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Abstract 
This experiment examined the fluctuations in nitrogen gas supersaturation 
throughout the day in three karst springs (upper, side, and lower) at 
McNenny State Fish Hatchery, rural Spearfish, Lawrence County, South 
Dakota, USA. Total gas pressures, oxygen percent saturation, and nitrogen 
percent saturation were recorded six times/day on eight days over a 26-day 
period in each of the three springs. Total gas pressure did not vary signifi-
cantly throughout the day in any of the springs. However, percent oxygen 
and nitrogen saturation were significantly different throughout the day in all 
three springs. The highest mean (SE) nitrogen supersaturation value of 118.5 
(1.1)% was observed in the lower spring at 07:00. The lowest mean nitrogen 
supersaturation values were 114.5 (1.1)% at 13:00 in the upper spring, and 
114.2 (0.2)% and 113.1 (0.7)% at 15:00 in the side and lower spring, respec-
tively. At 118% nitrogen supersaturation, gas bubble disease is likely to occur 
in fish, resulting in potentially high levels of mortality if untreated spring wa-
ter was used for fish production. The results of this study indicate the impor-
tance of recording nitrogen gas levels at sunrise or early in the morning, 
when nitrogen is highest and oxygen is lowest, to obtain accurate and repro-
ducible data. 
 

Keywords 
Karst Springs, Aquifer, Gas Supersaturation, Nitrogen, Aquaculture 

 

1. Introduction 

Karst landscapes form from the dissolution of soluble bedrock by surface and 
groundwater [1]. These landscapes are characterized by disappearing streams, 
springs, underground caves, and sinkholes [1] [2]. Karst forms in soluble sedi-
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mentary rock layers such as carbonates, limestone (CaCO3), gypsum (Ca-
SO4·2H2O) (Figure 1), and dolomite (MgCO3·CaCO3) and in evaporites, gypsum 
(CaSO4·2H2O), and anhydrite (CaSO4) [1] [2].  

Limestone, gypsum, and anhydrite are common in the sedimentary forma-
tions of the Black Hills of South Dakota, USA, and these formations often dis-
play several karstic features. McNenny State Fish Hatchery, rural Spearfish, 
Lawrence County, South Dakota, USA is located on the Spearfish formation, 
which is primarily non-soluble red shale, siltstone, and fine-grained sandstone 
with soluble gypsum lenses [2] [3]. Underlying the hatchery are a range of sedi-
mentary rock layers including mostly limestone of the Madison and Minnelusa 
formations [2].  

The Madison and Minnelusa formations are both major aquifers in the 
northern Black Hills [1]. These aquifer units have created numerous sinkholes 
around the Black Hills and are the likely water source for the natural springs at 
McNenny State Fish Hatchery [4] [5]. The water in these springs is supersatu-
rated with dissolved nitrogen, which is a common occurrence in ground water 
[6] [7]. This supersaturation likely occurs because of high pressure in the con-
fined aquifers [7].  

Nitrogen supersaturation in springs is of particular interest because of its 
well-documented negative effects on fish [8] [9] [10] [11] [12]. Aeration and de-
gassing structures are used to reduce nitrogen gas levels and increase dissolved 
oxygen levels in spring water at McNenny Hatchery [13] [14]. Although nitro-
gen saturation is decreased with these structures, it still persists. Therefore, ni-
trogen levels in springs at the hatchery are still monitored at different times of 
the year and varying hours of the day. However, the hourly variation of nitrogen 
supersaturation, if it occurs, is unknown. Thus, the objective of this study was to 
document gas supersaturation levels from multiple karst springs located at 
McNenny State Fish Hatchery throughout the day. 

2. Methods 
2.1. Study Area 

McNenny State Fish Hatchery, Lawrence County, South Dakota, USA is greatly 
influences by its local geology. At the surface there is siltstone, red shales, and 
sandstone, of the Spearfish Formation (Figure 1) and at a depth there is a range 
of sedimentary layer, some of which are easily dissolved such as limestones of 
the Madison and Minnelusa formations and some of which are fine-grained and 
do not allow water to pass through them (confining layers) [1] [2]. The confin-
ing layers mean that the limestone aquifers (Madison and Minnelusa) are under 
pressure and only recharged at higher elevations in the Black Hills. The numer-
ous springs at and near the hatchery are the results of karstic collapse of the un-
derlying limestone rock units allowing deep groundwater to rise to the surface 
[1] [2]. 
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Figure 1. Example of gypsum lense in sedimenitary rock layer (Spearfish Formation) ab-
undant at McNenny State Fish Hatchery. 

2.2. Data Collection 

Data collection occurred in three springs at McNenny Hatchery (approximate 
latitude 44˚33'32"N, longitude 104˚00'40"W, Figure 2). The springs were desig-
nated as upper, side, and lower, although this does not depict actual spring ele-
vations (Figure 3). Approximate flows from the upper, side, and lower springs 
are 0.02, 0.01, and 0.03 m3/sec, respectively [15]. Water chemistry for the springs 
is similar, with approximate total hardness as CaCO3 of 360 mg/L, alkalinity as 
CaCO3 at 210 mg/L, pH of 7.6, and total dissolved solids of 390 mg/L [16]. 

Water sampling at each of the three springs occurred six times a day at two- 
hour intervals, beginning at 07:00 and concluding at 17:00 (approximately su-
nrise and sunset).  

Sampling occurred on eight days in 2021: 21, 26, 28 January and 4, 9, 18, 23, 
25 February. At each sampling event, total gas pressure, dissolved oxygen, and 
water temperature were measured using a total gas pressure meter (Handy Pola-
ris, OxyGuard, Farum, Denmark). Barometric pressure at every sampling event 
was also recorded, using measurements obtained from wunderground.com for 
Beulah, Wyoming, USA.  

Total gas pressure was determined by taking total gas pressure percent satura-
tion divided by 100 and multiplied by overall barometric pressure [18].  

Where: 

100
SAT

TOTAL BAR
P

P P= ×                        (1) 

Delta P was determined by taking total gas pressure minus barometric pres-
sure [18].  

Where: 

TOTAL BARP P P∆ = −                        (2) 

Nitrogen saturation was determined using the following formula described by 
[18]: 
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Where: 
N2 = partial pressure of nitrogen gas in the water (percentage nitrogen satura-

tion); 
BP = local barometric pressure (mmHg); 
O2 = oxygen concentration (mg/L); 
bO2 = Bunsen’s coefficient for oxygen; 
PH2O = partial pressure of the water vapor (mmHg). 

 

 
Figure 2. Location of McNenny State Fish Hatchery, rural Spearfish, Lawrence 
County, South Dakota, USA. 

 

 
Figure 3. Aerial photo from Google Earth [17] showing location of the 
three springs on the hatchery grounds. 

2.3. Data Analysis 

Data were analyzed using SPSS (24.0) statistical program (IBM, Armonk, New 
York, USA). Significance was predetermined at p < 0.05. A two-way analysis of 
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variance was performed. If there was an interaction, then a one-way analysis of 
variance was performed with post hoc means separation test using Tukey HSD. 

3. Results 

Nitrogen gas saturation was not significantly different among the sampling dates 
(Table 1). However, total gas pressure in the side spring was significantly dif-
ferent among the sampling dates, with the lowest mean (±SE) percentages rec-
orded on 21 January at 100.9 (0.1)% and the highest on 09 February at 101.7 
(0.1)%. Mean (SE) total gas pressure ranged from 104.5 (0.2)% in the lower 
spring to 101.4 (0.1)% in the side spring. Percent oxygen saturation was not sig-
nificantly different among the days in any of the springs.  

Nitrogen supersaturation was significantly higher early in the morning at 
07:00 and 09:00 compared to the sampling times later in the day (Table 2). The  

 
Table 1. Mean (SE) percent saturation of total gas pressure, oxygen, and nitrogen at each sampling date (all sampling times each 
day combined) for three (upper, side, and lower) karst springs located at McNenny State Fish Hatchery, rural Spearfish, South 
Dakota, USA. Means followed by different letters across a row are significantly different (n = 6, p < 0.05). 

Gas Spring Jan-21 Jan-26 Jan-28 Feb-04 Feb-09 Feb-18 Feb-23 Feb-25 Overall 

Total Gas 
Pressure 

Upper 101.9 (0.1) 102.3 (0.1) 102.3 (0.1) 102.4 (0.1) 102.3 (0.1) 101.9 (0.2) 102.2 (0.2) 102.2 (0.1) 102.2 (0.0) 

Side 
100.9 (0.1) 

w 
101.4 (0.2) 

zy 
101.1 (0.1) 

wz 
101.5 (0.1) 

zy 
101.7 (0.1) 

y 
101.6 (0.2) 

zy 
101.5 (0.1) 

zy 
101.6 (0.1) 

zy 
101.4 (0.1) 

Lower 104.5 (0.2) 104.1 (0.4) 103.8 (0.4) 104.7 (0.4) 104.1 (0.5) 105.8 (0.6) 104.5 (0.6) 104.4 (0.4) 104.5 (0.2) 

Oxygen 

Upper 74.1 (0.4) 73.9 (0.8) 74.0 (1.1) 76.3 (1.3) 74.8 (1.0) 75.0 (1.3) 75.2 (1.8) 74.0 (0.9) 74.7 (0.4) 

Side 70.6 (0.5) 70.6 (0.7) 69.2 (0.9) 74.9 (4.3) 73.2 (1.2) 72.1 (1.1) 70.7 (1.0) 71.7 (1.3) 71.6 (0.6) 

Lower 79.9 (3.4) 78.3 (2.4) 81.8 (4.0) 83.6 (4.4) 84.8 (4.5) 87.3 (5.9) 79.3 (3.2) 85.3 (5.8) 82.5 (1.5) 

Nitrogen 

Upper 114.7 (0.1) 115.1 (0.2) 115.3 (0.1) 114.8 (0.3) 114.9 (0.3) 114.4 (0.3) 114.9 (0.3) 115.2 (0.2) 114.9 (0.1) 

Side 114.1 (0.1) 114.8 (0.2) 114.9 (0.2) 114.8 (0.3) 114.4 (0.2) 114.6 (0.2) 115.0 (0.2) 114.9 (0.3) 114.7 (0.1) 

Lower 116.4 (0.8) 115.9 (0.4) 115.1 (0.6) 115.7 (0.7) 114.2 (0.7) 116.0 (2.1) 116.7 (0.9) 114.9 (1.3) 115.6 (0.4) 

 
Table 2. Mean (SE) percent saturation of total gas pressure, oxygen, and nitrogen at two-hour intervals during the day (all sam-
pling days combined) for three (upper, side, and lower) karst springs located at McNenny State Fish Hatchery, rural Spearfish, 
South Dakota, USA. Means followed by different letters across a row are significantly different (n = 8, p < 0.05). 

Gas Spring 7:00 9:00 11:00 13:00 15:00 17:00 Overall 

Total Gas 
Pressure 

Upper 102.0 (0.1) 102.2 (0.1) 102.2 (0.1) 102.3 (0.1) 102.2 (0.1) 102.3 (0.1) 102.2 (0.0) 

Side 101.1 (0.1) 101.5 (0.2) 101.4 (0.1) 101.5 (0.1) 101.5 (0.1) 101.5 (0.2) 101.4 (0.1) 

Lower 104.2 (0.7) 104.0 (0.4) 104.1 (0.2) 105.2 (0.4) 104.4 (0.3) 105.0 (0.2) 104.5 (0.2) 

Oxygen 

Upper 71.1 (0.5) x 73.3 (0.8) yx 75.9 (0.6) wzy 77.1 (0.7) w 76.4 (0.7) wz 74.2 (0.6) zy 74.7 (0.4) 

Side 68.0 (0.4) z 69.3 (0.7) z 70.9 (0.7) wz 72.6 (0.6) wz 76.3 (2.9) w 72.6 (0.5) wz 71.6 (0.6) 

Lower 68.6 (1.3) y 72.4 (1.2) y 82.9 (1.9) z 90.1 (1.8) wz 93.5 (2.1) w 87.8 (1.9) wz 82.5 (1.5) 

Nitrogen 

Upper 115.5 (0.2) z 115.1 (0.2) wz 114.7 (0.2) w 114.5 (0.1) w 114.6 (0.2) w 115.1 (0.1) wz 114.9 (0.1) 

Side 115.0 (0.1) zy 115.2 (0.2) y 114.7 (0.2) wzy 114.4 (0.1) wz 114.2 (0.2) w 114.5 (0.1) wz 114.7 (0.1) 

Lower 118.5 (1.1) y 117.2 (0.3) zy 115.0 (0.4) wz 114.8 (0.7) wz 113.1 (0.7) w 114.9 (0.6) wz 115.6 (0.4) 

https://doi.org/10.4236/jwarp.2023.152002


M. A. Gross et al. 
 

 

DOI: 10.4236/jwarp.2023.152002 28 Journal of Water Resource and Protection 
 

highest mean (SE) value of 118.5 (1.1)% was observed in the lower spring at 
07:00. The lowest mean nitrogen percentages were 114.5 (1.1)% at 13:00 in the 
upper spring, and 114.2 (0.2)% and 113.1 (0.7)% at 15:00 in the side and lower 
spring respectively. Total gas pressure was not significantly different throughout 
the day in any of the springs. However, percent oxygen saturation was signifi-
cantly lower earlier in the day (07:00 and 09:00) for all three springs, compared 
to the highest readings at 13:00 and 15:00. 

4. Discussion 

This study is the first to examine the possible effects of time-of-day on nitrogen 
gas supersaturation in karst springs. The results of this study, whereby percent 
nitrogen was highest in the morning and lowest at mid-day, with percent oxygen 
saturation following an opposite pattern, and total gas pressure remaining rela-
tively constant throughout the day, are similar to those described by Mahler and 
Bourgeais [19] in karst springs in Texas, USA. Kutty [20] and Francis-Floyd [21] 
reported similar results in aquaculture ponds, with the highest nitrogen and 
lowest oxygen levels at dawn. In contrast, Boyd et al. [22], monitoring gas pres-
sures throughout the day in ponds fertilized and used to grow catfish, reported 
total gas pressure, percent nitrogen, and percent oxygen were all higher in the 
afternoon compared to morning.  

In the springs at McNenny State Fish Hatchery the lowest oxygen levels were 
69%, which is much higher than that reported in other springs or groundwater 
sampling locations [23] [24]. At the highest concentration of 116%, nitrogen su-
persaturation exceeds the general criteria of less than 110% as defined by the 
United States Environmental Protection Agency [7] [25]. At these levels of ni-
trogen supersaturation, gas bubble disease can occur, which can lead to fish 
mortality [7] [23] [24] [26] [27]. This makes the nitrogen gas-reducing struc-
tures [13] [14] used at McNenny Hatchery indispensable for fish production.  

The supersaturation of nitrogen observed in the spring water in this study is 
not surprising. Supersaturation of nitrogen in ground and spring water is com-
mon [23], because when water is drawn downward into aquifers, atmospheric 
air is mixed with it under pressure and the gases become supersaturated [7] [24] 
[25] [28]. Specific to confined aquifer-fed karstic springs, the high nitrogen le-
vels could be due to the short residence time of water in karst aquifers [27]. 
While it is possible that the high nitrogen gas levels observed in this study could 
be from the denitrification of nitrogen from fertilizers, septic tanks, agricultural, 
and municipality waste [29] [30] [31] [32], it is unlikely for the karst springs at 
McNenny State Fish Hatchery. The springs are near (<10 miles) their recharge 
area [1] [16], which is mostly publicly-owned coniferous forest used primarily 
for logging, along with light grazing, and less than 4% crop land [33]. Although 
there is likely some septic tank leakage, it is a probably a minor issue [34].  

While significantly different among the sampling days, the difference in total 
gas pressure in the side spring from 100.9% to 101.7% is minimal and likely not 
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physically significant. Neither percent oxygen and nor percent nitrogen differed 
among the days sampled.  

Gas pressure can change in karst springs during periods of high runoff and 
rapid recharge due to a higher water table, creating a need for longer-term stu-
dies [19] [35] [36]. This study examined only three springs at McNenny Hat-
chery, and these results may not be typical for the numerous other springs in the 
Black Hills or elsewhere. The springs at McNenny are mostly from the Madison 
aquifer [16] [34]. However, a karst spring less than one kilometer away releases 
water, half of which comes from the Madison aquifer and half from the Minne-
lusa [16] [34]. Thus, the results of this study may be site-specific. Also, with fur-
ther monitoring it may be possible to formulate a model similar to Kamar and 
Sheng [37]. 

5. Conclusion 

In conclusion, this study indicates the necessity of recording gas saturation levels 
early in the day to obtain accurate and repeatable measurements and minimize 
the possible effects of sunlight, photosynthesis, and respiration. The results of 
this study have sampling time implications for future studies examining long- 
term changes throughout the year or multiple years in karst spring gas satura-
tion levels. In addition, these results can be used to designate sampling times for 
nitrogen supersaturation in fish hatcheries or other applications where accurate 
data collection is essential. 
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