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Abstract 
This study aims at establishing if climate change exists in the Niger Delta en-
vironment using non-stationary rainfall Intensity-Duration-Frequency (IDF) 
modelling incorporating time-variant parameters. To compute the intensity 
levels, the open-access R-studio software was used based on the General Ex-
treme Value (GEV) distribution function. Among the four linear parameter 
models adopted for integrating time as a covariate, the fourth linear model 
incorporating scale and location with the shape function constant produced 
the least corrected Akaike Information Criteria (AICc), varying between 306.191 
to 101.497 for 15 and 1440 minutes, respectively, selected for calibration of 
the GEV distribution equation. The non-stationary intensities yielded higher 
values above those of stationary models, proving that the assumption of sta-
tionary IDF models underestimated extreme events. The difference of 13.71 
mm/hr (22.71%) to 14.26 mm/hr (17.0%) intensities implies an underestima-
tion of the peak flood from a stationary IDF curve. The statistical difference 
at a 95% confidence level between stationary and non-stationary models was 
significant, confirming evidence of climatic change influenced by time-variant 
parameters. Consequently, emphasis should be on applying shorter-duration 
storms for design purposes occurring with higher intensities to help reduce 
the flood risk and resultant infrastructural failures. 
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1. Introduction 

It is common knowledge that the designs of both hydrologic and hydraulic in-
frastructures are dependent on the prediction of rainfall Intensities using IDF 
models and the corresponding runoff values. The stationary assumption of IDF 
models that extremes will not significantly vary over time has been popularly 
used. The construction of stationary IDF relationships is based on at-site fre-
quency analysis of rainfall data considered separately for different durations. These 
relationships depend on many assumptions which render them inaccurate and un-
reliable because a large number of parameters that are not time-dependent are re-
quired. The inclusion of some required parameters gave rise to parametric IDF 
models which have many de-merits. Non-stationary IDF modelling, however, uti-
lizes dynamic data series in which the descriptive statistics of the sample mean, va-
riance and covariance change over time. Neglecting to incorporate non-stationary 
concepts in hydrological modelling will probably lead to inaccurate results [1]. A 
check on the trend of the rainfall data is required to ascertain the presence of 
dynamic sequential behaviour. Where a significant trend is found, the location 
parameters will be computed based on the non-stationary assumption. This al-
lows for the evaluation of rainfall quantities that are consistent with the ideal charac-
teristics of the measured rainfall extremes. Most recent studies embarked upon 
focused on the development of IDF curves with consideration of the non-stationary 
concept [1] [2] [3] [4]. [2] in their study proposed a scaling method for the rain-
fall IDF relationship and proved that rainfall follows a simple scaling process 
that is more efficient with more accurate estimates in non-stationary IDF model-
ling than that from the stationary approach. 

[5] in their study outlined a framework for evaluating climate change impacts 
on natural and man-made infrastructure using bias-corrected multi-model si-
mulations of historical and projected precipitation extremes. The method derived 
changes in rainfall IDF curves and their uncertainty bounds using a non-stationary 
model by integrating Bayesian Inference. [1] in their investigation of non-stationary 
IDF curves integrating information relating to teleconnections and climate change 
presented results that showed that the non-stationary framework for IDF model-
ling gives a better fit to the sample data than the stationary method. Also, [6] 
worked on the impacts of spatial heterogeneity and temporal non-stationary on 
IDF estimates—A case study in a Mountainous California-Nevada Watershed. 
The result presented indicated the existence of strong heterogeneity and varia-
bility in IDF estimates with high-resolution simulation data with discrepancies 
in spatial variability that supports the use of an ensemble in non-stationary 
modelling. 

This study is focused on the development of 24-hourly Annual Maximum Se-
ries (AMS) non-stationary rainfall Intensity-Duration-Frequency (IDF) model 
for a deltaic environment using a statistical approach for fitting General Extreme 
Value (GEV) distribution via the maximum likelihood method to establish cli-
mate change existence. The flowchart in Figure 1 shows the summary of the basic  
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Figure 1. Flow chart for development of 24-hourly rainfall non-stationary IDF models. 

 
steps to follow for the development of a 24-hourly GEV distribution function-based 
non-stationary model and its stationary-based parameter model counterpart. 

2. Materials and Methods 
2.1. Study Area 

The study area, Uyo metropolis is located in Akwa Ibom State, in South-Eastern 
Nigeria. The GPS coordinates for the location of Uyo are between Latitudes: 
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4˚52'N - 5˚7'N and Longitudes: 7˚50'E - 8˚0'E with elevation above sea level as 45 
m (see Figure 2 sourced and modified from [7]). The topography of the area is 
characterized by undulating sandy plain terrain that is well-drained to the Atlan-
tic Ocean at the southern end. The mean daily maximum and minimum tem-
perature of Uyo is 34˚C and 23˚C, respectively; with average humidity of 72% 
mostly during January. The range of annual rainfall varies from 1599.5 mm 
(1983) to 3855.5 mm (1977). The value of mean annual rainfall is 2466.6 mm with 
higher intensities occurring from April to October, with prolonged rainstorms 
exhibited [8]. 

2.2. Data Collection 

The historical precipitation records of the study area between 1986 and 2015 (30 
years) were collected from the Meteorological gauge station of the Department 
of Oceanography and Regional Planning of the University of Uyo. The rainfall 
records collected were sorted and recorded as rainfall amounts in mm against 
corresponding durations in minutes. Extraction of the daily (24-hourly) annual 
maximum series for the rest of the 30 years were thereafter obtained first on 
monthly basis for each year out of which the annual maximum daily rainfall amount 
was extracted. 

 

 
Figure 2. Map of Akwa Ibom State in Nigeria showing study area—Uyo. 
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2.3. Disaggregation of Short Duration Rainfall 

The 30-year 24-hourly AMS data sorted out were downscaled into shorter dura-
tions of 15 to 720 minutes at increments of 15 minutes. The reduction of sorted 
AMS into a time scale of shorter values of less than 24 hours was achieved using 
scaling relationships in Equation (1) originally proposed by [9] to the Indian 
Meteorological Department (IMD), 

24 24

n

t
tR R  

 
 

=                         (1) 

And the Modified Chowdhury Indian Meteorological Department (MCIMD) 
method given in Equation (2): 

24 24

n

t CtR R  
 
 

= +                        (2) 

with, tI tR=                         (3) 

where: tR  is the required rainfall depth in mm for durations less than 24 hours, 

24R  is the daily rainfall depth in mm, t is the required duration in hours and n is 
an exponential constant = 1/3. However, the corresponding values of disaggre-
gated rainfall intensities in Table 1 were calculated based on the MCIMD [10] 
from Equation (2). Where n and C are calibrated constants. The MCIMD me-
thod is a modified version of Equation (1) where the basis for the Chowdhury 
model also remains the use of 24-hour event rainfall depth 24R , with I = rainfall 
intensity in mm/hr. 

2.4. Calibration of MCIMD Rainfall Downscaling Methods 

The calibration of the MCIMD formula was obtained using the Excel optimiza-
tion solver tool. The existing rainfall general GEVT-1 IDF equation obtained 
based on the Conventional Annual Maximum Series (CAMS) method for the 
study area published in [11] was adopted for generation of the control experi-
ment or actual observed rainfall intensity data. These observed rainfall intensi-
ties were compared with rainfall intensities downscaled using the original IMD 
method in Equation (1). The sum of squares of their differences was obtained 
and optimization was carried out by minimizing the sum of square differences 
[12]. 

The optimizing functions were applied to obtain the best-fit values for the 
exponent (n) and constant (C) for the MCIMD. Thus, the calibrated MCIMD 
downscaling model used was obtained based on the GEVT-1 probability distri-
bution function IDF model type. Thus, the corresponding values of disaggregated 
rainfall intensities for this study were calculated based on the calibrated MCIMD 
Equation (4): 

0.252

24 24
6.0t

tP P  



+


=                       (4) 

The details of the calibration process can be found in our earlier publication 
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[13]. The calibrated Equation (4) can be applied for rainfall intensities down-
scaling within the study region or catchment area. However, for other areas it 
will be ideal to use local rainfall measurement records to effect the calibration of 
Equation (2) due to the influence of local physiographic parameters. 

2.5. Check for Climatic Trends in Collected Data 

Testing for non-stationary signals is required on the historical rainfall intensity 
data documented in [14]. The rank-based non-parametric revised Mann-Kendall 
method was applied to the data to detect statistically significant trends [15] [16] 
[17]. Also, Theil-Sen’s non-parametric method was applied to estimate the mag-
nitude of trends in the time series data [16] [17]. 

2.6. Generalized Extreme Value (GEV) Distribution in 
Non-Stationary IDF Modeling 

Non-stationary models are usually better fitted on data sequences of specific du-
rations where a single model with a separate functional relation with the return 
period and rainfall duration could be used. The Generalized Extreme Value 
(GEV) distribution is introduced as the time-dependent function in the general 
IDF relationship [3]. The GEV distribution is based on the limit theorems for 
block maxima or annual maxima and consists of continuous probability distri-
butions that are a combination of the three asymptotic extreme value distribu-
tions into a single one—Gumbel (EV1), Fréchet (EV2) and Weibull (EV3). The 
GEV distribution is adaptable for the modelling of different behaviour of extremes 
with three distribution parameters: location, scale and shape [18]. The location 
parameter describes the shift of distribution in each direction on the horizontal 
axis. The scale parameter describes how spread out the distribution is, and de-
fines where the bulk of the distribution lies. As the scale parameter increases, the 
distribution becomes more spread out. The shape parameter affects the charac-
teristics of the distribution tail. The shape parameter is derived from skewness, 
as it represents where most of the data lies, which creates the tail(s) of the distri-
bution. The value of shape parameter ξ = 0, indicates the light tale EV1 (Gumbel) 
distribution. The value of ξ > 0 indicates EV2 (Fréchet), and ξ < 0 is EV3 (Wei-
bull). The Fréchet type has a longer (heavy) upper tail than the Gumbel distribu-
tion and the Weibull has a short tail [19] [20]. The standard Cumulative Distri-
bution Function (CDF) of the GEV as expressed by [21] can be presented in the 
form of Equation (5): 

( ) ( ) ( )
( )

( )1

exp 1
t

x t
t

t
F x

ξ
µ

ξ
σ

−  − − +     
=  for 0ξ ≠           (5) 

where: F(x) = Cumulative Distribution Function, ξ = shape parameter, μ = mean 
and σ = standard deviation. 

The statistical procedure used for estimating the distribution parameters is the 
maximum likelihood estimator; because the method can be easily extended to the 
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non-stationary evaluation. Non-stationarity is introduced by expressing one or 
more of the parameters of the GEV as a function of time, as μ(t), σ(t) and ξ(t), t 
= 1, 2, … [21] [22]. 

2.7. Evaluation of Time-Variant Parameters 

The extreme value theory of stationary random series assumes that statistical 
properties of extremes such as distribution parameters θ = (μ, σ, ξ) are indepen-
dent of time [23]. In contrast, in a non-stationary process, the parameters of the 
fundamental distribution function are time-dependent and have time-varying 
properties [24]. In order to represent a dynamic distribution, the location and 
scale parameters are assumed to be linear functions of time to account for 
non-stationarity, with the shape parameter kept constant [4] [18] [23] [25] [26]. 
Thus, the time-varying covariates are incorporated into GEV location (GEV-I), 
and into both location and scale parameters (GEV-II) respectively, thereby describ-
ing trends as a linear function of time in years as follows: 

( ) 1 ot tµ µ µ= +                         (6) 

( ) 1 ot tσ σ σ= +                          (7) 

Because the scale parameter must remain positive all through for a log link 
function is used in the modelling [27]: 

( ) 1ln ot tσ σ σ= +                        (8) 

or, ( ) ( )1exp ot tσ σ σ= +                     (9) 

where: t is the time (in years), and ɤ = ( 1 1, ,,, o oµ µ σ σ ξ ) are the regression pa-
rameters. 

This study considered four different model combinations of the GEV para-
meters by assuming a case of a linear trend for location and a linear trend for scale 
parameters and their different combinations presented in Table 1 [28]. Given a 
typical rainfall duration of values 1 2, , , nX X X X=  , for n years of the annual 
maximum time series. The log-likelihood for the Stationary given the condition 
of Equation (10), is expressed as written in Equation (11): 

For 0ξ ≠  and 1 0ix
ξ

µ
σ
−  > 

 
+                (10) 

( )
1

1

1

11 log 1log , , | l g

1

o i
i
n

n i
i

x
L X n

x
ξ

µ σ ξ σ
µ

ξ
ξ σ

µ
ξ

σ

=

=

−

 −    + +    
    

 −  +  


=


−



− − ∑

∑
     (11) 

where: the Maximum Likelihood Estimates (MLEs) are the parameter values that 
maximize the likelihood function so that instead of maximization, the minimiza-
tion of the negative log-likelihood function becomes more ideal. This formula-
tion easily allows for the extension to the non-stationary case, in which the 
parameters of the GEV distribution depend on time, t [22] [29]. To obtain the  
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Table 1. GEV linear model types selected. 

Model Type Parameter Combination Remark 

GEVt-0 

( )tµ µ=
 

( )tσ σ=
 

( )tξ ξ=
 

Stationary parameter model 

GEVt-I 

( ) 1ot tµµ µ= +
 

( )tσ σ=
 

( )tξ ξ=
 

Non-stationary parameter 
model 

GEVt-II 

( )tµ µ=
 

( ) 1ot tσ σ σ= +
 

( )tξ ξ=
 

Non-stationary parameter 
model 

GEVt-III 

( ) 1ot tµµ µ= +
 

( ) 1ot tσ σ σ= +
 

( )tξ ξ=
 

Non-stationary parameter 
model 

 
parameters of extreme distributions as the GEV by minimizing the negative 
log-likelihood function, are evaluated using the iterative numerical procedure. 

2.8. Selection of the Best GEV Model 

After non-stationary models’ development, it is important to identify which 
model better represents the original data. To select the best model, we use the 
corrected Akaike Information Criteria (AICc), which penalizes the minimized 
negative log-likelihood for the number of parameters estimated [22]. According 
to [30], AICc is recommended in practical applications because it outperforms 
the original AIC and helps to avoid over-fitting the data. From a collection of nested 
candidate models, AIC selects the model that minimizes the quantity: 

( ) ( )AIC 2 nllh 2k k k= ∗ +                    (12) 

where: nllh = −logL, is the minimized negative log-likelihood function; and k is 
the number of parameters of the specific model. For a candidate model with k 
parameters, which has a sample size of n, then the AICc of the model is as fol-
lows: 

( ) ( ) ( )2
AI

1
1

C AIC
k k
n

k
k

k
+

= +
− −

                 (13) 

The rescaled form of AICc, ∆i is used to rank the GEV models as follows: 

( )AICc min AICci∆ = −                     (14) 

where: min (AICc) is the smallest AICc among all the models. The model which 
has ∆i value zero is the best model and the models having ∆i ≤ 2 are considera-
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ble reasonable good choices. 

2.9. Development of Non-Stationary Intensity Duration Frequency 
Curves 

The model parameters are used to estimate the non-stationary precipitation in-
tensities or equivalent return levels. [31] showed that by using the GEV distribu-
tion, the return periods and return levels of extremes in Equations (15) and (16) 
are determined by expressing return levels as a function of the return period T: 

1
1

T
P

=
−

                          (15) 

where: p is the non-exceedance probability of occurrence in a given year, as-
sumed constant under stationary. 

The rainfall Intensity Duration Frequency curve for Uyo city was developed 
with the aid of R-studio software. The extreme values are computed based on the 
Generalized Extreme Value distribution which is a combination of the Gumbel, 
Frechet and Weibull distributions. The Cumulative Distribution Function (CDF) 
of GEV is given by Equation (5) and inverting the CDF will result to Equation 
(16) for computation of the Stationary rainfall extreme intensity values [3] [21]: 

( ) ( )
( )

( )11 ln 1
t

T

t
x t

t T

ξσ
µ

ξ

−     − − − −  
     

=


 for 0ξ ≠          (16) 

However, the model parameters estimated on the conditions of non-stationarity 
in the behavioural parameter extremes can then be used to estimate the non- 
stationary return level or rainfall intensity based on Equation (17): 

( )1 2, , ,K t t tnx Q µ µ µ=  , ( ( ) 1 ot tµ µ µ= + ) 

1 1
lnTx

P

ξ σ µ
ξ

  = − − × +  
   

, ( 0ξ ≠ )               (17) 

where: xT = rainfall intensity exceedance value, and T = return period. Also, the 
return levels are similarly translated into intensities for each return period and 
duration, with IDF curves plotted. The R-Studio software package was similarly 
applied for the computation of the storm intensities 

2.10. Test for Significant Difference between Stationary versus 
Best Non-Stationary IDF Predicted Rainfall Intensities 

The statistical significance of the best non-stationary model against the statio-
nary one can be provided by the Wilcoxon signed rank sum (non-parametric) 
test, by assessing the statistically significant difference in their computed rainfall 
intensities. The test is used to evaluate if there exists a significant difference be-
tween the selected best parameter non-stationary models with that of the statio-
nary model. The null hypothesis is accepted if the critical value that corresponds 
to alpha, α = 0.05 at reduced sample size, n, is greater than the computed statistic 
value. The statistical significance of the best non-stationary model when com-
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pared against the stationary model can be measured from the p-value of the 
Wilcoxon signed rank statistic test at 5% level of significance [32]. 

3. Results and Discussion 
3.1. Analysis of Results 
3.1.1. Downscaling 24-Hourly AMS Data into Shorter Durations 
Thirty years of Historical Precipitation Data (HPD) were collected and sorted 
out into 24-hourly Annual Maximum Series (AMS) for each year. The calibrated 
MCIMD Equation (6) was thereafter used to disaggregate the 24-hourly AMS 
into shorter durations of 0.25, 0.5 ….6, and 12 hours as shown in Table 2. The 
IMD downscaling method could also be used, however, the MCIMD method 
produced higher and improved precipitation intensities. 

3.1.2. Generalized Extreme Value (GEV) Distribution Fitted 
Non-Stationary IDF Curves 

The rainfall IDF curves for Uyo city were developed with the aid of open-access 
software provided by [33]. The extreme values were computed based on the 
GEV distribution which has the combination of Gumbel, Frechet and Weibull 
distributions. The Cumulative Distribution Function (CDF) of GEV given in 
Equation (5) was the basis for the derivation of the log-likelihood function. Thus, 
the formulation of the expression enabled the optimization of the log-likelihood 
function which allowed for its extension to the non-stationary modelling, in 
which the parameters of the GEV distribution depend on time t. The inverted 
GEV equation resulted in Equation (16) used for the computation of the rainfall 
intensity values. However, to obtain the parameters of the external distribution 
of the GEV, this was actualized by minimizing the negative likelihood function 
through the iterative numerical method. Subsequently, non-stationarity was in-
troduced by expressing one or more of the parameters of the GEV as a function 
of time (see Table 2). 

The condition to conduct non-stationary IDF modelling is the establishment 
of a trend in the time series data constructed for any modelling. To realize this 
objective, a statistical procedure utilized was the non-parametric Mann-Kendall 
(MK) test which produced a positive trend. Table 3 shows the performances of 
the different statistical parameters expressed as a function of time and their val-
ues. The best linear behavioural model was selected based on the corrected 
Akaike Information Criteria (AICc) indicated in Equation (19). The model that 
had the lowest AICc is the model that best represented the time series data. The 
various rainfall intensity value was computed for the non-stationary IDF curves 
based on the best model selected. From Table 3, GEVt-III had the lowest AICc, 
from which the rainfall intensities were estimated. The result of the rainfall in-
tensity computed for both the stationary and Non-stationary models using Equ-
ation (16) are presented in Table 4 and Table 5, respectively. Figure 3 indicates 
the graphical plots of GEV distribution fitted non-stationary versus stationary 
IDF curves on same graph paper for different return periods, while Figure 4 
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shows the case of GEV distribution fitted non-stationary versus Stationary IDF 
curves plotted on the same graph paper for different durations for Uyo, respec-
tively. 

 
Table 2. Downscaled rainfall intensity using MCIMD formula for Uyo. 

Year No. 0.25 hr 0.5 hr 0.75 hr 1 hr 2 hrs 6 hrs 12 hrs 24 hrs 

1 167.6± 97.5 71.1 56.9 33.3 14.3 8.4 5.0 

2 139.9 81.0 58.9 47.1 27.5 11.8 6.9 4.1 

3 200.3 117.0 85.5 68.5 40.2 17.4 10.2 6.1 

4 144.8 83.9 61.1 48.8 28.5 12.2 7.2 4.2 

5 134.5 77.8 56.6 45.2 26.3 11.3 6.6 3.9 

6 164.9 95.9 70.0 56.0 32.8 14.1 8.3 4.9 

7 129.6 74.9 54.4 43.4 25.3 10.8 6.3 3.7 

8 176.3 102.7 75.0 60.0 35.2 15.1 8.9 5.3 

9 187.6 109.4 79.9 64.0 37.5 16.2 9.5 5.6 

10 212.0 124.0 90.7 72.7 42.7 18.5 10.9 6.4 

11 193.4 112.9 82.5 66.1 38.8 16.7 9.9 5.8 

12 161.3 93.7 68.3 54.7 32.0 13.7 8.1 4.8 

13 172.7 100.5 73.4 58.7 34.4 14.8 8.7 5.1 

14 149.9 86.9 63.3 50.6 29.6 12.7 7.5 4.4 

15 174.1 101.3 74.0 59.2 34.7 14.9 8.8 5.2 

16 121.2 69.9 50.8 40.5 23.5 10.0 5.9 3.5 

17 134.5 77.8 56.6 45.2 26.3 11.3 6.6 3.9 

18 200.3 117.0 85.5 68.5 40.2 17.4 10.2 6.1 

19 200.3 117.0 85.5 68.5 40.2 17.4 10.2 6.1 

20 212.0 124.0 90.7 72.7 42.7 18.5 10.9 6.4 

21 202.7 118.4 86.6 69.3 40.7 17.6 10.4 6.1 

22 172.7 100.5 73.4 58.7 34.4 14.8 8.7 5.1 

23 172.7 100.5 73.4 58.7 34.4 14.8 8.7 5.1 

24 148.2 86.0 62.6 50.0 29.2 12.5 7.4 4.3 

25 208.7 122.0 89.2 71.5 42.0 18.1 10.7 6.3 

26 251.9 147.7 108.2 86.8 51.1 22.2 13.1 7.8 

27 198.1 115.7 84.5 67.7 39.8 17.2 10.1 6.0 

28 232.3 136.0 99.6 79.9 47.0 20.3 12.0 7.1 

29 326.5 192.1 141.0 113.3 66.9 29.1 17.2 10.2 

30 273.8 160.8 117.8 94.6 55.7 24.2 14.3 8.5 

Note: ±Dis-segregated rainfall intensities (mm/hr). 
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Table 3. Performance of GEV parameters evaluated for non-stationary and stationary 
models. 

Time 
(mins) 

Models 
Location  

Parameter 
Scale 

Shape 
Parameter 

AIC AICc 

15 

GEVt-0 165.13 33.101 0.0367 311.938 312.861 

GEVt-I 130.580 + 2.606t 32.203 −0.1354 305.853 307.453 

GEVt-II 159.0525 14.289 + 1.510t −0.2245 308.123 309.723 

GEVt-III 140.637 + 1.981t 17.285 + 0.926t −0.1848 303.691 306.191 

30 

GEVt-0 96.026 19.703 0.0374 280.838 281.761 

GEVt-I 75.475 + 1.551t 19.171 −0.135 274.754 276.354 

GEVt-II 92.405 8.494 + 0.900t −0.2243 277.038 278.638 

GEVt-III 81.477 + 1.177t 10.286 + 0.551t −0.1842 272.602 275.102 

45 

GEVt-0 70.045 14.548 0.0373 262.63 263.553 

GEVt-I 54.888 + 1.145t 14.16 −0.1351 256.534 258.134 

GEVt-II 67.37 6.276 + 0.665t −0.225 258.843 260.443 

GEVt-III 59.282 + 0.871t 7.593 + 0.407t −0.1843 254.382 256.882 

60 

GEVt-0 56.031 11.731 0.0378 249.737 250.660 

GEVt-I 43.784 + 0.924t 11.435 −0.1351 243.68 245.280 

GEVt-II 53.8771 5.053 + 0.537t −0.2244 245.939 247.539 

GEVt-III 47.371 + 0.701t 6.122 + 0.329t −0.1842 241.51 244.010 

120 

GEVt-0 32.8 6.997 0.0357 218.655 219.578 

GEVt-I 25.502 + 0.550t 6.807 −0.136 212.579 214.179 

GEVt-II 31.512 2.999 + 0.321t −0.2257 214.801 216.401 

GEVt-III 27.648 + 0.417t 3.644 + 0.196t −0.1861 210.397 212.897 

360 

GEVt-0 14.102 3.072 0.038 169.36 170.283 

GEVt-I 10.907 + 0.241t 2.994 −0.1348 163.357 164.957 

GEVt-II 13.538 1.318 + 0.140t −0.2201 165.515 167.115 

GEVt-III 11.849 + 0.182t 1.596 + 0.087t −0.1826 161.153 163.653 

720 

GEVt-0 8.296 1.822 0.0381 138.021 138.944 

GEVt-I 6.393 + 0.144t 1.768 −0.1326 131.848 133.448 

GEVt-II 7.955 0.777 + 0.084t −0.2279 134.2023 135.802 

GEVt-III 6.940 + 0.110t 0.947 + 0.051t −0.1856 129.6695 132.170 

1440 

GEVt-0 4.8917 1.08 0.0462 106.897 107.820 

GEVt-I 3.783 + 0.084t 1.058 −0.1293 101.153 102.753 

GEVt-II 4.7029 0.476 + 0.049t −0.216 103.3 104.900 

GEVt-III 4.100 + 0.064t 0.570 + 0.030t −0.1764 98.997 101.497 
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Table 4. GEV distribution fitted stationary IDF curve computed rainfall intensities. 

Duration 
(mins) 

Return Period 

2 5 10 25 50 100 

15 177.34 216.17 242.78 277.47 304.00 331.02 

30 103.30 126.42 142.28 162.96 178.79 194.91 

45 75.41 92.49 104.20 119.47 131.15 143.06 

60 60.36 74.14 83.59 95.92 105.35 114.97 

120 35.38 43.58 49.20 56.51 62.09 67.78 

360 15.24 18.84 21.32 24.55 27.03 29.55 

720 8.97 11.11 12.58 14.50 15.96 17.46 

1440 5.29 6.57 7.45 8.61 9.51 10.43 

 
Table 5. GEV distribution fitted non-stationary IDF curve computed rainfall intensities. 

Duration 
(mins) 

Return Period 

2 5 10 25 50 100 

15 216.03 259.09 283.02 308.87 325.33 339.67 

30 126.31 151.96 166.22 181.64 191.46 200.03 

45 92.43 111.36 121.88 133.26 140.51 146.83 

60 74.07 89.35 97.85 107.04 112.89 118.00 

120 43.54 52.64 57.69 63.15 66.61 69.63 

360 18.81 22.82 25.06 27.48 29.03 30.37 

720 11.11 13.49 14.80 16.23 17.13 17.92 

1440 6.55 7.97 8.77 9.63 10.19 10.67 

3.1.3. Comparison of Percentage Difference between Non-Stationary and 
Stationary Computed Rainfall Intensities 

A visual perusal of the rainfall intensities distribution in Figure 3 and Figure 4 
of the various graphical plots against duration and/or return period, respectively, 
indicates the likely existence of a difference between the non-stationary and the 
stationary models at each plotting point. Therefore, it is imperative to verify if 
the differences were indeed significant. Intensities obtained from Table 4 and 
Table 5 for stationary and non-stationary, respectively were computed to obtain 
their percentage differences in the predicted intensities. 

In order to verify if the percentage differences were really significant at a 95% 
confidence level, the Wilcoxon non-parametric paired test of significance was 
applied to verify this fact. Thus, the two-tailed statistic test was performed for 
rainfall intensities versus duration for given return period as presented in Table 
6 and for rainfall intensities against the return period for the given duration as 
presented in Table 7. The Wilcoxon test statistic was computed and compared 
against the critical p-value at alpha, ∝ -value of 5% level of significance. 
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Figure 3. GEV distribution fitted stationary versus non-stationary IDF curves considering different return pe-
riods. 

3.2. Discussion of Results 
3.2.1. Analysis of Downscaled 24-Hourly AMS Data into Shorter  

Durations 
The analyses of this study were based on 24-hourly historical annual maxi-
mum time series data (January to December water year). Table 2 was con-
structed by using the Modified Chowdhury Indian Meteorological Department 
(MCIMD) downscaling method given in Equation (4). The calibrated equation 
produced higher rainfall intensities than the IMD method of Equation (1) for 
different shorter durations of 0.25 to 1.0 hours applicable for typical urban 
drainage designs, and 2 to 24 hours longer duration applicable for rural or large 
scale infrastructural design. The plotting of the rainfall intensities downscaled 
in mm/hr against duration in years showed a strong increasing (positive) trend 
from 1985 to 2015 as shown in Figure 3 for 0.25-hour and 24-hour duration, 
respectively. 

https://doi.org/10.4236/jwarp.2023.155012


M. G. Sam et al. 
 

 

DOI: 10.4236/jwarp.2023.155012 208 Journal of Water Resource and Protection 
 

3.2.2. Analysis of GEV Distribution Fitted Non-Stationary IDF Curves 
The R-studio software was adopted for all the computations made to obtain the 
rainfall IDF curves fitted on the basis of GEV distribution. The basic equation  

 

 
Figure 4. GEV distribution fitted stationary versus non-stationary IDF curves considering different durations. 

 
Table 6. Wilcoxon paired sample test of significant for rainfall intensity for various re-
turn period. 

Statistical  
Parameters 

Return Period (years) 

2 5 10 25 50 100 

V 0 0 0 0 0 0 

Expected Value 18.0000 18.0000 18.0000 18.0000 18.0000 18.0000 

Variance (V) 51.0000 51.0000 51.0000 51.0000 51.0000 51.0000 

p-value (Two-tailed) 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 

Note: Level of significance @ 5%. 
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Table 7. Wilcoxon paired sample test of significant for rainfall intensity for various dura-
tion. 

Statistical  
Parameters 

Duration (mins) 

15 30 45 60 120 360 720 1440 

V 0 0 0 0 0 0 0 0 

Expected Value 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 

Variance (V) 22.7500 22.7500 22.7500 22.7500 22.7500 22.7500 22.7500 22.7500 

p-value 
(Two-tailed) 

0.0360 0.0360 0.0360 0.0360 0.0360 0.0360 0.0360 0.0360 

Note: Level of significance @ 5%. 
 

which provided the formula for obtaining the cumulative distribution function 
for the GEV distribution has a family of three distribution functions controlled 
by the shape function when it is either zero, greater than zero or less than zero 
given by Equation (5). The expression of the equation into its log-likelihood 
provided the basis for computing the parameters of the GEV distribution func-
tion for both stationary and vis-a-vis the extension of the principles to the 
non-stationary condition when time is integrated as a co-variate. The parameters 
were, therefore, computed by optimization which required the minimization of 
the negative log-likelihood achieved by an iterative process. 

Four different linear models integrating time as co-variate were selected as can 
be seen in Table 1 and Table 3 for computation of the GEV distribution func-
tion parameters. The first model, GEVt-0 applies at constant values of location, 
scale and shape parameters which is also equivalent to the stationary assumption 
of the GEVT-1. The second model, GEVt-I have time as a co-variate with loca-
tion as a parameter while scale and shape parameters were kept constant. The 
third model, GEVt-II has time as a covariate with the scale parameter, while lo-
cation and shape parameters were also kept constant. The fourth model, GEVt-III 
has only the shape parameter kept constant while time serves as a co-variate with 
both locations and scale parameters. 

3.2.3. Analysis of Selection Process for Best Parameter Model 
From the foregoing, it was ideal to select the best-performing linear model. The 
statistical method was based on Corrected Akaike Information Criteria (AICC) 
processed by applying Equations (12) to (14). The model with the least AICC is 
considered a reasonable and good choice. From Table 3, the GEVt-III which had 
time as co-variates with both location and scale parameters while the shape pa-
rameter was kept constant gave the least AICC for all durations analyzed. Thus, 
the fourth model, GEVt-III, was selected as the best parameter model, used for 
the computation of the non-stationary rainfall intensities for the different return 
periods of 2, 5, 10, 25, 50, and 100 years. 

Furthermore, to compute the intensity levels for various downscaled durations 
for any given return period Equation (5) was inverted to derive Equation (16) used. 
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Also, the values of the best linear parameter model were substituted accordingly 
to obtain Table 5, while Table 4 intensities were obtained based on model 1, 
GEVt-0, which is equivalent to the stationary assumption. However, the intensi-
ties of Table 4 and Table 5, which were for Stationary and Non-stationary IDF 
curves, differed glaringly. 

3.2.4. Comparative Analysis of Non-Stationary and Stationary IDF Curve 
Distributions 

Rainfall intensity levels computed for stationary and non-stationary fitted dis-
tributions shown in Table 4 and Table 5, respectively, were plotted together in a 
normal graph paper against various durations for given return periods as shown 
in Figure 3. Also, for given durations, both intensities were plotted against the 
return period as indicated in Figure 4. In both plots remarkable differences were 
observed in the intensity values distribution with the non-stationary intensity 
distribution giving higher values above those of stationary distributions proving 
that for the Niger Delta region, the stationary assumption delivers IDF curves 
that underestimate extreme events as in literature [3] [4] [28]. The implication, 
therefore, means that if the stationary IDF curve values were applied for infra-
structural design such a project may not guarantee safety against more extreme 
hydrologic events as indicated by the non-stationary counterpart for any partic-
ular return period. For instance, for a 2-year return period event, a 1-hr storm 
duration gave the difference between the non-stationary (74.07 mm/hr) and sta-
tionary (60.36 mm/hr), the extreme rainfall of about 13.71 mm/hr (+22.71%). 
Also, for a 10-year return period event, the 1-hr storm event produced for 
non-stationary (97.85 mm/hr) and stationary (83.59 mm/hr) giving the extreme 
rainfall difference of 14.26 mm/hr (+17.0%). The differences of 13.71 mm/hr to 
14.26 mm/hr in rainfall intensity especially for small catchment areas could lead 
to serious underestimation of the peak flood from a stationary IDF curve. This 
extreme value could further exacerbate the flood risk greater than the provided 
design of such drainage infrastructure. These findings were consistent with the 
publication of [3]. 

Also, observed is that the differences occurring between the non-stationary 
and stationary intensities increased with higher durations from 15 to 720 min, 
but reduced in value at 1440 min. This is indicative that longer-duration events 
have not changed significantly over the succeeding years in the time series, while 
shorter-duration events intensified increasingly as postulated by [3]. 

Further investigation of storm durations revealed that the differences between 
non-stationary and stationary were larger at short durations. For instance, at a 
2-year return period, the difference between the IDF curves reduced from 13.71 
mm/hr to 2.13 mm/hr for 1-hour and 12-hour storm durations, respectively. 
While for the 100-year return period, the difference at 1 hour is 3.03 mm/hr 
which reduction tends to zero (about 0.46 mm/hr) at 12-hour storm duration. 
This result by implication calls for more focus on the emphasis of considering 
shorter duration storm for design purposes because it is not only occurring with 
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higher intensities but also shows evidence of higher differences in the extreme 
values between the non-stationary and stationary IDF predicted intensities which 
has the potential of increasing the flood risk and consequential infrastructural 
failures. 

The conduct of performance evaluation for a two-tailed sample using Wil-
coxon signed rank sum statistic to further establish the existence of statistical 
significance difference between the intensities of non-stationary and stationary 
IDF predicted intensities was carried out. The performance evaluation was car-
ried out for given return periods as presented in Table 6 and also for the given 
duration as presented in Table 7. The Wilcoxon signed rank sum test statistic 
calculated is 0.0143 for all return periods, which is less than the critical p-value 
at alpha, ∝  = 0.05. Similarly, the second test showed the Wilcoxon signed rank 
sum test statistic was calculated as 0.0360 for all durations. These values are less 
than the critical p-value at a 5% level of significance. The result proves that there 
is a significant statistical difference between the non-stationary and stationary 
IDF rainfall intensity distribution. 

4. Conclusions 

For the computation of intensity levels for the non-stationary IDF models, the 
best parameter model among four linear parameter models integrating time as 
co-variate obtained using the Corrected Akaike Information Criteria (AICC) 
showed the fourth model, GEVt-III that had time as co-variates with both loca-
tion and scale parameter, with the shape parameter kept constant was selected as 
the best parameter model because it produced the least AICC for all durations. 

Intensity levels computed for stationary and non-stationary predicted intensi-
ties showed that the non-stationary intensities gave higher values above those of 
stationary, proving that the stationary assumption IDF curves underestimates ex-
treme events. The differences of 13.71 mm/hr (22.71%) to 14.26 mm/hr (17.0%) 
in rainfall intensity especially for small watersheds could lead to serious unde-
restimation of the peak flood from a stationary IDF model. The extreme values 
could further exacerbate the flood risk greater than the provided design for such 
drainage infrastructure. Wilcoxon paired signed rank sum test statistics for the 
rainfall intensities for various durations or return periods were examined. The re-
sult proves that there is a significant difference between the non-stationary and 
stationary IDF rainfall intensity distributions to further provide glaring evidence 
of the existence of an increase in extreme events inducing a climatic change in 
the study region. 

Also, the differences between the non-stationary and stationary intensities in-
creased with higher durations from 15 to 720 min, but reduced in value at 1440 
min is indicative that shorter duration events intensified increasingly while longer 
duration events have not changed significantly over the decades. Consequently, 
emphasis should be on shorter-duration storms for design purposes because it is 
not only producing higher intensities, but also showed evidence of higher differ-

https://doi.org/10.4236/jwarp.2023.155012


M. G. Sam et al. 
 

 

DOI: 10.4236/jwarp.2023.155012 212 Journal of Water Resource and Protection 
 

ences in the extreme values which have the potential of increasing the flood risk 
and resultant infrastructural failures. 
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