
Modern Economy, 2020, 11, 407-425 
https://www.scirp.org/journal/me 

ISSN Online: 2152-7261 
ISSN Print: 2152-7245 

 
 
 

Research on Pricing of Shanghai 50ETF Options 
Based on Fractal B-S Model and GARCH Model 

Wanting Hu 

School of Econmics, Jinan University, Guangzhou, China 

 
 
 

Abstract 
A reasonable option trading price will have certain guiding significance for 
option traders. Fractal B-S model and GARCH model are common pricing 
methods. This article explores which pricing method is more reasonable 
based on SSE 50ETF options. Due to the spikes and thick tails, conditional 
heteroscedasticity, and fractal characteristics of the SSE 50ETF option yield 
data, this paper performs stationary test, autocorrelation and partial autocor-
relation test, ARCH test, and Hurst test on the daily sample rate series of the 
target sample. The characteristics of the yield sequence are used to construct a 
GARCH model and predict the daily rate of volatility. Finally, the volatility 
predicted by the GARCH model is used as the parameter value in the fractal 
Brownian motion option pricing method to realize the option pricing. At the 
same time, this paper calculates the pricing results of the BS option pricing 
method based on historical volatility, and compares the two options pricing 
results with the closing price of the option transaction price. The results show 
that the prediction of the Shanghai Securities 50ETF option pricing method 
based on the GARCH fractal Brownian motion model. The accuracy is sig-
nificantly higher than the standard BS option pricing method. 
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1. Introduction 
1.1. Background and Significance of Topic Selection 

The full name of the SSE 50 ETF is the SSE 50 Trading Open-end Index Securi-
ties Investment Fund, which was established on December 30, 2014, and is the 
first ETF product in Mainland China. The SSE 50ETF is a completely passive 
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index fund. It completely replicates the constituent stocks of the SSE 50 Index 
and the weight of each constituent stock. Its investment income comes from the 
SSE 50 Index. On February 9, 2015, the Shanghai Stock Exchange launched the 
Shanghai Securities 50ETF as the underlying trading option, namely the Shang-
hai Securities 50ETF option. The launch of this option has not only enriched 
China’s financial derivative products, but also marked a key step in the devel-
opment of the option derivative market in China; it has also achieved a joint de-
velopment of the current market, improved the operating efficiency of the spot 
market, and further enhanced the ability to serve the real economy. Option 
pricing is one of the important contents of modern financial theory. Reasona-
bly pricing options are the prerequisite for options to play their important role 
in the financial market. It has important practical significance for China to 
further develop derivatives, avoid risks, and stabilize financial markets. How to 
effectively establish the SSE 50ETF option pricing model is also an important 
topic. 

Although the development of options in China started late, some scholars 
have conducted research on option pricing. Ji (2015) used the GARCH model 
and the B-S model to analyze the SSE 50ETF option price, and concluded that 
the GARCH model has a good fitting effect on small sample data. Liu et al. 
(2018) conducted European barrier option pricing research in a mixed-fraction 
Brownian motion environment, and derived the European barrier option call 
put-parity relationship, and then entered the knockout option relationship to 
introduce all types of barrier option pricing formulas. Cheng et al. (2018) consi-
dered the pricing of European options when paying continuous dividends under 
the sub-fractional Brownian motion environment, and estimated the parameters 
in the pricing model. The unbiasedness and strong convergence of the estima-
tors were discussed. It can be seen that both the fractal Brownian motion model 
and the B-S model are common method models for studying option pricing 
methods. In this paper, the Shanghai 50ETF is the research object. Based on the 
comparison between the pricing of the two models and historical actual condi-
tions, which model is selected as a more reasonable pricing model. 

1.2. Comparison between Traditional B-S Option Pricing Method  
and Fractal Brownian Motion Option Pricing Method 

The B-S option pricing method is proposed under the assumption that the un-
derlying asset prices are independent of each other and follow the geometric 
Brownian motion, and that the return on the underlying asset is independent 
and identically distributed and follows the normal distribution. However, in re-
cent years, a large number of scholars’ research on the capital market has shown 
that the price of financial assets does not follow the geometric Brownian motion, 
that is, the rate of return of financial assets does not follow a normal distribu-
tion, but a distribution of peaks and thick tails. It is not independent, but there is 
long-term correlation. Therefore, the B-S option pricing method has some limi-
tations in practical application. 
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The fractal Brownian motion option pricing method is the first time that Hu 
Y applied it to financial option pricing based on Mandelbrot B’s fractal Brow-
nian motion. The main difference between fractal Brownian motion and geome-
tric Brownian motion is that the increment in fractal Brownian motion is not 
independent, while the increment in geometric Brownian motion is indepen-
dent. Because the fractal Brownian motion option pricing method can well cha-
racterize the self-similarity, thick tail, and long memory of the underlying asset 
price, and does not require the underlying asset prices to be independent of each 
other, obey the geometric Brownian motion, and the underlying asset return rate 
to follow a normal distribution Therefore, it is more in line with the actual cha-
racteristics of financial option prices. Subsequently, many researchers used the 
fractal Brownian motion option pricing method to study the pricing problem of 
the stock option market under the assumption that the stock price volatility was 
constant. It was verified that the fractal Brownian motion option pricing method 
was superior to B-S and other option pricing methods. 

2. Literature Review 
2.1. Literature Review of Volatility Models at Home and Abroad 

There are many researches on the modeling and prediction methods of volatility. 
Robert Engle proposed an autoregressive conditional heteroscedasticity (ARCH) 
model in 1982 to build and predict conditional heteroscedasticity models. Early 
ARCH family models include ARCH-M models, TARCH and NARCH models. 
The ARCH-M model was first proposed by Engle, Robins, and Lilien in 1985. 
The ARCH model takes into account the variation of conditional variance over 
time to analyze volatility, and the analysis of volatility is inseparable from the 
risk. Engle et al. further took into consideration the important use of conditional 
variance as a risk measure that changes over time, linking risk and return, and 
proposed the ARCH-M model, which allows conditional heteroscedasticity to 
directly affect the mean of returns. The TARCH model considers the variance is 
affected by the sign of the disturbance term, and NARCH is an important non-
linear ARCH model. Both of them specifically address some of the defects of the 
linear ARCH model, which is more than the linear ARCH model advanced. 
However, in some cases, the ARCH model cannot express the information that 
the autocorrelation coefficient is slowly decaying, and in practice, the estimation 
of the completely free lag distribution often leads to the destruction of 
non-negative constraints. To solve the shortcomings of the ARCH model, Bol-
lerslev (1986) proposed the GARCH model in 1986. The variance of the random 
disturbance term is not only related to the variance of the lagging disturbance 
term, but also to the lagging disturbance term itself. After that, the EGARCH 
(Exponential GARCH) model was proposed by Nelson in 1991. The biggest ad-
vantage of the model is that it takes the form of the logarithm of conditional va-
riance, which allows the assumption of the sum of the squared residuals and the 
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conditional variance to be more advanced. Flexible to capture asymmetric con-
ditions (good news and bad news have asymmetric market volatility). China’s 
financial derivatives industry started late, and there are few innovative studies on 
volatility using the GARCH family, and more emphasis is placed on applica-
tions. Representative examples are Zheng and Huang (2010). The comparison of 
the prediction capabilities of the GARCH model and the implied volatility is 
mainly based on the research on the volatility of the Hong Kong Hang Seng In-
dex Options Market. There are more information and strong forecasting ability; 
but when forecasting for a long period of time, the implied volatility contains 
more information and strong forecasting ability. At the same time, the more ac-
tive the options market transactions, the more comprehensive the information it 
reflects, and the stronger the ability to predict implied volatility. In addition, 
Huang and Zhong (2007) also evaluated the volatility prediction of GARCH 
models. The research results show that the GARCH model is used to compre-
hensively estimate the rate of return and out-of-sample prediction. The use of 
M-Z regression and loss function shows that it performs very well and can per-
form better predictions. 

The study of volatility can reflect the market’s expectations of the degree of 
future volatility, thereby achieving the purpose of risk prevention and guiding 
transactions. For example, in 1993 the Chicago Board Options Exchange com-
piled the VIX Volatility Index based on the S & P Index. To this day, the volatil-
ity index has become the main reference indicator for measuring investor psy-
chology and market volatility. It uses stock index option prices to calculate ex-
pected short-term market volatility. The volatility index can not only quantify 
the price changes of derivatives and market risks, but also provides investment 
opportunities due to its volatile nature. The market can make full use of its cha-
racteristics to develop tradable volatility products for hedged trading and arbi-
trage trading. 

Research on volatility can give investors a better understanding of risk. At 
present, domestic stock index options are only listed and traded on the Shanghai 
Stock Exchange 50ETF options. The study of volatility can lay the foundation for 
the subsequent listing of more financial options. 

2.2. Literature Review on Options Pricing at Home and Abroad 

Since 1970, on financial option pricing, Black-Scholes (BS) option pricing, Hull- 
White option pricing, binary tree option pricing, and fractal Brownian motion 
option pricing have emerged, among which BS option pricing and fractal Brown 
Exercise option pricing are more common and easy-to-use methods. 

With the development of the foreign option market, the empirical research on 
option pricing has become more and more in-depth, mainly including the im-
provement of variables or parameters and the validation of models. The empiri-
cal start on the improvement of variables or parameters was the earliest. Levy 
and Byun (1987) tried to test the reliability of BS model pricing by deriving the 
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implied volatility of the price based on the confidence interval of the estimated 
variance; Corrado and Su (1998) through empirical research on the S & P 500 
stock index options, it is found that the return volatility is negatively correlated 
with changes in the stock index level, and the parameters of the stochastic vola-
tility option pricing model are estimated and predicted, and the practical appli-
cation value of the stochastic volatility option pricing model is revealed. Saurab-
ha and Tiwari (2007) in order to solve the volatility smile problem in the tradi-
tional BS option pricing model, two statistical variables of skewness and kurtosis 
are introduced. Based on the relevant data of S & P 500 options, the volatility is 
used. Estimating the prices of deep currency options and deep out-of-the-money 
options can produce prediction results that are closer to the market price of op-
tions; Andrés-Sánchez (2017) analyzes the option pricing model based on the 
basic theory of the fuzzy BS model, through the actual trading of Spanish stock 
index options Price fitting related parameters, fuzzy BS model from different an-
gles. The ability to predict the price of stock index options is evaluated. Regard-
ing the validity analysis of the model, scholars’ empirical evidence is based on 
different theoretical models. Bailey and Stulz (1989) performed dynamic analysis 
and empirical testing of stock index options based on stochastic interest rate op-
tion pricing models and stochastic volatility option pricing models, respectively; 
Yung and Zhang (2003) used S & P 500 option data to model GARCH option 
pricing models Multi-angle empirical analysis with the pricing effect of the tra-
ditional BS model, and found that the GARCH model performs better than the 
traditional BS model in sample evaluation and sample prediction; Kim and Lee 
(2013) proposed an estimate of volatility without arbitrage Rate model, using 
KOSPI 200 index options to conduct empirical analysis of three indicators: in-
tra-sample pricing, out-of-sample pricing and hedging error, verifying the effec-
tiveness of the model in option pricing; Oliver and Li (2015) from the equili-
brium interest rate and consumption Based on the perspective of capital asset 
pricing, based on the price data of European call options, a reasonable prediction 
of the price jump time in the jump-diffusion option pricing model is realized to 
clarify how the relevant parameters of the model affect the actual option pricing. 

Domestic research on the options market started late. With the further open-
ing of the financial market, the options trading market has become more and 
more active, and research on pricing models has become more common. 

Early scholars’ empirical research mainly focused on the pricing analysis of 
alternatives to domestic market options and the data simulation of foreign mar-
ket-related options. Song et al. (2013) by studying the game between transferable 
bond trading terms, introducing game options and selecting domestic converti-
ble bonds for empirical analysis, the double reflection wall backward stochastic 
pricing model has better price simulation and prediction effects; Liao et al. 
(2013) selected the Korean stock index option KOSPI200 as the research object, 
and used the fractional Brownian motion option pricing model to fit relevant 
actual data, and conducted an empirical test on the accuracy and effectiveness of 
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the model. Qin et al. (2019) based on the fractional BS model, taking into ac-
count the uncertainty of the financial market including randomness and ambi-
guity, using stochastic analysis, fractal theory, and fuzzy set theory to construct a 
long memory characteristic of financial markets under uncertainty European 
option pricing model. Wang et al. (2019) combined a Heston model and a 3/2 
model to establish a two-factor 4/2 stochastic volatility model, using S & P 500 
index option data for pricing analysis. 

2.3. Research Status of SSE 50ETF Option Pricing 

In 2015, the emergence of China’s first listed options on the Shanghai Stock Ex-
change 50 ETF options in the capital market has led to an explosive growth in 
domestic discussions and research on options pricing models. 

Gu and Dong (2015) used the Shanghai and Shenzhen 300 stock index futures 
and the Shanghai 50ETF options as samples to analyze the correlation coeffi-
cients and deviations of volatility of dispersion trading, and then analyze the 
trading risks of the option pricing model. Yu and Chen (2016) used the theoret-
ical framework of the B-S model to conduct an empirical analysis on the core 
parameters of the five SSE 50ETF options, including the underlying asset price, 
and made relevant recommendations for the supervisors from the perspective of 
contract design and risk control. At this stage, many scholars have conducted 
in-depth discussions on the pricing of SSE 50ETF options from multiple pers-
pectives. Gong and Zhuang (2016) combined the asymmetric real variable 
high-order moment model characterizing the high-order moment characteristics 
of asset prices and the Levy process to describe the pure jump phenomenon of 
price changes, and constructed the Levy-NGARCHSK model; this model fully 
reflects the financial. The asset price path continues to be biased and leveraged. 
Under the assumption that the innovation term obeys the non-Gaussian Levy 
distribution, the author compares the accuracy and efficiency of the numerical 
integral Cosine method and the Monte Carlo simulation pricing method to the 
pricing of SSE 50ETF options. Fang, Zhang, and Qiao (2017) conducted an em-
pirical comparative analysis of the performance of the B-S model and Monte 
Carlo simulation method on the pricing of SSE 50ETF options. The results show 
that the IGARCH model can better fit the volatility of the Shanghai Stock Ex-
change 50ETF than the traditional GARCH model. When the number of simula-
tions is 1000, the efficiency of the Monte Carlo method is consistently higher 
than that of the BSM model. The accuracy of other Monte Carlo models is also 
higher than the BSM model; both the BSM model and the Monte Carlo simula-
tion method can accurately and effectively simulate the price of the SSE 50ETF 
option. Lei and Wu (2017) used the Tobit model to analyze the impact of the 
underlying asset liquidity on the SSE 50ETF option price and explained the va-
lidity of the option pricing; Hao and Du (2017) fused the GARCH model and the 
generalized hyperbolic distribution based on their respective advantages, a 
GARCH-GH option pricing model based on the SSE 50ETF was established. The 
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results show that the pricing results of the GARCH-GH model are closer to the 
actual prices of the SSE 50ETF options than the BS model and the GARCH- 
Gaussian model. Wang and Yang (2016) used the high frequency data of the 
Shanghai 50ETF option to empirically analyze the pricing accuracy of a hybrid 
log-normal option pricing model with time-varying volatility, and found that the 
model was superior to the one with event volatility characteristics B-S improved 
model. Wu, Zhao, Li, & Ma (2019) made in-depth research on option pricing 
under time-varying risk aversion, and concluded that TVRA-SV option pricing 
model has better data fitting effect than traditional CRA-SV option pricing 
model, and can more fully characterize the volatility of the SSE 50ETF return 
under the objective and risk-neutral measure. Wu, Li, & Ma (2019) conducted 
an empirical test using a stochastic volatility model, showing that the random 
volatility model can obtain significantly more accurate and stable pricing results 
than the traditional constant volatility B-S model, both within and outside the 
sample. 

Based on previous studies, this article uses the GARCH model to fit and pre-
dict the return volatility of the Shanghai 50ETF; the predicted volatility is used 
as the input value to substitute the fractal Brownian motion option pricing 
method, and the traditional and improved B-S option pricing method is used 
to estimate. 

3. The Establishment of Theoretical Methods and Models 
3.1. Forecast Method of Yield Volatility 

When using the B-S model to price options, it is assumed that the volatility of 
asset prices is a constant value, which is not consistent with the actual financial 
market situation, and the volatility is time-varying. Therefore, scholars have 
proposed a series of stochastic volatility models to improve the B-S model, hop-
ing to better characterize the characteristics of stochastic volatility. In summary, 
there are two main types of stochastic volatility models. One is a continuous- 
time stochastic volatility model (SV model), and the other is a discrete-time sto-
chastic volatility model (GARCH model). In financial practice operations, 
transactions are performed discretely. The GARCH model describes discrete- 
time economic situations and better reflects the actual situation of stock price 
operations in practice. 

The GARCH model is an improvement of Bollerslev’s autoregressive condi-
tional heteroskedasticity (ARCH) model. It has been widely used in the financial 
field since its creation. If the random variable y can be expressed as (1), u is said 
to obey the q-order ARCH process. 

0 1 1 2 2t t t m t m ty x x x uα α α α− − −= + + + + +             (1) 

2 2 2 2
0 1 1 2 2 1t t t q t qu u uσ β β β β− − −= + + + +              (2) 

Among them, since 2tσ −  is the predicted value of the variance of the pre-
vious period based on the previous information, it is called the conditional va-
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riance. It can be seen from the above model that the variance of the noise at the 
present moment is the regression of the square of the noise value of the finite 
term in the past. On the one hand, it can be seen that the fluctuation of the noise 
is affected by the previous period to produce memorability. The noise variance 
at the past moments becomes larger and larger, and vice versa. In practical 
terms, the overall level of volatility in the stock market in the previous period 
will lead to a higher level of volatility in the current period, which forms the ag-
gregation and memory of the ARCH model. The probability density distribution 
is spiked and thick-tailed. 

Adding the lag of the residual squared to the conditional variance of Equation 
(2) constitutes a GARCH model, as shown in Equation (3): 

2 2 2 2 2 2
0 1 1 2 2 1 1 1t t t q t q t p t pu u uσ β β β β χ σ χ σ− − − − −= + + + + + + +        (3) 

Among them 2 2 2
1 1 2 2 1t t q t qu u uβ β β− − −+ + +  is an ARCH term,  

2 2
1 1t p t pχ σ χ σ− −+ +  is a GARCH term. Constraints are: 

0 1 1
1 1

0; , , 0; , , 0; 1
q p

q p i j
i j

x x xβ β β β
= =

> ⋅ ⋅ ⋅ ≥ ⋅ ⋅ ⋅ ≥ + <∑ ∑  

The GARCH model believes that the variance of the error term in a certain 
period depends not only on the variance of the error term with respect to time, 
but also on the past error term itself. The model takes into account the lag value 
of the disturbance term and the lag value of the conditional variance of the dis-
turbance term, which overcomes the ARCH model’s inability to reflect the per-
sistence of volatility, and is therefore widely used to describe the fluctuation of 
asset returns in financial markets. However, the GARCH model still does not 
solve the conditional heteroscedasticity in the early ARCH model, which de-
pends on the size of the random perturbation without considering the positive 
and negative. This article does not discuss in depth. 

A lot of empirical evidence shows that GARCH model has a good description 
of financial time series. Therefore, this paper uses the GARCH model to predict 
the volatility of SSE 50ETF returns. The prediction results are used as input val-
ues of the fractal Brownian motion model to price its options. 

3.2. Fractal Brownian Motion Option Pricing Method 

Geometric Brownian motion is an independent quantum process. It is a random 
process with continuous time parameters and continuous state space. However, 
the returns on financial assets are self-similar, thick-tailed, and long-memory. 
The assumption of random walk in financial markets is not valid. For example, 
some scholars found that the distribution of stock returns showed a “spike and 
thick tail”. And the characteristics of the accumulation and persistence of vola-
tility, Mandelbrot (1968) also confirmed the fact that there is a “spike and thick 
tail” in stock returns. Later many other scholars also revealed the fact that there 
is a long-range correlation in financial market returns. When studied the obser-
vations of financial time series, they found that there was a significant autocor-
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relation between these observations. Financial market data at different times 
show varying degrees of long memory and autocorrelation. 

Therefore, it is no longer suitable to use geometric Brownian motion to cha-
racterize these features. Mandelbrot (1968) proposed fractal Brownian motion. 
Fractal Brownian motion has long-term correlation, self-similarity, and correla-
tion between weights. These properties make it a very useful tool in mathemati-
cal finance. On this basis, Hu and Oksendal (2003) proposed the obedience 
process of asset price changes according to the proposed conditional expecta-
tions and proposed plans: 

( ) ( ) ( ) ( ) ( )d ( ) d d HS t t S t t t S t B Tµ σ= +              (4) 

Among them, S(t) is a random sequence of financial asset prices, 0 t T≤ ≤ ; 
μ(t) is the expected return rate of financial assets; ( )tσ  is the annualized in-
stant fluctuation rate of financial asset returns; ( )HB T  is Fractal Brownian 
motion with H index, where 0 < H < 1. When H = 0.5, ( )HB T  is a geometric 
Brownian motion, which exhibits random walk characteristics, and the incre-
ment is independent; when H > 0.5, ( )HB T  has a long-term dependence. 
There is a positive correlation between the increments; when 0 < H < 0.5, 

( )HB T  is anti-persistent, and the past increments are negatively correlated with 
the current increments. 

At present, domestic scholars have carried out a large number of empirical 
studies on the Shanghai and Shenzhen stock markets, and found that China’s 
capital market has significant fractal characteristics. For example, Zhuang and 
Huang (2003) studied the daily closing index of the Shanghai Composite Index 
and the Shenzhen Composite Index, and found that the Shanghai and Shenzhen 
stock market’s return distribution is not a normal distribution, with fractal cha-
racteristics, and the index time series has a long-range correlation; Xu and Xu 
(2014) studied the long-term dependence of Shanghai index returns and pointed 
out that the option pricing method under the fractional Brownian motion model 
is more stable than the option pricing method under the standard Brownian mo-
tion. 

Therefore, this paper uses the fractal Brownian motion to characterize the 
benefits of the Shanghai 50 ETF. We borrow from Ciprian Necula’s method, as-
suming that the market is complete and there is no arbitrage, and apply Wick 
points to introduce the B-S European option pricing formula under the fractal 
Brownian motion environment: 

( )( ) ( ) ( ) ( ) ( )1 2, , e r T tC S t t K S t N d K N d− −= −             (5) 

Among them, 

( ) ( ) ( )2 2 2

1 2 2

ln 0.5 H H

H H

S t
r T t T t

K
d

T t

σ

σ

 
+ − + − 

 =
−

,  

( ) ( ) ( )2 2 2

2 2 2

ln 0.5 H H

H H

S t
r T t T t

K
d

T t

σ

σ

 
+ − − − 

 =
−

, N () is the distribution function of 

the standard normal distribution. 
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4. Empirical Steps 
4.1. Sample Selection and Pretreatment 

This article uses the daily closing price of the Shanghai Stock Exchange 50ETF as 
the research object, and selects the 10 groups of daily closing prices of the 50ETF 
for the September 3500 code (10001218.SH) contract from January 25, 2018 to 
February 7, 2018 as the actual options Price, the bank’s one-year deposit bench-
mark interest rate is selected as the risk-free interest rate: r = 1.50%, the ma-
turity date is September 26, 2018, and the exercise price is k = 3.5000 (reason 
for selection: expired, subscription option). Forecasted Volatility This article 
selects the daily closing price of the Shanghai Stock Exchange 50ETF from 
January 4, 2016 to January 24, 2018 as the research object, for a total of 507 
trading days. 

When estimating the Hurst index H, first take the logarithmic return on the 
closing price of these 507 trading days. The processing formula is:  

( )1100 ln lnt t tR P P−= − . This is because transforming the raw data into loga-
rithmic returns will eliminate some of the unstable factors that may exist in the 
raw data. At the same time, before re-scaling the range (R/S) analysis of these 
507 data, they will first be logarithmic. The return rate, Rt, is tested for normali-
ty. Use Eviews to perform a normal test on the series of logarithmic returns. The 
test results are shown in Table 1. After the text edit has been completed, the pa-
per is ready for the template. Duplicate the template file by using the Save As 
command, and use the naming convention prescribed by your journal for the 
name of your paper. In this newly created file, highlight all of the contents and 
import your prepared text file. You are now ready to style your paper. 

It can be seen from Table 1 that the logarithmic return sequence of the 50ETF 
closing price is left-biased, and the kurtosis is greater than 3, indicating that it 
has the characteristics of “peak and thick tail”. Because the JB statistic is larger 
than its critical value and the probability is small, this logarithmic rate of return  
 
Table 1. Normality test of 50ETF logarithmic return series. 

Statistical index Statistics 

Mean 0.0537 

Median 0.0454 

Max 3.8811 

Minimum −6.2325 

Standard deviation 1.0253 

Skewness −1.1859 

Kurtosis 11.3662 

Jarque-Bera Statistics 1597.4620 

P-value 0.0000 

Number 507.0000 
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sequence rejects the null hypothesis, that is, it does not obey the normal distri-
bution hypothesis. Therefore, using the B-S model to price the options with the 
closing price of 50ETF as the underlying asset will inevitably cause deviations, 
and it is more reasonable to use fractal Brownian motion to describe price fluc-
tuations. 

4.2. Stationarity Test 

A test of the SSE 50ETF return rate stability shows that the ADF stationarity test 
statistic value of the return series is −25.70252, which is less than the critical 
value at the significance level of 1% −3.444346, and less than the significance 
level of 5% and the critical values of −2.867032 and −2.569757 at 10% show that 
the yield series are stationary time series (Table 2). 
 
Table 2. The results of stationarity test. 

Null Hypothesis: R has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic—based on SIC, maxlag = 18) 

 
t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic −25.70252 0.0000 

Test critical values: 

1% level −3.443046 
 

5% level −2.867032 
 

10% level −2.569757 
 

*MacKinnon (1996) one-sided p-values. 

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D (R) 
 

Method: Least Squares 
 

Sample (adjusted): 1/05/2016 1/24/2018 

Included observations: 506 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob. 

R (−1) −1.100279 0.042808 −25.70252 0.0000 

C 0.070805 0.043952 1.610968 0.1078 

R-squared 0.567241 Mean dependent var 0.011564 

Adjusted R-squared 0.566382 S.D. dependent var 1.499345 

S.E. of regression 0.987314 Akaike info. criterion 2.816288 

Sum squared resid 491.2939 Schwarz criterion 2.832994 

Log likelihood −710.5209 Hannan-Quinn criter. 2.82284 

F-statistic 660.6194 Durbin-Watson stat 1.991526 

Prob. (F-statistic) 0.0000 
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4.3. Autocorrelation and Partial Autocorrelation Test 

On the basis of the stability test, the autocorrelation and partial autocorrelation 
of the returns are further tested. Calculate the 36-order lag term correlation 
coefficient and partial autocorrelation coefficient of the yield time series residual 
and squared residual, respectively, and find that both of them have autocorrela-
tion and partial autocorrelation. Combined with the AIC principle, AR (2) has 
the best Fitting results (Table 3 and Figure 1). 

In order to further test whether the yield sequence has ARCH effect, the 
ARCH-LM test is performed on the residual sequence after AR (2) fitting. The 
results show that the P values are all 0, and the null hypothesis that the sequence 
has no ARCH effect is rejected. As shown in the table; the ARCH effect of the 
residual sequence is obvious, that is, the residual of the AR (2) model has auto-
regressive conditional heteroscedasticity (Table 4). 
 

 
Figure 1. Residual autocorrelation and partial autocorrelation of SSE 50ETF return time 
series. 
 
Table 3. The results of Autocorrelation and partial autocorrelation test. 

Variable Coefficient Std. Error t-Statistic Prob. 

AR (1) −0.094988 0.04494 −2.11364 0.035 

AR (2) 0.082117 0.0297 2.764861 0.0059 

SIGMASQ 1.034962 0.029898 34.61627 0.0000 

R-squared 0.013561 Mean dependent var 0.053676 

Adjusted R-squared 0.009646 S.D. dependent var 1.025311 

S.E. of regression 1.020354 Akaike info criterion 2.884124 

Sum squared resid 524.7259 Schwarz criterion 2.909145 

Log likelihood −728.1255 Hannan-Quinn criter. 2.893937 

Durbin-Watson stat 1.93839 
  

 
Table 4. The results of heteroskedasticity test. 

Heteroskedasticity Test: ARCH 

F-statistic 33.32055 Prob. F (3,500) 0.0000 

Obs * R-squared 83.97316 Prob. Chi-Square (3) 0.0000 
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4.4. Build AR (2)-GARCH (1, 1) Model 

In view of the above-mentioned sample data test, the return rate is a stationary 
series and there is a test result of the ARCH effect, the time series of the return 
rate meets the conditions for the construction of the GARCH model. This article 
establishes an AR (2)-GARCH (1, 1) model to characterize the volatility of the 
rate of return. The specific formula for model parameter estimation is as follows: 

1 20.090167 0.021066 0.004300t t t tr r r ε− −= + + +  
2 2 2

1 10.024159 0.023492 0.931664t t tσ ε σ− −= + +  

In the parameter estimation model, 

0 1 10.024159 0, 0.931664 0, 0.023492 0β β χ= > = > = >  

And meet the constraints of GARCH model construction, that is, 

1 1 0.931664 0.023492 0.955156 1β χ+ = + = <  

The autocorrelation and partial autocorrelation tests were performed on the 
residuals and residual squares after simulation by the AR (2)-GARCH (1, 1) 
model, and it was found that there was no autocorrelation and partial autocor-
relation. This paper performs an ARCH test on the simulated residuals and finds 
that the P-value in the ARCH test results of the residual sequence simulated by 
AR (2)-GARCH (1, 1) is not 0, indicating that the simulated residual sequence 
does not exist in ARCH effect. 

In summary, after processing by the GARCH (1, 1) model, various informa-
tion of the yield sequence is well described. Therefore, the GARCH model con-
structed in this paper is reasonable to characterize the volatility of returns (Table 
5). 
 
Table 5. The results of heteroskedasticity test and the GARCH model. 

Heteroskedasticity Test: ARCH 

F-statistic 0.110885 Prob. F (3,498) 0.9537 

Obs * R-squared 0.335102 Prob. Chi-Square (3) 0.9533 

Variable Coefficient Std. Error z-Statistic Prob. 

C 0.090167 0.038666 2.331941 0.0197 

AR (1) 0.021066 0.046412 0.453901 0.6499 

AR (2) 0.0043 0.047279 0.090947 0.9275 

Variance Equation 

C 0.024159 0.004306 5.610171 0.0000 

RESID (-1)^2 0.023492 0.009911 2.370151 0.0178 

GARCH (-1) 0.931664 0.009624 96.81061 0.0000 

R-squared −0.004682 Mean dependent var 0.064841 

Adjusted R-squared −0.008685 S.D. dependent var 0.992593 

S.E. of regression 0.996894 Akaike info criterion 2.494602 

Sum squared resid 498.8862 Schwarz criterion 2.544795 

Log likelihood −623.887 Hannan-Quinn criter. 2.514289 

Durbin-Watson stat 2.249845 
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4.5. Forecast of Volatility 

Based on the estimated AR (2)-GARCH (1, 1) model, this article uses January 24, 
2018 as the base date to predict the daily volatility of r’s future 10-day yield and 
then calculate the future of r/100 The 10-day daily volatility is shown in Table 6. 
Due to the fractal Brownian motion, the volatility used in the formula for price 
changes is annualized volatility. Therefore, this article converts the daily volatil-
ity in the next 10 days into annual volatility, and the number of trading days in 
2018 is 243 days (Figure 2). 

Annualized volatility Daily volatility Days traded per year= ×  

 

 
Figure 2. The trend of forecasted of variance on SSE 50ETF. 
 
Table 6. Forecasted SSE 50ETF yield volatility data for the next 10 days. 

Time 
r/100 Volatility 

in the next 10 days 
r/100 Annualized volatility 

in the next 10 days 

2018/1/25 0.008086555 0.222338132 

2018/1/26 0.008036847 0.220971433 

2018/1/29 0.007945389 0.218456817 

2018/1/30 0.00867912 0.238630578 

2018/1/31 0.008865426 0.243753020 

2018/2/1 0.008922636 0.245325997 

2018/2/2 0.008750858 0.240603001 

2018/2/5 0.008542176 0.234865325 

2018/2/6 0.008593186 0.236267855 

2018/2/7 0.009626747 0.264685392 
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4.6. Calculation of Hurst Index 

There are seven main methods for calculating Hurst index: Aggregated Variance 
method, R/S method, Period ogram method, Absolute Value method, residual 
Variance of residuals, Abry-Veitch method, Whittle estimator. 

This paper uses the R/S analysis method and matlab to calculate the Hurst in-
dex H = 0.6334 for a total of 507 data from January 4, 2016 to January 24, 2018. 

The specific method is: segment the yield sequence and divide it into A (taken 
the integer part of N/n) consecutive subsequences of length n (≥2). In order to 
estimate the Hurst exponent H, the length of the subsequence n is increased to 
the next larger factor until n = N/2, so as to obtain the {(R/S) n} sequence, which 
in this paper has reached the length of the yield sequence length. So far, the res-
caled range difference values can be obtained in this way. The two sets of res-
caled range differences n, (R/S) n take natural logarithms, establish a regression 
equation, and calculate the slope as the required Hurst index H.  

The Hurst index H calculated above is greater than 0.5, which indicates that 
the future trend of the SSE 50ETF is positively correlated with the past trend, 
that is, it is persistent and continuous, that is, long-term memory. This also 
shows that the market is not an effective market, but a fractal market. The vola-
tility of earnings is persistent, long-term memory and non-linear, and current 
events will affect the future market for a long time. Therefore, when making de-
cisions on the corresponding risk investment management and asset pricing, it 
should be based on the fractal market hypothesis and related methods. 

5. Empirical Results and Analysis 
5.1. Empirical Results 

This article selects 10 groups of daily closing prices of 50ETF for the September 
3500 code (10001218.SH) contract from January 25, 2018 to February 7, 2018 as 
the research object. Subsequently, the modified BS option pricing method com-
bined with the GARCH model and the standard BS option pricing method un-
der the fractal Brownian motion proposed in this paper were used to simulate 
the pricing of the SSE 50ETF to purchase September 3500 options, and then the 
two pricing results were respectively compared with the actual option transac-
tion price Perform comparative analysis. 

When using the standard BS option pricing method, the following formula is 
used to calculate the daily historical volatility of the SSE 50ETF return from 
January 4, 2016 to January 24, 2018, and the annualized volatility calculation 
formula is used to obtain this period. The annualized historical volatility is 
0.281629. 

( )
1

1
1

n

i
i

s R R
n =

= −
− ∑  

When using the improved B-S option pricing method combined with GARCH 
model under fractal Brownian motion, the option pricing formula uses: 
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( )( ) ( ) ( ) ( ) ( )1 2, , e r T tC S t t K S t N d K N d− −= −  
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1 2 2
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H H

S t
r T t T t
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σ

 
+ − + − 

 =
−
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( ) ( ) ( )2 2 2

2 2 2
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r T t T t

K
d

T t
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σ

 
+ − − − 

 =
−

, 

( )N ⋅  is the distribution function of the standard normal distribution, and 
the volatility uses the sequence values predicted by the GARCH model. 

The calculation results are shown in Table 7.  
Comparing the calculation results of standard B-S and improved B-S pricing, 

the results calculated by the improved B-S model are closer to the actual price of 
options; their average absolute error rate is also smaller. 

Based on the calculation results, the fitted images of theoretical prices and 
market prices in different models are drawn. Figure 3 can more intuitively show 
that the improved B-S model is better than the standard B-S model.  

5.2. Model Analysis 

Use the actual market price and the theoretical root mean square error (RMSE) 
to measure the pros and cons of the model. 

2
actual Theoretical

1
RMSE

i in

i

P P n
K S=

  −
=   

   
∑  

where S is the target market price and K is the execution price (Table 8). 
 
Table 7. Comparison of standard B-S and improved B-S pricing results. 

Date 
Actual 
price 

Standard B-S Improved B-S 

Option price Error rate Option price Error rate 

2018/1/25 0.12 0.169186299 40.99% 0.128781871 7.32% 

2018/1/26 0.1229 0.178211382 45.01% 0.134623817 9.54% 

2018/1/29 0.0927 0.157544229 69.95% 0.113674813 22.63% 

2018/1/30 0.0805 0.144597953 79.62% 0.12113983 50.48% 

2018/1/31 0.095 0.158903813 67.27% 0.139329606 46.66% 

2018/2/1 0.1008 0.167546765 66.22% 0.149361631 48.18% 

2018/2/2 0.1085 0.172595829 59.07% 0.14866564 37.02% 

2018/2/5 0.1233 0.187206804 51.83% 0.155827127 26.38% 

2018/2/6 0.1128 0.161228857 42.93% 0.133210184 18.09% 

2018/2/7 0.0875 0.132126905 51.00% 0.132608954 51.55% 

Mean absolute error rate - - 57.39% - 31.79% 
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Figure 3. Theoretical price based on Standard B-S model and improved B-S model and 
market price. 
 
Table 8. Precision comparison between standard B-S and improved B-S. 

Model Mean absolute error rate RMSE Improved accuracy over standard B-S 

Normal B-S 57.39% 0.0527 - 

Improved B-S 31.79% 0.0304 42.26% 

 
According to the calculation results, the average absolute error rate and RMSE 

of the improved B-S model are smaller than the results of the standard B-S mod-
el. Compared with the standard B-S, the improved accuracy of the improved B-S 
is calculated as follows: 

RMSE of improved B-S 0.03041 1 42.26%
RMSE of normal B-S 0.0527

− = − =  

It can be seen that the improved B-S model improves the accuracy of 42.26% 
compared to the standard B-S. 

6. Conclusion 

This article proposes a Shanghai Stock 50ETF option pricing method based on 
the GARCH model. The empirical results show that the SSE 50ETF exhibits 
spikes and thick tails, conditional heteroscedasticity, and fractal phenomena. 
Through the stationary test, it is found that the Shanghai 50ETF return series is a 
stationary time series. According to the autocorrelation and partial autocorrela-
tion tests, it is found that both of them have autocorrelation and partial auto-
correlation and the ARCH effect of the residual series is obvious. Therefore, the 
AR (2)-GARCH (1, 1) model can well describe the fluctuation of the return rate. 
The final empirical results show that the prediction accuracy of the Shanghai 
Securities 50ETF option pricing method based on the GARCH fractal Brownian 
motion model is significantly higher than the standard B-S option pricing me-
thod. 
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