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Abstract 
Carbon price prediction is an important research interest. Deep learning has 
latterly realized triumph because of its mighty data processing competence. In 
this paper, a carbon price forecasting model of generative antagonistic net-
work (GAN) with long short-term memory network (LSTM) as the generator 
and one-dimensional convolutional neural network (Conv1d) as the discri-
minator is proposed. The generator inputs historical carbon price data and 
generates future carbon prices, while the discriminator is designed to diffe-
rentiate between the real carbon price and the generated carbon price. For ve-
rifying the validity of the proposed model, the daily trading price of the Eu-
ropean carbon market is selected for numerical simulation, and compared 
with other prediction models, the GAN proposed has good property in car-
bon price prediction. 
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1. Introduction 

The high carbon dioxide emissions cause global warming, appearing extreme 
weather and serious environmental pollution problems. In 1997, the Kyoto Proto-
col (Lin, 2017) traded the emission rights of some greenhouse gases represented 
by carbon dioxide as commodities to form carbon emission rights trading. In the 
Paris Agreement, many countries have pledged to become carbon neutrality by 
2050. Carbon emissions trading is the main way to achieve carbon neutrality, 
and this new trading model reduces carbon emissions through the independent 
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regulation of the market, which not only promotes economic progress but also 
has an effect on protecting environment. The European Union is the world’s 
largest and most full-fledged carbon trading market (Zhou, Yang, & Shu, 2017). 
The carbon price is the kernel of carbon markets, and it has come into play in 
governments, enterprises and long-term investors. Therefore, accurate predic-
tion of carbon price is a pivotal matter in the area of carbon market. 

In recent years, generative adversarial networks (GAN) have solved the matter 
of sample shortage, and this model has been used to image processing (Zhang & 
Zhao, 2021), computer vision (Wang, She, & Ward, 2021), speech and natural 
language processing (Beguš, 2021), financial time series modeling (Takahashi, 
Chen, & Tanaka-Ishii, 2019), etc. GAN improves the accuracy of prediction 
through the game between generator and discriminator. In energy prediction 
(Bendaoud, Farah, & Ahmed, 2021), stock price prediction (Zhang, Zhong, 
Dong, Wang, & Wang, 2019) and traffic flow prediction (Zhang, Wu, Shen, 
Chen, Wang, Zhou et al., 2021) respect, many scholars have conducted some 
research using GAN, but it has not been used to the field of carbon price pre-
diction. 

In the light of the above analysis, the purpose of this paper is to use GAN to 
predict carbon prices, and verify whether the antagonism of generator and dis-
criminator can help enhance the prediction accuracy of carbon price. It also in-
cludes a comparison between Support Vector Machine Regression (SVR), BP 
neural networks, Extreme Learning Machines (ELM), and LSTM with primitive 
GAN and Wasser-stein GAN with Gradient Penalty (WGAN-GP) models. The 
main contributions of this article are as follows: 
• This paper comes up with a carbon price prediction model (WGAN-GP) us-

ing GAN with LSTM as the generator and Conv1d as the discriminator, 
proving the antagonism between the generator and the discriminator of the 
GAN can enhance the precision of prediction of the carbon price. 

• WGAN-GP which introduces Wasser-stein distance and uses the gradient 
norm of the penalty discriminator replacing the Lipshitz constraint, success-
fully avoids the problems of GAN gradient disappearance, instability and 
model collapse, and enhances precision of prediction of carbon price. 

• In the European carbon market, WGAN-GP is compared with SVR, BP, 
ELM, LSTM and the original GAN to highlight the high predictive accuracy. 

2. Related Works 

Traditional statistical and econometric models, such as ARIMA (Zhu, Cheval-
lier, Zhu, & Chevallier, 2013) and GARCH (Byun & Cho, 2013), use historical 
data for linear regression, which has a good short-term prediction on carbon 
prices, but a large error in medium and long-term predictions. Although statis-
tical models can availably capture the fluctuations of carbon prices over time, the 
non-linear and non-stationary processing power of carbon price sequences is 
poor. Machine learning is an important means of non-linear data. The machine 
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learning model can extract non-linear features of the carbon price, such as BP 
(Sun & Huang, 2020), ELM (Sun & Zhang, 2018; Xu, Wang, Jiang, & Yang, 
2020), LSTM (Huang, Dai, Wang, & Zhou, 2021). But such models often contain 
more arguments, resulting in over fitting. Considering that there are linear and 
non-linear features of the carbon price, combine traditional statistical models 
fitting linear features and machine learning models fitting non-linear features, 
such as GARCH-LSTM (Huang, Dai, Wang, & Zhou, 2021), ARIMA-SVM (Lu, 
Du, & Cao, 2020), ARIMA-CNN-LSTM (Ji, Zou, He, & Zhu, 2019). It indicates 
that the combination model has a preferable predictive effect. Traditional statis-
tical and machine learning models have poor feature extraction ability on ac-
count of the non-stationary of carbon price sequences. Mode decomposition 
models can lessen the complexity and non-stationary of carbon price sequences, 
such as empirical mode decomposition (EMD) (Zhu, Han, Wang, Wu, Zhang & 
Wei, 2017), empirical wavelet transform (EWT) (Liu & Shen, 2020), Variational 
mode decomposition (VMD) (Chai, Zhang, & Zhang, 2021; Wang, Cheng, & Sun, 
2022), complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN) (Zhou, Huang, & Zhang, 2022; Zhao, Zhao, Li, Wu, & Guo, 2023; 
Yang, Wang, Zhao, Chen, & Li, 2023), which can effectively enhance the preci-
sion of prediction of the carbon price. 

Some scholars have used GAN for time-series prediction. Zhang et al. (2019) 
proposed a stock price prediction model of GAN with multi-layer perceptron 
(MLP) as the discriminator and LSTM as the generator, indicating that com-
pared with other prediction models, the proposed model has good property in 
stock price prediction. Zhang et al. (2021) proposed a mechanism on account of 
self-attention and GAN (SATP-GAN), consisting of a GAN module and a rein-
forcement learning (RL) module. In the GAN module, the self-attention layer is 
used to extract the features of the time-series data. In the RL module, the RL al-
gorithm is applied to adjust the parameters of the SATP-GAN model. It shows 
that the self-attention layer replacing the RNN captures the input data features, 
which can be accelerated by parallel computing. Huang et al. (2022) proposed a 
stock price prediction model of GAN with gating cycle unit (GRU) as the gene-
rator and convolutional neural network (CNN) as the discriminator, indicating 
that the antagonism between the generator and the discriminator of GAN helps 
to enhance the precision of prediction of stock price. 

3. Method 

GAN have been utilized to predict time-series, and the parameters of the model 
are updated by means of the game between the generator and the discriminator, 
for the sake of enhancing the precision of prediction of the series. This section 
details the specific architecture of GAN, which is a carbon price prediction mod-
el using GAN with LSTM as the generator and Conv1d as the discriminator. 
First, the input of the generator of GAN model is formed from three-dimensional 
data of batch size, input-step and features, and the output is formed from three- 
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dimensional data of batch size, output-step and features. The batch sizes are all 
set to 64, and feature is all 1. The generator inputs the historical carbon price for 
the previous 5 days to generate the carbon price for the 6th day, that is, in-
put-step is 5 and output-step is 1. The generator uses a layer of LSTM which the 
number of neurons is 128, and then adds a layer of Dense which the number of 
neurons is 1. Second, the discriminator included three Conv1d layers containing 
32, 64 and 128 neurons, respectively, and finally added two layer of Dense in-
cluding 256 and 1 neurons, respectively. In particular, in the discriminator, we 
combine the generated carbon price with the historical carbon price of the in-
put-step as the input of the discriminator, because the discriminator can extract 
the pertinence and time-series message between the generated carbon price and 
the historical carbon price, which improves the accuracy of the discriminator’s 
learning classification. Finally, the leaky rectified linear unit (ReLU) is regard as 
the activation function among all layers, while the original GAN output layer 
is the Sigmoid activation function and the output layer of WGAN-GP is the 
linear activation function. The output of the Sigmoid function is a scalar, 0 or 1, 
representing false or real data, while the output of linear function is a scalar 
score. The specific GAN architecture is as follows (Figure 1). 

3.1. GAN 

GAN is an unsupervised learning method for complex distributions. In general, 
a GAN is formed from two components, a generator (G) and a discriminator 
(D), which can be multifarious nonlinear mapping functions, for instance, ma-
chine learning models and deep neural networks. The purpose of the generator 
is to generate data that look as realistic as possible, and the goal of the discrimi-
nator is to differentiate real data or generate data. The discriminator outputs 0 
when input generated data and 1 when real data is input. The basic idea of GAN 
is a minimax problem on account of zero-sum non-cooperative countermea-
sures (Lin, Chen, Huang, & Jafari, 2021). In the game competition, both the ge-
nerator and the discriminator are constantly updated until the ideal point is 
reached that the discriminator cannot differentiate the two types of data, scilicet 
the data generated by the generator is similar to the primordial data, indicating 
that the GAN has completed the training. At this moment, the discriminator’s 
output is 0.5. In the original GAN, the loss function is on account of the KL-JS 
divergence, and during training, the GAN model will utilize cross-entropy loss 
to minimize the discrepancy between the two distributions. The loss function of 
the discriminator is: 

( ) ( )( )( )1

1 log log 1m i i
i D y D G x

m =
 − + −  ∑              (1) 

The loss function of the generator is: 

( )( )( )1

1 logm i
i D G x

m =
− ∑                     (2) 
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Figure 1. Architecture of GAN. 

 
where x is the input of the generator, namely the historical carbon price, which y 
is the real carbon price, and ( )iG x  is the carbon price generated by the gene-
rator. 

However, the GAN training process is slow and unstable, and often suffers 
from pattern crashes and discriminators winning matches (Yang, Wang, Zhao, 
Chen, & Li, 2023). Therefore, WGAN-GP, which introduces the Wasser-stein 
distance and proposes the norm of the gradient that penalizes the discriminator 
as an alternative to the Lipschitz constraint, can provide a smoother gradient for 
the generator, thus successfully avoiding the problems of gradient vanishing, in-
stability, and model collapse. In contrast to the primordial GAN, the WGAN-GP 
has no Sigmoid function and the output is a scalar score rather than a probabili-
ty. The loss function of the discriminant for WGAN-GP is: 

( ) ( )( ) ( )2

1 2

1 1i i
m i i
i y x

D y D G x E
m

γ
= ∼

 
− − + ∇ − 

 
∑             (3) 

The loss function of the WGAN-GP generator is: 

( )( )1

1 m i
i D G x

m =
− ∑                          (4) 

3.2. LSTM 

The LSTM network is a special recurrent neural network (RNN), which has been 
regarded as a powerful method for classification and prediction (Huang, Li, Tai, 
Chen, Liu, Shi, & Liu, 2022). Because of the issue of the long-range dependence 
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of the standard RNN, the LSTM uses the gating mechanism to control the cu-
mulative speed of information. Add selectively new information and forget se-
lectively previously accumulated information. The specific network structure is 
shown in Figure 2. LSTM introduces the input gate ti , the forget gate f  and 
the output gate to . tx  the actual carbon price at time t. The cell state tc  
representing long-term memory is introduced to transmit linear circular infor-
mation, which is outputted to the hidden layer th . It also introduces the candi-
date state tc  waiting to be stored into tc . LSTM computation is given as fol-
lows: 

( )1tanht c t c t cc W x U h b−= + +                      (5) 

( )1t i t i t ii W x U h bσ −= + +                        (6) 

( )1t f t f t ff W x U h bσ −= + +                      (7) 

( )1t o t o t oo W x U h bσ −= + +                       (8) 

1t t t t tc f c i c−= ⋅ + ⋅                           (9) 

( ), tanht t th o c=                          (10) 

where σ  is the sigmoid activation function, .W  and .U  is weight, and .b  is 
deviation. 

4. Experimental Test 

For verifying the effectiveness of the WGAN-GP model, 5 models are chosen for 
contrast, including one machine learning model, two feed-forward neural net-
works, one recurrent neural network, and two GAN prediction models, namely 
SVR, BP, ELM, LSTM, GAN, and WGAN-GP. 

4.1. Experimental Setting 

The experimental environment is a window 10 operating system, the processor 
is Intel(R) Core (TM) i5-7200U CPU @ 2.50GHz, the storage is 1.0 TB, and the 
programming language of the prediction model is python 3.9. The parameter 
settings of prediction models are displayed in Table 1. 

4.2. Evaluation Metrics 

So as to testify the predictive capacity of the WGAN-GP model, three error 
evaluation metrics are chosen to assess the predictive accuracy of the model, 
including mean absolute error (MAE), root mean square error (RMSE) and 
mean absolute percentage error (MAPE). The specific expressions are as fol-
lows: 

1

1 ˆMAE n
l ii y y

n =
= −∑                      (11) 

( )2
1

1 ˆRMSE l
n
i iy y

n =
= −∑                    (12) 
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Figure 2. LSTM cell. 
 
Table 1. Parameter settings of the model. 

Model Parameter settings 

SVR kernel = 'rbf', C = 100, gamma = 0.001 

BP 
string = {'logsig', 'purelin'}, func_str = 'trainlm', the number of neurons 
= [3, 2], learning rate = 0.001, epochs = 500 

ELM 
C = 10 (The inverse of the regular coefficient), the number of neurons  
= 5 

LSTM 
the number of neurons = 128, learning rate = 0.0001, batch_size = 64, 
epochs = 500 

GAN learning rate = 0.0001, batch_size = 64, epochs = 500 

WGAN-GP learning rate = 0.0001, batch_size = 64, epochs = 500 

 

1

ˆ1MAPE 100%n l i
i

i

y y
n y=

−
= ∗∑                   (13) 

MAE mirrors the global average deviation of the predicted value. RMAE re-
flects sample standard deviation between the predicted value and the true value, 
on behalf of the holistic dependability of the forecast. MAPE manifests the fit-
ting effect of the forecasting model, which is a dimensionless error evaluation 
metrics. The smaller the three evaluation metrics, the more accurate the predic-
tive results. 

Meanwhile, percentage of root mean squared error ( RMSEP ) is used to estimate 
the superiority between the model. The positive and negative of RMSEP  indicates 
the direction of performance improvement, the size of RMSEP  indicates the de-
gree of model improvement. If RMSEP  is greater than 0, then model B is better 
than Model A. If RMSEP  is less than 0, then model A is better than Model B. The 
higher the positive value, the better the performance of model B than that of 
model A. The specific expression is as follows: 

100%A B
RMSE

A

RMSE RMSEP
RMSE

−
= ∗                   (14) 

where ARMSE  represents RMSE of model A and BRMSE  represents RMSE of 
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model B. 

4.3. Experimental Data 

The data are got from Wind database (https://www.wind.com.cn/). In this paper, 
the daily trading price of EU allowance (EUA) was selected from January 2, 2013 
to December 30, 2022, with a total of 2581 samples for empirical analysis. Figure 
3 shows the daily trading price of EUA, from which it can be seen that the trad-
ing price of EUA is trending upward, with high uncertainty, non-linearity, dy-
namics and complexity. In this paper, the top 90% of the daily trading price of 
the EUA is used as the training set, and the bottom 10% is used as the test set, as 
shown in Table 2. 

The descriptive statistics of carbon prices in the EU carbon market are 
shown in Table 3, the minimum value is 2.7, the maximum value is 97.58, and 
the average value is 22.95. The maximum value, minimum value and mean 
value of carbon price are consistent with Figure 3. Judging the degree of fluc-
tuation from the coefficient of variation and standard deviation, the standard 
deviation of EUA is 24.66 and the coefficient of variation is 1.07, indicating the 
large degree of fluctuation of carbon price. As for the distribution pattern, ac-
cording to the skewness and kurtosis, it can be seen that the trading price of 
EUA is right-biased, manifesting that the carbon trading price is significantly 
non-normal. 

In addition, use the Augmented Dickey-Fuller (ADF) test and Brock-Dechert- 
Scheinkman (BDS) test to test the stationarity and non-linearity of the carbon 
price sequences, respectively. The results are revealed in Table 4 and Table 5. In 
Table 4, all p-values greater that the critical value of 0.1. In other words, carbon 
price of the EU exist unit roots, illustrating that there is non-stationary features. 
In Table 5, all p-values are less than the critical value of 0.1, which means that 
the carbon price of EUA have the non-linear features.  

4.4. Experimental Results and Analysis 

In this paper, the WGAN-GP model is used to forecast the carbon price of the 
European carbon market, and compare and analyze it with the five models men-
tioned above to attest the validity of our proposed prediction model. Moreover, 
the results of the WGAN-GP and 5 prediction models are analyzed. The numer-
ical results of RMSE, MAE and MAPE are presented to compare the predictive 
ability among different models, and also give the results of RMSEP  to compare 
the quality among different models. 

The actual carbon prices for the European carbon market and the prediction 
results of each model are shown in Figure 4, and the prediction results of the 
WGAN-GP model are closer to its true price. Table 6 shows the error analysis of 
the forecasting results of carbon prices by different models. To make the com-
parison clearer and more intuitive, Figure 5 shows the RMSE and MAE radar 
plots of the SVR, BP, ELM, LSTM, GAN and WGAN-GP prediction models for 
the European carbon market. Figure 6 shows the bar plot of the MAPE of the  
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Figure 3. The EUA trading price. 

 
Table 2. Basic information of the data. 

 Data size Date 
Sample set 2581 2013-01-02—2022-12-30 

Training set 2323 2013-01-02—2021-12-31 
Testing set 258 2022-01-03—2022-12-30 

 
Table 3. Descriptive statistics of carbon prices. 

Statistics Minimum Maximum Mean Median Std CV Skewness Kurtosis 

Value 2.70 97.58 22.95 8.58 24.66 1.07 1.48 1.02 

 
Table 4. Results of the ADF tests. 

Method t-Statistic P-value 
Intercept 0.2710 0.9768 

Intercept and trend −1.6993 0.7516 
None 1.2320 0.9449 

 
Table 5. Results of the BDS tests. 

Dimension BDS Statistic Std. Error z-Statistic Prob. 

2 0.2418 0.0021 112.8542 0.0000 

3 0.3653 0.0025 144.7492 0.0000 

4 0.4276 0.0022 191.5881 0.0000 

5 0.4582 0.0017 264.9954 0.0000 

6 0.4725 0.0012 380.8791 0.0000 

 
Table 6. Error analysis of carbon price prediction of different model. 

Model 
Evaluation  
indicators 

SVR BP ELM LSTM GAN WGAN-GP 

RMSE 5.091 4.612 3.922 3.682 3.360 3.040 
MAE 4.205 3.928 3.143 2.751 2.500 2.208 

MAPE 5.134% 4.457% 3.852% 3.472% 3.132% 2.776% 
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Figure 4. Prediction results of all models. 

 

 
Figure 5. Radar chart of RMSE for all models. 

 

 
Figure 6. Bar chart of MAPE for all models. 
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prediction model for the European carbon market. Table 7 shows the results of 
the RMSEP  among predictive models for the European carbon markets. 

In Table 6, all indicators of the GAN with LSTM as the generator and Conv1d 
as the discriminator are smaller than all indicators of the LSTM, indicating that 
the antagonism between the generator and the discriminator of the GAN en-
hances the prediction accuracy of carbon price. In EU carbon markets, the 
RMSE, MAE and MAPE of the WGAN-GP model are 3.0405, 2.208 and 2.776% 
respectively. The RMSE, MAE and MAPE of the GAN model are 3.360, 2.500 
and 3.132% respectively. The RMSE, MAE and MAPE of the LSTM model are 
3.682, 2.751 and 3.472% respectively. In addition, all indicators of WGAN-GP 
are smaller than all indicators of the original GAN, indicating that WGAN-GP 
successfully avoids the problems of gradient vanishing, instability, and model 
collapse. 

Figure 4 visually shows that the forecasting results of all model fluctuate with 
the actual carbon price. And the price predicted by the WGAN-GP model is 
closer to its true price. In Figure 5, the curve has the shape of a “snail shell”, and 
the results show that the RMSE and MAE of the prediction models gradually 
decrease counterclockwise from the SVR model. In Figure 6, the MAPE of the 
prediction models are reduced from left to right. 

In Table 7, the GAN model has 8.74% higher prediction ability than LSTM 
model. At the same time, the prediction ability of WGAN-GP is 9.52% higher 
than that of the GAN model and is 17.43% higher than that of the LSTM model. 
The results show that the generator and discriminator in the GAN model which 
update the parameters by mutual game can enhance the precision of prediction 
of carbon price. 

5. The Conclusions and Future Expectations 

In this work, the paper comes up with a carbon price prediction model (WGAN- 
GP) using GAN with LSTM as the generator and Conv1d as the discriminator. 
Numerical experiments were carried out based on the carbon price of the Euro-
pean carbon market, and the error evaluation indexes of six models were com-
pared: SVR, BP, ELM, LSTM, GAN and WGAN-GP. 

The results reveal the prediction ability of the GAN is 8.74% better than that 
of the LSTM, indicating that the antagonism between the generator and the dis-
criminator in GAN can enhance the prediction accuracy of carbon price. More-
over WGAN-GP has a 9.52% higher predictive power than GAN. The results 
show that WGAN-GP successfully avoids the problems of GAN gradient disap-
pearance, instability and model collapse, and enhances precision of prediction of 
carbon price. It states clearly that compared with other models, the WGAN-GP 
model has the highest predictive accuracy. The predictive power of the LSTM 
model is 6.11% better than that of the ELM model and 20.16% better than that of 
the BP model. It illustrates that the deep neural network model has better pre-
dictive performance for carbon price than the simple feed-forward neural net-
work model. The proposed model is important for predicting carbon price. 
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Table 7. Results of RMSEP . 

Model A 
Model B 

 BP ELM LSTM GAN 

BP 9.40%     

ELM 22.96% 14.96%    

LSTM 27.67% 20.16% 6.11%   

GAN 34.00% 27.14% 14.32% 8.74%  

WGAN-GP 40.28% 34.08% 22.48% 17.43% 9.52% 

 
In the future, a prediction model combining WGAN-GP with modal decom-

position and multi-scale analysis can be constructed. Furthermore, this article 
does not focus on the impact of hyperparameters on the model. So attention 
should be paid to the tuning of the hyperparameters of each layer in the GAN 
model. 
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