tion of the parameters. The sampling method then involves joint sampling using 
the residual parameter { } 1

n
t t s

β β
= +

= , { } 1

n
t t s

a a
= +

= , { } 1

n
t t s

h h
= +

= , followed by 
sampling of β  and a  using an analog filter. Finally, a state-space simulation is 
constructed that samples h  using multiple shifts. An important advantage of 
this approach is that it effectively reduces the number of parameters that need to 
be estimated by modeling the parameters as random walk processes rather than 
autoregressive processes. This change helps to simplify the model and potentially 
improve the estimated. 

2.2. Distributed Lag Nonlinear Model (DLNM) 

In this study, a distributed lag nonlinear model (DLNM) is introduced to analyze 
the nonlinear and lagged effects of climate policy uncertainty on the markets for 
bulk agricultural products and energy. The DLNM, which was initially widely 
used to study the effects of air pollution and temperature changes on health out-
comes, is also applicable to characterize the nonlinear and lagged effects among 
the variables. The main advantages of the DLNM are as follows: firstly, lagged 
effects, which, in many real-life situations, there may be a certain lag in the effect 
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of exposure factors on outcome events, and DLNM can estimate the effects of ex-
posure factors at different lagged time points, thus revealing the existence of 
lagged effects and their durations. The second is the nonlinear relationship; the 
relationship between exposure factors and outcome events may be nonlinear, and 
DLNM allows the introduction of nonlinear terms in the model to capture the 
nonlinear relationship between exposure factors and outcome events. Finally, the 
DLNM employs natural cubic spline smoothing of the exposure factors to capture 
the effects of the exposure factors over the entire time horizon. This approach 
eliminates potential confounders and makes the model results more plausible. In 
this study, the predictor variable is defined as the intensity of CPU in China. In 
contrast, the response variables are bulk agricultural and energy markets. The 
cross-basis matrix R  is generated through tensor-product interactions, allowing 
for a comprehensive exploration of the complex, delayed, and nonlinear relation-
ship between policy uncertainty and market spillovers. 

 ( ) ( )1 2, ,R r x t r x t= ⊗    (9) 

where ( )1 ,r x t  denotes the exposure response function based on natural cubic 
spline (node = 3, AIC optimization), and ( )2 ,r x t  is a polynomial distribution 
lag function with a maximum lag of L = 12 trading months. 

The model parameters are estimated using penalized likelihood estimation and 
the mathematical expression of DLNM is: 

 ( )
1 1

; ,
J K

j tj j k tk t
j k

Y s CPUα β γ µ ε
= =

= + + +∑ ∑  (10) 

where t  denotes time; tjx  is the independent variable, such as China CPU; tku  
is the control variable, which has a linear effect on Y . The function js  repre-
sents the nonlinear effect of the independent variable on Y  where it is defined 
by a smooth function, such as a spline function or a polynomial function. The goal 
is to transform Y  into a time series with several different coefficients in order to 
characterize its nonlinear effect. Using the smoothing function ( );ts CPU β

T
tz β= ⋅ , the transformation expression is as follows: 
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Here, tZ


 denotes the xn v× th row vector of the basis matrix Z  of dimen-
sion t , which is designed to allow the introduction of lagged effects into the 
model. It is assumed Y  to be affected by t lx − , where L  denotes the lag period. 
With this construction, we obtain the ( )1n L× + -dimensional matrix Q with the 
mathematical expression: 

 [ ]T, , , , ,t t t l t Lq CPU CPU CPU− −=


   (12) 

where L is the maximum lag and hence 1q CPU=


, which is the first column of 
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Q. Then, a new DLNM can be constructed and ( ) T;t ts CPU q Cη η=


, where C de-
notes ( )1 ll v+ ×  the matrix of basis variables obtained by applying a specific ba-
sis function to the lag vector l. For example, if C == 1, it is a moving average model. 
22 It is the vector of parameters that should be estimated, and the true coefficients 

Cβ η=


 . 
Compared with the classical VAR model, the DLNM has three key analytical 

advantages: 1) it is able to identify the threshold of the intensity of policy shocks; 
2) it quantifies the cumulative lagged effects and their confidence intervals; 3) it 
reveals the nonlinear coupling mechanism of “intensity-lag-market response” 
through the three-dimensional response surface. Thus, the DLNM describes the 
short- and long-term nonlinear lagged effects of China’s CPU on the bulk agricul-
tural and energy markets at different levels. 

The selection of the TVP-SV-VAR and DLNM models is based on their distinc-
tive strengths in capturing complex dynamic interactions. Compared to conven-
tional VAR or linear regression models, the TVP-SV-VAR model allows for time-
varying coefficients and stochastic volatility, offering a more flexible framework 
to track structural changes and evolving shock responses. The DLNM model, orig-
inally developed in epidemiological research, is particularly effective in analyzing 
nonlinear and delayed relationships. It accommodates interactions between policy 
uncertainty intensity and its temporal lag effects, which are crucial to understand-
ing commodity market responses. Nonetheless, both models entail computational 
intensity and require careful calibration. The robustness of results was ensured 
through Bayesian inference and sensitivity analyses. 

3. Data 

The climate policy uncertainty index used in this study was constructed by Ma 
et al. (2023) based on the news report data published by six mainstream Chi-
nese newspapers (People’s Daily, Guangming Daily, Economic Daily, Global 
Times, Science and Technology Daily, and China News Service) to construct a 
climate policy uncertainty index for China at the national, provincial, and city 
levels, which was constructed by integrating the MacBERT deep learning model 
with a The multi-level semantic characterization framework built by integrat-
ing the MacBERT deep learning model effectively overcomes the semantic bias 
and subjective presupposition problems of traditional keyword matching 
methods, and provides a quantitative benchmark with high confidence and va-
lidity for policy uncertainty research. Its explanatory validity has been tested 
multidimensionally in the fields of global environmental governance (Wu, 
2023) and low-carbon economic transition (Liu et al., 2022). China, as the 
world’s largest “breadbasket” for major agricultural commodities, chose to in-
clude futures prices for soybeans, corn, cotton, and wheat obtained from the 
Zhengzhou Commodity Exchange (ZCE) and the Dalian Commodity Exchange 
(DME) in China. These major agricultural commodities are closely related to 
climate policy, with corn and soybeans being the main feedstock for biofuels, 
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which are directly related to the oil industry (Jia et al., 2024). There are two 
motivations for using commodity futures prices in this paper, one factor is that 
the price dominance of the futures market determines the spot price of com-
modities (Ameur et al., 2022), and the other factor is that the volume of futures 
trading is much larger than the spot market. Energy data choose CSI New En-
ergy Index (NE) and China Daqing Crude Oil (OIL) as proxy variables for 
China’s energy market. The NE index selects 80 listed securities in the Shanghai 
and Shenzhen markets that are involved in the business of renewable energy 
production, new energy application, new energy storage, and new energy in-
teractive equipment as the index samples, which can well reflect the overall 
performance of China’s green energy market (Chen et al., 2022); and the price 
of China’s Daqing crude oil is closest to the international oil price, which is 
more representative (e.g. Chang et al., 2023; Cui & Zou, 2022). The data were 
selected from January 2016 to December 2022. 

The descriptive statistics of the selected variables are given in Table 1. The 
skewness of the data is positive, which implies that it is right skewed and its mean 
is greater than the median. Moreover, according to the skewness and kurtosis sta-
tistics, the climate policy uncertainty index is right-skewed and thick-tailed. The 
ADF test was first used to validate the smoothness test of the variables and found 
that all the variables are first-order smooth, and first-order logarithmic differenc-
ing was used in this paper for data processing. Figure 1 and Table 1 depict the 
trend of the selected variables. 
 

 

Figure 1. Time series diagram. 
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Table 1. Results of descriptive statistics. 

 Mean Std. Dev. Var. Skewness Kurtosis ADF test 

CPU 1.758 0.723 0.523 0.184 −0.814 0.005*** 

Corn 2026.203 449.127 201714.755 0.173 −1.023 0.005*** 

Cotton 16383.252 4064.359 16519016.334 1.337 2.323 0.005*** 

Soybean 3912.265 819.821 672106.350 0.043 −0.767 0.005*** 

Wheat 5496.091 942.328 887982.137 −0.297 0.803 0.005*** 

NE 1172.486 489.944 0.862 −0.026 214.872 0.005*** 

Oil 8.229 2.513 0.458 −0.213 577.787 0.005*** 

 

Analysis of the time series Figure 1 and descriptive statistics Table 1 shows that 
the volatility of climate policy uncertainty in China has increased since 2017, re-
flecting higher market uncertainty due to frequent policy adjustments. The new 
energy index has grown significantly since 2017, suggesting that policy support 
and changes in market demand have driven the rapid development of this sector. 
Meanwhile, crude oil prices have been more volatile, especially during the 2014-
2020 period, with sharp fluctuations in the global economy and supply chain lead-
ing to dramatic ups and downs in its price, reflecting the energy market’s high 
sensitivity to changes in policy and the global economy. China’s markets for major 
agricultural commodities (corn, soybeans, cotton, and wheat), on the other hand, 
have been relatively less volatile, especially wheat, whose price fluctuations have 
been smoother, likely related to the relative stability of domestic production and 
markets. Prices of maize and soybeans are more volatile, especially during 2019-
2020, which is closely related to changes in demand in the international market as 
well as the impacts of climate change. 

4. Empirical results 
4.1. Impact of Climate Policy Uncertainty on Bulk Agricultural  

Commodities 

From the equally spaced impulse responses of agricultural futures in Figure 2, it 
can be seen that in the face of the shock of climate policy uncertainty, all four 
agricultural products receive different impacts of shocks throughout the sample 
period. Among them, corn, cotton and soybean have less fluctuation and less im-
pact in the short-term, but wheat receives unstable and more volatile short-term 
shocks throughout the sample period. Corn faces the impact of climate policy un-
certainty, and the medium-term and long-term shocks are more volatile at partic-
ular points in time, for example, around 2017, the medium-term impact of CPU 
on corn futures is negative and then positive, on the contrary, the long-term im-
pact is positive and then negative, and both of them reach the peak of the whole 
sample period; before 2020, the medium-term impact has an obvious positive ef-
fect, and in 2022, the long-term impact and the medium-term impact successively 
In 2022, the long-term and medium-term shocks successively fluctuate signifi-
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cantly, but the short-term shocks are more stable and consistently positive 
throughout the sample period. Cotton and soybeans, in the face of shocks from 
climate policy uncertainty, likewise have large fluctuations in medium- and long-
run shocks at a few particular points in time, and, as with corn, the medium- and 
long-run restarts of CPU fluctuate dramatically around 2017, which may be at-
tributed to the establishment of the Paris Agreement, which is exactly the kind of 
global framework that has been developed to combat climate change, aiming at 
reducing greenhouse gas emissions, preventing a global temperatures from rising, 
and increase countries’ resilience to climate change. The impulse responses of 
wheat and the other three agricultural products are slightly different, firstly, the 
short-term shocks suffered are more volatile over the whole sample period, and 
the short-term shocks are still larger than the medium- and long-term shocks in 
2017, when the rest of the three agricultural products were particularly affected, 
which may be due to the fact that our country is a large producer of wheat but not 
a strong producer of wheat, and the share of our wheat production globally is de-
creasing year by year. Based on the above findings to understand that agricultural 
products receive different CPU impulse responses at different lags, the DLNM 
model is next used to observe the trend impacts received by the four agricultural 
products at different lags and different levels of CPU. 
 

 

Figure 2. CPU equal-interval impulse for agricultural markets. 
 

The nonlinear and lagged effects of CPU on corn futures were first investigated. 
As shown in Figure 3, CPU has a significant nonlinear and lagged effect on corn 
futures prices. The negative effect on corn futures prices only occurs at higher 
levels of CPU, and this negative effect may strengthen as CPU continues to in-
crease. However, when the lag is about 2 to 6 months, CPU growth has a progres-
sively significant positive effect on corn futures only at high CPU levels. Then, 
when the lag exceeds 6 months, this effect will again turn to become negative, 
before the negative effect steepens at a lag of about 10 months, and then turns 
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positive at more than 12 months thereafter. In terms of lagged effects, a rise in 
CPU will have a negative effect when the lag is about 1 month, and when the lag 
reaches about 12 months, a low level of CPU may have a significant negative effect 
on corn futures. However, as the level of CPU increases, the effect of CPU on corn 
futures prices gradually increases and turns positive. At higher lags, CPU is more 
likely to have a positive effect on corn futures prices, again at high CPU levels, 
again positive. 

The nonlinear and lagged effects of CPU on cotton futures were then investi-
gated. As shown in Figure 4, CPU has a significant nonlinear and lagged effect on 
cotton futures prices. The positive effect on cotton futures prices is only observed 
at higher levels of CPU, and this positive effect may strengthen as CPU continues 
to increase. However, when the lag is about 8 months, CPU growth has a negative 
effect on cotton futures prices at high CPU levels. Then, when the lag ranges from 
0 to 8 months, CPU at high levels shifts from a positive to a negative effect, and  
 

 
(a)                                  (b) 

Figure 3. Impacts of CPU on corn. 
 

 
(a)                                  (b) 

Figure 4. Impacts of CPU on cotton. 
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(a)                                  (b) 

Figure 5. Impacts of CPU on soybean. 
 

 
(a)                                  (b) 

Figure 6. Impacts of CPU on wheat. 
 

As shown in Figure 5, CPU has a significant nonlinear and lagged effect on 
soybean futures prices. Unlike corn futures and cotton futures, the effect of CPU 
on soybean futures prices is positive at both low and high levels of CPU, and like-
wise with increasing lags. The impact effect has also been increasing at increasing 
levels of CPU, while it is decreasing between lags of 0 and 2 months, but is in a 
constant state of growth thereafter. In terms of lagged effects, when the lag period 
is about 1 month, the increase in CPU will have a positive impact on soybean 
futures, and when the lag period reaches about 12 months, the increase in CPU is 
also likely to have a significant positive impact on soybean futures. And the impact 
effect is stronger when the lag period increases. At higher lags, CPU is more likely 
to have a positive effect on soybean futures prices, and likewise at high CPU levels. 
Finally, the nonlinear and lagged effects of CPU on wheat futures are examined. 
As shown in Figure 6, CPU has a significant nonlinear and lagged effect on wheat 
futures prices. The positive effect on wheat futures prices is only observed at 
higher levels of CPU and is likely to strengthen as CPU continues to increase. 
However, when the lag period is about 0 to 2 months, the increase in CPU has a 
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progressively significant negative effect on wheat futures at high CPU levels. A 
small increase then occurs, but continues to decline after 6 months and increases 
after 8 months. In terms of lagged effects, an increase in CPU will have a negative 
impact when the lag period is about 1 month, and when the lag period reaches 
about 12 months, the impact of CPU on the price of wheat futures gradually in-
creases as the level of CPU increases and remains positive. At higher lags, CPU is 
more likely to have a positive effect on wheat futures prices, again at high CPU 
levels. 

4.2. Impact of Climate Policy Uncertainty on Energy Markets 

As shown in Figure 7, the response of energy markets to shocks to climate policy 
uncertainty exhibits strong negative shocks, particularly in the 2016-2018 period, 
indicating that crude oil markets responded more sharply to climate policy uncer-
tainty during this period. The response curves in periods 1 and 6 are relatively 
small, suggesting that the market reacts more quickly to short-term shocks with 
greater volatility. The response is smoother up to period 12 (solid line), suggesting 
that the market gradually adapts to climate policy uncertainty over time, and the 
impact of the shocks diminishes. The response of the new energy market to cli-
mate policy uncertainty shocks exhibits larger negative shocks, especially in 2016 
and 2018, which may be related to major adjustments in new energy policy or 
other related events. The response curves are smaller in periods 1 and 6, but the 
response of the new energy market to climate policy uncertainty gradually inten-
sifies over time, especially in period 12, when the magnitude of the shock in-
creases. This trend suggests that new energy markets are more sensitive to shocks 
to climate policy uncertainty and that their impacts gradually increase over time. 
The sharp reaction of crude oil markets to climate policy uncertainty may be ex-
plained by the sensitivity of global energy demand and supply. As one of the major 
global energy sources, crude oil’s price and production are vulnerable to the direct 
impact of policy changes. 2016-2018 may have experienced changes in interna-
tional energy policies, climate change agreements, or adjustments in carbon emis-
sion policies, making crude oil markets more volatile. In the long term, the crude 
oil market has become more resilient to climate policies, and its response has grad-
ually smoothed out with the rise of new energy sources and the gradual adaptation 
of traditional energy markets to the green transition. New energy markets have a 
relatively larger response to climate policy uncertainty, which may be related to 
fluctuations in policy support and uncertainty in technology development. New 
energy markets are often strongly influenced by factors such as government sub-
sidies and green policies, and in particular, uncertainty about climate change-re-
lated policies may exacerbate their market volatility. In 2016 and 2018, there may 
have been key policy changes or major events that led to increased volatility in the 
new energy market. Over time, as new energy technologies mature and policies 
gradually stabilize, the market’s response tends to level off. Based on the above 
findings to understand that agri-energy prices receive different CPU impulse re-
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sponses at different lags, the DLNM model is next used to observe the trend im-
pacts received at different lags and different levels of CPU. 
 

 

Figure 7. CPU equal-interval impulse for energy markets. 
 

 
(a)                                  (b) 

Figure 8. Impacts of CPU on oil. 
 

 
(a)                                  (b) 

Figure 9. Impacts of CPU on NE. 
 

Figure 8 and Figure 9 present the DLNM results, analyzing the nonlinear and 
lagged effects of climate policy uncertainty on the two markets, crude oil and new 
energy, respectively. The left side of the figure shows the nonlinear and lagged 
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effects of the crude oil market on climate policy uncertainty, presenting a three-
dimensional surface plot, as well as the nonlinear effects at different lags. The right 
side of the figure shows a similar analysis for the new energy market, containing 
the nonlinear effects at different lags. The three-dimensional surface plots in Fig-
ure 8 and Figure 9 show the nonlinear impact of climate policy uncertainty on 
crude oil and new energy markets. The vertical axis represents the market re-
sponse, and the horizontal axis represents climate policy uncertainty as well as the 
lag period (number of months). The surface plot shows that when climate policy 
uncertainty changes, the market response shows a non-linear relationship, which 
implies that the impact of policy uncertainty on the market is not a simple linear 
change. The nonlinear response of the crude oil market to climate policy uncer-
tainty suggests that the volatility of crude oil prices or other market variables in-
creases significantly when the CPU changes significantly. In Figure 8 and Figure 
9, it can be seen that the impact of higher CPU levels (right part) on the market 
increases significantly. The nonlinear response of the new energy market shows a 
similar trend, i.e., the volatility and response of the new energy market increases 
under the influence of high levels of CPU. In chart (b) for each market, the non-
linear effects are shown at different lags (1 month and 12 months). Here one can 
see the variation in lag effects, especially the impact of different time horizons on 
market response. The crude oil market reacts more rapidly with shorter lags (1 
month), with the effect diminishing over time. In contrast, at longer lags (12 
months), the market response to climate policy uncertainty becomes more persis-
tent and slower. This suggests that crude oil markets may adjust quickly in the 
short term, but in the longer term the response to policy uncertainty may take 
longer to materialize. New energy markets show a similar trend, with more pro-
nounced impacts in the short term (1 month) and more sensitive responses, espe-
cially at low CPU levels. In a longer lag (12 months), the new energy market’s 
response gradually smoothed out, which may be related to the long-term stability 
of new energy policies or the market’s adaptability. The nonlinear effect of climate 
policy uncertainty on the market suggests that policy changes will not always af-
fect the market in the same way. Even the same level of climate policy uncertainty 
may have different levels of impact in different markets and over different time 
periods. This may be related to the sensitivity of markets to policy changes. Energy 
markets, especially crude oil markets, typically show a stronger reaction to sudden 
policy changes. The lag period analysis shows the process of market adaptation to 
climate policy uncertainty shocks. In the short term, market reactions are usually 
more dramatic, especially in crude oil and new energy markets. However, long-
term lagged effects reveal market adaptation, suggesting that markets gradually 
absorb the impact of policy changes after the initial shock. 

Short-term shocks to crude oil markets are usually large, reflecting the fact that 
crude oil, as an important component of the global economy, is very sensitive to 
factors such as policy changes and demand volatility. Over time, however, the 
market gradually adjusts and adapts, resulting in smaller long-term lagged effects. 
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The new energy market, on the other hand, has a different response pattern than 
crude oil. The new energy market usually relies on long-term policy support, such 
as green energy incentives and carbon emission policies, so while it reacts more 
in the short term, it is more adaptable in the long term. The lagged response of 
new energy markets to climate policy uncertainty is more muted. The analysis 
shows that there are significant differences in the responses of different markets 
to climate policy uncertainty, and that these responses change gradually over time. 
Crude oil markets are more volatile in the short term in response to policy uncer-
tainty, while new energy markets are more adaptive, with diminishing effects in 
the long term. 

5. Conclusion 

In this paper, we investigate the impact of climate policy uncertainty on China’s 
bulk agricultural and energy markets, focusing on nonlinear and lagged effects. 
Through the analysis of the DLNM model, it is found that the responses of differ-
ent agricultural markets to CPU have significant nonlinear and lag effects. Futures 
prices of corn, cotton, soybean and wheat all exhibit complex responses related to 
CPU levels and lags. The nonlinear relationship for corn and cotton futures is 
characterized by a negative effect at higher CPU levels that shifts to a positive ef-
fect at lags of two to six months, and then shifts to a negative effect again at lags 
of more than six months. Soybean futures, on the other hand, show a positive 
effect at all levels and lags, with the effect gradually increasing as the lag increases. 
Wheat futures also show a positive effect at high CPU levels, but a negative effect 
at lags of 0 to 2 months, after which the effect gradually turns positive. These re-
sults indicate that there are differences in the way different agricultural futures 
respond to climate policy uncertainty, with different lagged effects and nonlinear 
relationships, highlighting the importance of lagged effects and nonlinear analysis 
in the study of price volatility in agricultural markets. 

In the analysis of energy markets, the responses of crude oil and new energy 
markets to climate policy uncertainty also show obvious nonlinear and lag effects. 
Crude oil markets responded more to policy uncertainty shocks in the short term, 
especially during 2016-2018, when market volatility increased significantly. Over 
time, the market gradually adapted to climate policy uncertainty, and the long-
term lag effect diminished. The new energy market, on the other hand, reacted 
differently from the crude oil market, and although it reacted more to policy un-
certainty in the short term, it adapted more, with a gradual decrease in volatility 
in the long term. The results of this analysis reveal the adaptation process of en-
ergy markets, especially crude oil and new energy markets, to policy shocks, and 
emphasize the nonlinear impact of policy changes on markets as well as the lag 
effect. Policymakers and market participants should fully consider these complex 
impact mechanisms in order to better anticipate and respond to the market im-
pacts of climate policy uncertainty. 

To mitigate the complex and nonlinear impacts of CPU on commodity markets, 
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policymakers should prioritize the development of transparent, stable, and multi-
year climate strategies. Specific recommendations include: 1) Establishing a cen-
tralized CPU monitoring system to provide real-time risk indicators; 2) Imple-
menting phased and clearly communicated climate policies to reduce short-term 
uncertainty; 3) Expanding financial instruments such as climate risk insurance 
and futures markets tailored to agriculture and energy sectors; and 4) coordinat-
ing cross-sectoral tools like carbon pricing and biofuel subsidies to minimize un-
intended spillovers. These practical steps can help reduce systemic risks, stabilize 
investor expectations, and enhance the resilience of commodity markets. 

While this study provides valuable insights into the impact of climate policy 
uncertainty (CPU) on China’s energy and agricultural markets, the generalizabil-
ity of its findings to other countries with different policy environments, market 
structures, and commodity dependencies may be limited. Future research could 
benefit from comparative multi-country studies to explore potential heterogeneity 
in CPU responses. Additionally, this study centers on CPU as the primary explan-
atory variable, whereas other macroeconomic factors such as global supply-de-
mand dynamics, geopolitical risks, and technological advancements in clean en-
ergy were not explicitly incorporated. Future extensions may consider these co-
variates to provide a more holistic analysis of commodity price volatility. 
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