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Abstract 
Previously, we showed that prophylactic addition of glucose to Harsha Lake 
water samples could inhibit cyanobacteria growth, at least for a short period 
of time. The current study tested cyanobacterial control with glucose for the 
entire Harsha Lake bloom season. Water samples (1000 ml) were collected 
weekly from Harsha Lake during the algal-bloom season starting June 9 and 
lasting until August 24, 2022. To each of two 7-liter polypropylene containers, 
500 ml of Harsha Lake water was added, and the containers were placed in a 
controlled environment chamber. To one container labeled “Treated,” 0.15 g 
of glucose was added, and nothing was added to the container labeled “Con-
trol.” After that, three 25 ml samples from each container were collected and 
used for 16S rRNA gene sequencing each week. Then 1000 ml of Harsha Lake 
water was newly collected each week, with 500 ml added to each container, 
along with the addition of 0.15 g glucose to the “Treated” container. Se-
quencing data were used to examine differences in the composition of bac-
terial communities between Treated and Control containers. Treatment with 
glucose altered the microbial communities by 1) reducing taxonomic diversi-
ty, 2) largely eliminating cyanobacterial taxa, and 3) increasing the relative 
abundance of subsets of non-cyanobacterial taxa (such as Proteobacteria and 
Actinobacteriota). These effects were observed across time despite weekly 
inputs derived directly from Lake water. The addition of glucose to a con-
tainer receiving weekly additions of Lake water suppressed the cyanobacterial 
populations during the entire summer bloom season. The glucose appears to 
stimulate the diversity of certain bacterial taxa at the expense of the cyano-
bacteria. 

How to cite this paper: Linz, D., Struew-
ing, I., Sienkiewicz, N., Steinman, A.D., 
Partridge, C.G., McIntosh, K., Allen, J., Lu, 
J. and Vesper, S. (2024) Periodic Addition 
of Glucose Suppressed Cyanobacterial 
Abundance in Additive Lake Water Sam-
ples during the Entire Bloom Season. Jour-
nal of Water Resource and Protection, 16, 
140-155. 
https://doi.org/10.4236/jwarp.2024.162009 
 
Received: December 22, 2023 
Accepted: February 20, 2024 
Published: February 23, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jwarp
https://doi.org/10.4236/jwarp.2024.162009
https://www.scirp.org/
https://doi.org/10.4236/jwarp.2024.162009
http://creativecommons.org/licenses/by/4.0/


D. Linz et al. 
 

 

DOI: 10.4236/jwarp.2024.162009 141 Journal of Water Resource and Protection 
 

Keywords 
Glucose, Cyanobacteria, 16S Amplicon Sequencing, Microbial Community 

 

1. Introduction 

Cyanobacterial blooms are increasing worldwide [1], threatening aquatic ecosys-
tems and drinking- and recreational-water safety [2] [3]. The long-term solution 
to the cyanobacterial bloom problem is the reduction of nutrient additions, espe-
cially forms of nitrogen and phosphorous, to the aquatic ecosystem. In the 
near-term, various methods and treatments have been investigated to control or 
reduce cyanobacterial blooms. These treatments include the use of aquatic plants 
to absorb the excess nutrients [4]. Biologically derived molecules have also been 
tested to control blooms [5] [6]. Algicidal bacteria [7], bacterial predation [8], viral 
infection [9], and fungal derived products [10] [11] have also been evaluated. 
Physical measures have also been evaluated, including coagulation/flocculation 
treatments [12] and photodegradation of the algal toxins [13]. Therefore, treat-
ment is still challenging despite the very few effective options, like toxic chemi-
cals.  

High concentrations of hydroxyurea were tested in the past to control Ana-
baena [14]. Chemicals more commonly used today to control blooms are hy-
drogen peroxide and copper salts [15] [16]. The chemicals can be dangerous to 
handle and toxic. Hydrogen peroxide is dangerous to handle in large quantities 
and is an indiscriminate oxidizer, killing many organisms besides the cyanobac-
teria [17]. Copper salts are lethal agents for many organisms and can bioaccu-
mulate in the ecosystem [18]. Recently, we demonstrated that the addition of 
glucose to freshwater samples could limit cyanobacterial growth and toxin pro-
duction [19]. However, the test was conducted for only two weeks due to the 
limits of culture conditions. 

In this study, we tested how the weekly addition of glucose to freshwater sam-
ples during the entire bloom season altered the cyanobacterial community. We 
demonstrate that the maintenance of glucose during the bloom season nearly 
eliminated cyanobacterial growth, even after the addition of freshly collected 
Lake water each week. 

2. Materials and Methods 
2.1. Study Site 

The William H. Harsha Lake (hereafter, Lake) is an engineered reservoir created 
in 1978 located in southeast Ohio, as previously described in detail [20]. Harsha 
Lake covers an area of 8.7 km2 and drains from a watershed of 890 km2, with 
64% of land used for agriculture and 26% comprised of forest cover [21]. The 
development of algal blooms in Harsha Lake has been studied by our team since 
2015 [20] [21] [22]. Water collected from Harsha Lake during the 2022 bloom 
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season was used for this study. Based on our experience in Harsha Lake studies, 
cyanobacterial populations start with N2-fixing heterocystous cyanobacteria in 
late May when N is low, and then transitions to non-N2-fixing Microcystis- and 
Planktothrix-dominated populations when N concentration is lifted after N2 
fixation [23]. Harsha Lake can be described as a moderately eutrophic lake.  

2.2. Collection of Harsha Lake Samples 

Harsha Lake water samples were collected weekly, starting June 9 until August 
24, 2022, using plastic water jugs, which were pre-rinsed using 5% hydrochloric 
acid and deionized water, to sample water from the surface (~0.5 m depth) at 2 
locations, as previously described [20]. Each week, the samples from each loca-
tion were combined to make a single 1000 ml composite sample.  

2.3. Study Design  

Two 7-liter polypropylene containers (8SFSPP, CAMBRO, Huntington Beach, 
CA) were used in this study. To each container was added 500 ml of the freshly 
collected Harsha Lake water. In addition, 0.15 g of glucose [D- (+) Glucose Sig-
maUltra, Sigma-Aldrich, St. Louis, MO] was added to the “Treated” container, 
but nothing was added to the “Control” container. Each container was covered 
with a transparent xerography sheet (Skillcraft, Greensboro, NC). The contain-
ers were mixed daily on a stir plate for 5 min during the study. To mimic the 
changing microbial populations in the Lake during the summer bloom season, 
fresh water samples (1000 ml) were collected each week from the two sampling 
locations, combined and mixed. Then, each week 500 ml was added to each of 
the two containers, just as was done initially. To maintain the glucose level in the 
Treated container, 0.15 g of glucose was also added each week.  

The containers were incubated in an environmental chamber (Perciv-
al/166LLVL) with the following growth conditions: the light intensity was 44.02 
µmol photons/m2/s (measured using a LICOR LI-1500) with a 16/8-hour light/ 
dark cycle at a constant temperature of 25˚C and ambient air-exchange. These 
conditions were not intended to reflect the daily outside environment of the 
Lake but to provide optimal conditions for plankton growth.  

2.4. Weekly Measurement of Physical, Chemical and Biological  
Parameters of the Lake Water  

EXO2 multi-parameter water quality sonde multiprobes (Yellow Springs In-
struments Inc., Yellow Springs, OH, USA) were used to measure temperature, 
pH, oxidation-reduction potential, specific conductance, chlorophyll fluores-
cence, phycocyanin fluorescence and turbidity at the water surface. Sensors were 
calibrated following manufacturer’s guidance. Calibration drift was corrected as 
described [24]. Departures from calibration are assessed by comparing the sen-
sor’s response in a standard solution to the known value of the standard solution 
following guidance regarding deviation limits and post-deployment corrections 
[24].  
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2.5. DNA Extraction and High-Throughput Sequencing 

Each week, three 25-ml samples were collected from each container for se-
quencing. Each sample was filtered through a Durapore polyvinylidene fluoride 
(PVDF) filter, with 0.45 μm pore size (MilliPore, Foster City, CA). Each filter 
was inserted into a 1.5-ml bead-beating tube (MP Biomedicals, LLC, Santa Ana, 
CA) and stored at −80˚C until extracted.  

Each bead-beating tube with filter was recovered from the −80˚C freezer, and 
600 µl of the cell lysis Buffer RLT (QIAGEN, Valencia, CA) was added to each 
tube to prepare for DNA extraction. Filters were mechanically disrupted, and 
cells lysed using a Mini-Beadbeater-16 (BioSpec Products, Inc., Bartlesville, OK) 
twice for 30 sec and then centrifuged at 10,000 g for 3 min. The supernatant was 
then transferred to a new sterile tube, and the DNA was purified using the 
All-Prep DNA/RNA mini QIAGEN Kit (QIAGEN, Fredrick, MD) following the 
manufacturer’s instructions. The extracted DNA was eluted in 200 µL RNase-free 
water (Sigma-Aldrich, St. Louis, MO) for sequencing. 

For amplicon sequencing, the v3-v4 hypervariable regions of the 16Sr RNA 
gene were targeted using primers described [25]. Library preparation and se-
quencing were performed, as described [26], with the following modifications. 
The first round of PCR was performed with 17 µL 1.1x Accuprime pfx supermix 
(Thermo-Fisher, Waltham, MA), 0.5 µL of each primer, and 2 µL of DNA. After 
gel confirmation of the amplification products, PCR products were cleaned with 
AMPure XP beads (Beckman Coulter, Brea, CA) and eluted in 10 mM Tris pH 
8.5. PCR products were normalized to 20 ng/µL, and an index PCR was per-
formed using Accuprime pfx supermix and Nextera indexes. The index PCR 
product was cleaned using AMPure XP beads and eluted in 10 mM Tris pH 8.5. 
Samples were normalized to a concentration of 4 nM and combined to make the 
final library. The library was sequenced using a 600 cycle V3 MiSeq sequencing 
kit (# MS-102-3003, Illumina, San Diego, CA, USA) according to the manufac-
turer’s protocol, using 2 × 300 paired-end sequencing.  

2.6. 16S Cloning and Quantitative Real-Time PCR Amplification 

A qPCR assay with forward CYAN108F and reverse primer CYAN377R were 
used to quantify the 16S rRNA gene of cyanobacteria [27]. The PCR was per-
formed in a BioRad Thermocycler (MJ Research, Bio-Rad Laboratories, USA). 
The PCR mixture contained 2 μL of DNA template solution (~100 ng DNA), 2 
μL of 10× PCR Buffer [100 mM Tris–HCl (pH 8.3), 500 mM KCl, 15 mM 
MgCl2], 0.5 μL of 2.5mM dNTP mixture, 0.25 μL (10 µM) of each primer, 2 µL 
of 1 mg/mL Bovine Serum Albumin (BSA) and 0.25 µL Taq DNA Polymerase 
(TaKaRa Biotechnology, Japan), and was adjusted to a final volume of 20 μL 
with Molecular Biology Grade sterile water (Corning, USA). The PCR was per-
formed as follows: 94˚C for 2 min, 30 cycles at 94˚C for 1 min, 60˚C for 1 min 
and 72˚C for 1 min, and a final extension step at 72˚C for 7 min. The PCR 
product was examined on 2% (w/v) agarose gels stained with GelStarTM Nucleic 
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Acid Gel Stain (LONZA, Rockland, ME, USA). The cloned PCR amplicon was 
further incorporated into InvitrogenTM pCRTM 4-TOPOTM Vector using the 
manufacture’s TOPO TA cloning kit to be used as the plasmid standard.  

Real-time PCR assays applied for the quantification of 16S rRNA gene of cya-
nobacteria with forward (CYAN108F) and reverse (CYAN377R) primers, as de-
scribed by [28]. SYBR® Green PCR was used on a QuantStudioTM 6 Flex System 
(Life Technologies Co.) to detect the abundance of the 16S rRNA gene in the 
Harsha Lake samples [19] [21] [22]. Each reaction (final volume: 20 μL) was 
composed of 10 μL of 2 × SYBR® Green Master Mix (Life Technologies Co.), 
0.25 μM of primers (Integrated DNA Technologies, Inc., Coralville, Iowa, USA), 
2 µL of 1 mg/mL BSA, and 2 μL of template DNA. The following thermal cycling 
conditions were applied: 40 cycles of 95˚C for 15 s, annealing temperatures of 
56˚C for 30 s, an extension step at 72˚C for 30 s, and a hold step at 72˚C for 5 
min, followed by melt curve analysis. The DNA was quantified against the series 
of standards constructed in-house. The standard series of 16S were generated 
from Microcystis DNA isolated from the cloning process mentioned above. Each 
Harsha Lake sample was added on a qPCR plate, which included a six-point 
standard curve with target gene concentrations ranging from 106 to 100 cop-
ies·μL−1, using a tenfold serial dilution. PCR inhibition was manually checked by 
measuring 10-fold diluted DNA extracts using qPCR, and datapoints where sig-
nificant PCR inhibition was detected were removed by following an established 
protocol [29]. 

2.7. Amplicon Processing 

Raw demultiplexed reads, with adapters removed, were then processed using the 
software suite QIIME 2 2021.4.0 [30]. Raw sequence data were quality filtered 
and denoised with DADA2 (via q2-dada2) [31]. Chimeras were removed using 
DADA2. Taxonomy was assigned to amplicon sequence variants (ASVs) based 
on the Silva 138 SSU reference using the q2-feature-classifier [32] and classi-
fy-sklearn nai ̈ve Bayes taxonomy classifier [33] [34]. Qiime2 artifacts were then 
moved to R v4.1.2 using the qiime2R package for further analysis [35]. All data 
have been deposited in the National Center for Biotechnology Information 
(NCBI) sequence read archive at accession number: PRJNA972685. 

2.8. Sequence Data Analysis 

Analysis of the final sequence dataset was performed in R v4.1.2 [36] using the 
packages phyloseq (v1.38.0) [37], vegan (v2.5.7) [38], and ggplot2 (v3.3.5) [39]. 
Samples were initially pruned of non-bacterial or unidentified taxa. Replicates 
for each sample were initially examined and, after determining consistency 
among replicates, merged for subsequent analysis. For certain components of 
our analysis, low abundance taxa were removed from the dataset. Bray-Curtis 
between-sample distances were computed. Distance matrices were then used to 
cluster samples using non-metric multidimensional scaling (NMDS). Analysis of 
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Similarities (ANOSIMs) on the distance matrices were used to test for statisti-
cally significant differences in the bacterial composition and diversity between 
sample groups in control versus glucose treatment containers [40]. A student’s 
t-test was used to test for differences in observed taxa between Treated and Con-
trol containers. Where appropriate, assumptions of normality and homoscedas-
ticity were validated visually (with Q-Q plots) and statistically (using Levene’s 
test for equality of variance) to determine appropriate tests. 

3. Results 
3.1. Changes in the Physical, Chemical and Biological Parameters  

of the Lake Water  

The changes in the physical, chemical and biological parameters of the Lake at 
the time of sampling each week are shown in Table 1. In general, nutrient con-
centrations were higher early in the summer and decreased thereafter. This is re-
flected in higher chlorophyll and phycocyanin levels early in the summer, which 
generally decreased thereafter. A similar trend was also observed in the concen-
tration of disolved oxygen and turbidity. The temperature and pH of the Lake 
water also declined over the summer.  
 

Table 1. Physical, chemical and biological parameters* measured each week in the study Lake during the summer of 2022 (ND = 
not determined). 

Date 
TNH4 µg 

N/L 
TNO2-3 µg 

N/L 
TNO2 

µg N/L 
TRP 

µg P/L 
BGA-PC 

RFU 
Chlor. 
RFU 

ODO 
%sat 

ORP 
mV 

Sp Cond. 
µS/cm 

Temp. 
˚C 

Turb. 
FNU 

pH 
SU 

6/8 12.1 37.7 14.6 58.8 ND ND ND ND ND ND ND ND 

6/15 ND ND 10.6 ND 9.9 1.0 224 80 264 29.3 14.0 9.8 

6/22 9.5 7.8 12.2 40.2 6.3 1.2 244 105.1 269 29.7 9.9 9.9 

6/29 ND ND ND ND 1.3 0.6 117 124.8 267 27.1 4.2 9.4 

7/6 8.7 44.5 ND 55.3 1.7 1.1 107 109.8 272 28.9 3.5 9.3 

7/13 10.9 8.7 10.7 47.3 1.2 1.0 126 132.8 272 29.2 2.7 9.3 

7/20 6.2 ND 6.6 22.9 0.8 0.7 122 101.8 274 29 1.6 9.2 

7/27 10.8 16.4 ND 37.8 ND ND ND ND ND ND ND ND 

8/3 4.1 11.5 9.7 49.6 0.6 0.8 114 131.7 278 28.3 −0.1 9.0 

8/10 ND ND ND ND 0.5 1.1 106 91.9 274 28.5 1.3 8.9 

8/17 4.4 8.9 8.2 50.3 0.3 0.7 91 114.7 275 27.1 0.2 8.7 

8/24 3.3 19.7 8.9 72.5 −0.1 0.1 99 149.3 272 27.8 −0.6 8.7 

*TNH4—total disolved amonium as µg nitrogen per liter; TNO2-3—total disolved nitrates/nitrites as µg nitrogen per liter; 
TNO2—total disolved nitrite as µg nitrogen per liter; TRP—total recoverable phosphorus; BGA-PC—blue-green algae as phyco-
cyanin, measured in relative fluorescence units; Chlor.—chlorophyll-a, as measured in relative fluorescence units; ODO—oxygen 
as disolved oxygen, reading corrected with temperature and local barometric pressure at the time of calibration; ORP—oxidation 
reduction potential in millivolts (mV); Sp. Cond.—specific conductivity measured in micro-Siemens per centimeter (µS/cm); 
Temp.—temperature in centigrade; Turb.—turbidity as measured by scattered light method using Formazin Nephelometric Unit 
(FNU) scale; pH—standard unit: pH is a logarithm (the negative of the logarithm of H+ activity), and as such, it has no units.  
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3.2. Changes in Community Structure in Treated and Control  
Containers  

To explore possible differences in general microbial community composition 
between Treated and Control containers and among dates (beta diversity), we 
performed ordination using non-metric multidimensional scaling (NMDS). 
Across sample dates, bacterial communities in the Treated and Control contain-
ers were significantly different in their composition (Bray-Curtis, ANOSIM; R = 
0.956, p < 0.001) (Figure 1). The single control sample from June 9th taken di-
rectly from Lake Harsha also deviated considerably from the remainder of our 
Control samples (Figure 1; light blue dot in lower left corner). We next ex-
amined distributions in raw observed taxa between our control samples and 
treated samples and found a significant reduction in overall taxa in our treated 
samples (Figure 2A).  

To investigate the specific taxa contained within the two experimental condi-
tions, we examined the relative abundance of taxa within both Control and 
Treated containers across sampling dates. First, we explored taxa at the phylum 
level (Figure 3). We found that, in line with our NMDS, the first control sample 
taken from Lake Harsha contained over 75% Cyanobacteria. Following this ini-
tial collection, the control sample’s community composition changed—con- 
taining larger portions of Proteobacteria while maintaining modest proportions 
of Cyanobacteria and other phyla. In contrast, treated samples contained <5% 
relative abundance of cyanobacteria while concomitantly increasing proportions 
of Proteobacteria, Bacteroidota, and Actinobacteriota.  

 

 

Figure 1. Beta diversity of microbial community composition in treated and control conditions 
across dates shown via non-metric multidimensional scaling (NMDS) plot. Category of treatment is 
indicated by shape and date is indicated by color. 
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Figure 2. Raw observed taxa in control and treatment conditions with date indicated by color (le-
gend on right applies to all panels). (A) All taxa. (B) Cyanobacteria. (C) Proteobacteria. Significance 
of Student’s T-test is shown above. NS = not significant. 

 

 
Figure 3. Relative abundance of bacterial phyla occurring above 5% (compared to all bacterial species) in each experimental con-
dition (control = C, treatment = T) at each time point sampled. Samples are grouped by date (top). 
 

We next examined the Cyanobacterial genera (Figure 4) and Proteobacterial 
families (Figure 5) across dates and treatments to understand compositional 
changes occurring within key phyla. Within the Cyanobacteria, our initial Lake 
Harsha sample (June 9th) was dominated by Dolichospermum, and after transi-
tioning into our experimental setup, these genera shifted, becoming dominated 
by Cyanobium spp. Importantly, Cyanobacteria were almost completely absent 
from the Treatment container samples (Figure 2B). Proteobacteria, in contrast, 
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Figure 4. Relative abundance of cyanobacterial genera occurring above 1% (compared to all bacterial species) in each experimen-
tal condition (control = C, treatment = T) at each time point sampled. Samples are grouped by date (top). 

 

 
Figure 5. Relative abundance of proteobacterial families occurring above 1% (compared to all bacterial species) in each experi-
mental condition (control = C, treatment = T) at each time point sampled. Samples are grouped by date (top). 

 
were largely similar in their family composition once they transitioned to our 
experimental setup; however, treating samples with glucose (Treated container) 
increased the overall relative abundance of Proteobacteria, specifically through 
the inflation of the family Caulobacteraceae. Other families shifted slightly in 
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composition, including slight decreases in the relative abundance of Sphingo-
monadaceae and an increase in Azospirillaceae and Devosiaceae. Further, pro-
portions of low abundance Proteobacterial families (<1% relative abundance) 
were largely reduced in the treated condition; a treatment effect that is in line 
with observations of total Proteobacterial taxa abundance after glucose treat-
ment (Figure 2C). 

4. Discussion 

The addition of glucose to Harsha Lake water in a container suppressed cyano-
bacteria during the entire bloom season. This data is consistent with our earlier 
findings [19]. However, a container experiment can never accurately replicate 
the dynamic conditions of a lake’s variable temperature, wave action, and light 
conditions. The study primarily reflects the conditions in the chamber. To try to 
mimic the changing conditions in the Lake, we added fresh water each week and 
measured some of its physical, chemical and biological parameters. The Lake 
water itself showed that nutrients and productivity were higher early in the 
summer but these led to decreases in disolved oxygen and turbidity later in the 
summer. In addition, the temperature and pH did not increase as expected.  

In the containers themselves, two trends were observed over the course of the 
experiment. First, the transition of water samples from Harsha Lake into the ex-
perimental containers in the controlled environmental chamber impacted the 
communities present within our samples in both the presence and absence of 
glucose treatment. Dolichospermum dominated the Harsha Lake water samples 
collected on June 9th. This cyanobacterium contains gas-filled vesicles, keeping 
the cells near a lake’s surface. This location is where the Lake water samples were 
initially collected. However, once the Lake water was in the containers in the en-
vironmental chamber, the Control container became dominated by the cyano-
bacterium Cyanobium. Cyanobium tends to be more competitive than other 
cyanobacteria at higher temperatures and low ratios of total nitrogen (TN) to 
total phosphorous (TP) [40]. The environmental chamber was set at a fixed 
temperature of 25˚C, which is higher than the water temperature of the Lake in 
June. Also, the ratio of TN to TP typically lowers in Harsha Lake water as the 
blooms season progresses [23], giving Cyanobium an advantage.  

The second observation is that glucose addition altered the microbial compo-
sition in the Treated compared to the Control container. When filtering the 
samples, our observations showed that the sampled water from the glu-
cose-treated container filtered much more slowly than the samples from the 
Control container. This is consistent with the denser, more opaque appearance 
of the treated-water samples, which could be described as a “bacterial bloom”. It 
appears that glucose can stimulate non-cyanobacterial growth. This effect was 
maintained throughout our experiment despite weekly spikes of additional fresh 
Lake water samples.  

The most obvious result of glucose addition was a dramatic reduction in over-
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all taxa richness, most notably by an almost complete absence of cyanobacteria. 
This effect, however, was accompanied by increases in proportional distributions 
of other phyla. Bacteriodota proliferated in early samples (June 23rd and July 6th), 
while Actinobacteriota and Proteobacteria proliferated later. Within the Proteo-
bacteria, Caulobacterales were more common in the Treated container than in 
the Control container. Piel et al. [41] found that when lake water was treated 
with hydrogen peroxide to control cyanobacteria, Proteobacteria increased to fill 
the niche created.  

Caulobacterales were reported to be more common in low total N and P en-
vironments [42]. Caulobacterales and Sphingomonadales populations are pro-
moted in higher temperatures, lower concentrations of oxygen, and increased 
dissolved organic matter [43]. The environmental conditions in the growth 
chamber, with higher temperatures, reduced wave action or oxygenation, and 
the addition of glucose, as dissolved organic matter, may have been responsible 
for their growth.  

Our study had several limitations. Like any container study, the results cannot 
be assumed to reflect the actual physical and microbiological conditions of the 
Lake in situ. By adding freshwater samples weekly to the containers, we tried to 
accommodate for the changing microbial content of the Lake. The changing 
bacterial populations in the containers during the summer suggest this approach 
met with some success. However, it was not possible to simulate the physical 
conditions like the varying Lake water temperature, wave oxygenation, stratifi-
cation, or changing light intensity, which will greatly alter conditions like dis-
olved oxygen (DO) concentrations compare to the fixed container used, even 
one that is mixed daily. Although DO was not measured in this experiment, we 
realize this is a critical element that will need consideration in future experi-
ments assessing practicality. The quantity of glucose added will need to be sig-
nificantly reduced to prevent eutrophication and hypoxia in an aquatic ecosys-
tem. This will likely require a slow-release glucose system targeted to the photo-
synthetic zone. Future experiments will test the practicality of adding glucose to 
control cyanobacteria using such a system.  

5. Conclusion 

The addition of glucose to a container receiving weekly additions of lake water 
suppressed the cyanobacterial populations during the entire summer bloom 
season. The glucose appears to stimulate the diversity of certain bacterial taxa at 
the expense of the cyanobacteria, but reduced glucose concentrations will need 
to be tested for practicality.  
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