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Abstract 
There are few studies on the size and changes in species composition over 
time for wetlands in South Africa. Techniques such as remote sensing have 
become popular in assisting the development of management plans due to 
their spatio-temporal advantages and easily reproducible vegetation and land 
cover maps. The Wakkerstroom wetland was examined using aerial photog-
raphy to examine possible changes in the extent and Landsat imaging was 
used to map its vegetation communities. To assess the distribution of vegeta-
tion types on Wakkerstroom wetland, in situ recording of vegetation types 
and their GPS coordinates was conducted and a Random Forest model was 
used to predict vegetation types from Landsat pixel spectra across the wetland 
extent. As calculated from aerial photographs, the Wakkerstroom wetland has 
increased in extent by 0.483 km2 from 1938 to 2009. The P. australis popula-
tion density increased significantly over time (r = 0.89), whereas the T. cap-
ensis population density had a strong negative correlation over time (r = 
−0.70). A strong negative relationship between P. australis and T. capensis 
existed (r = −0.88). A need exists to introduce a management tool that will 
create a greater mosaic of vegetation communities thus ensuring a greater 
bird, reptile, and amphibian diversity. 
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1. Introduction 

Several studies have suggested that wetlands are the most threatened ecosystems 
globally. Approximately 50% of all wetlands have either been degraded or de-
stroyed globally due to the value of wetlands’ resources [1] [2] [3]. Most wet-
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lands are positioned near water courses—potentially providing economic bene-
fits for grazing, agriculture, and forestry sectors. These economic benefits have 
historically resulted in many wetlands being drained for cattle grazing pastures, 
crop agriculture and afforestation. The transformation of wetlands to other land 
uses can result in crop monocultures or afforestation which reduces flora and 
fauna biodiversity, increases soil erosion potential, and decreases soil organic mat-
ter. Overgrazing and too-frequent burning of wetland causes decreased biomass, 
increased runoff and soil erosion resulting in the formation of gullies [4]. 

Wetland ecosystems are critically important as they perform a range of eco-
system services. These ecosystem services include water purification, groundwa-
ter recharge, habitat provision for numerous flora and fauna, water storage and 
flood attenuation. Wetland ecosystem services are primarily due to vegetation 
structure and its dense rooting network which is commonly dominated by 
Phragmites australis (Cav. Steud) and Typha capensis (Rohrb. N. E. Br.) [5] [6] 
[7] [8] [9]. Studies have voiced concern about the hyper competitiveness of P. 
australis which has achieved invasive weed status in several countries, including 
North America where huge monospecific swathes have outcompeted the native 
vegetation and have thus diminished biodiversity [10] [11] [12] [13]. Wetlands, 
due to their heterogeneous vegetation and landscape provide habitat for a highly 
diverse array of bird and invertebrate species [14]. Flood attenuation and water 
purification are key services provided by the Wakkerstroom wetland for users 
downstream. Grazing for cattle is supplemented by wetland vegetation especially 
in drier months where another grazing is inadequate or insufficient [15]. 

The need to conserve and manage remaining wetlands and the crucial ecosys-
tem services they provide are essential for human wellbeing. Hall [16] proposed 
that it is not enough only to conserve the populations of plants and animals ex-
ploited by anthropogenic activities but that their health and sustainability de-
pends on conserving all biodiversity included in the wetland. Bond [17] states 
that although climate sets the limit to all terrestrial and aquatic vegetation growth; 
fire and herbivory determines the pattern of vegetation distribution. A fire re-
gime can be described as the combination of frequency, season, intensity and 
type of fire that occurs in an area. A fire regime results from a sequence of indi-
vidual fire events. The response of ecosystems to fire depends on both the effects 
of that single fire and the behaviour inherited from previous fires [18]. Burning 
of wetlands has numerous potential positive consequences [15], which includes 
the maintenance of native fauna and flora; assisting in alien plant control; re-
moving plant litter and improving grazing value. However, negative conse-
quences exist too, susceptible animal species could asphyxiate or succumb to the 
direct effects of heat, very regular fires can increase rates of erosion (especially 
on heavily grazed wetlands), increased evaporation from the wetland combined 
with a decrease in organic matter as well as an increase in ash content in the soil 
affects productivity. P. australis can be considered a wetland management prob-
lem due to its rapidly colonising and dominating behaviours in disturbed soils 
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which compromises wetland biodiversity [19]. Kotze [20] found that when it was 
desirable to reduce the abundance of the dominant plant species to enhance 
habitat diversity both fire and herbicide were necessary. Unfortunately, success-
ful conversion of dominated wetlands using only chemical control requires a di-
verse soil seed bank in addition to a nearby source of seeds for natural recruit-
ment. Areas that do not possess these seed sources may need manual planting to 
speed up site recovery. Therefore, fire regimes and herbicide utilisation to in-
crease plant diversity without harming the wetland are very site and species spe-
cific. Ailstock et al. [19] found that single herbicide application or herbicide ap-
plication followed by burning can reduce the abundance of P. australis acutely in 
wetlands. Long term diversity maintenance required occasional herbicide appli-
cations to prevent regrowth of P. australis. 

The Wakkerstroom wetland is classified as a national heritage site, but a pro-
posed water extraction project upstream could potentially disrupt the vegetation 
structure and distribution. Creating a historical record of the wetland’s vegeta-
tion structure and distribution would support the design of a database whereby 
comparisons and projections could be made about the wetland health. This re-
search aims to examine the changes in wetland extent between 1938 and 2009 
and vegetation distribution in the Wakkerstroom wetland from 1997 to 2019. 

2. Methodology 
2.1. Study Site 

Wakkerstroom is in the southeast of Mpumalanga along the northern edge of 
Kwa-Zulu Natal (27˚22'S; 30˚07'E) with grasslands making up over 65% of the 
province [21]. The mean annual precipitation (MAP) of Wakkerstroom is ap-
proximately 914.1 mm and the annual potential evapotranspiration (PET) is ap-
proximately 1715.2 mm—nearly double the MAP (PET:MAP = 1.88). The Wak-
kerstroom wetland is situated to the Northwest of Wakkerstroom (Figure 1) and 
is part of the Tugela River upper catchment. The main water input is the Wak-
kerstroom River with the remaining water coming in from smaller tributaries on 
the hills surrounding the area. Water leaves the wetland south of the R543 forms 
the Thaka River which flows into the Zaaihoek Dam [6]. The wetland has an ex-
tensive sedge marsh belt containing Typha capensis which grades into sedge 
meadow (plants of the Cyperaceae family). The permanently flooded interior is 
covered by wet grassland—dominated by Phragmites australis [22]. 

2.2. Data Collection 
2.2.1. Site Sampling 
Sampling sites representative of the different classes to be mapped were selected 
with the vegetation types of interest being P. australis, T. capensis and patches of 
open water (Figure 2). Sampling points were chosen around the wetland at 
patches of homogenous vegetation that looked to extend more than 30 × 30 m. 
Sampling points were chosen at least 60 m from one another. The size of vegetation  
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Figure 1. Google Earth image of the town of Wakkerstroom, Mpumalanga with Wak-
kerstroom wetland to the northwest of the town. 

 

 
Figure 2. Map of sampling points overlain a 2009 orthophoto. 
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patches and distances between points were chosen to avoid as best as possible 
repeat sampling within the same 30 × 30 m pixel of the Landsat image did not 
occur. 

2.2.2. Remote Sensing Data Collection 
To determine if the boundary of Wakkerstroom wetland has changed over time 
aerial photographs collected in 1938, 1953, 1969, 1979 and an orthophoto in 
2009 were studied. The aerial photographs were georeferenced using ArcMap 
10.4 to WGS 1984 Transverse Mercator projection using the 2009 orthophoto 
supplied by the Surveyor General of South Africa as a base map. The wetland 
boundary for each year was determined as the distinctive visual border that 
separated wetland vegetation from surrounding grassland. The true boundary is 
difficult to calculate precisely as the aerial images have a low resolution and 
variable quality especially those taken in 1938. A polygon of the boundary was 
created around the outside edge of the aerial photographs’ vegetative visual bor-
der in ArcMap 10.4. Using these polygons, the area inside each boundary was 
calculated. 

Satellite data were gathered from Landsat 5 Thematic Mapper (TM) and 
Landsat 8 Operational Land Imager (OLI) satellites. Two images from Landsat 5 
(1997/02/11 and 2005/02/17) and two images from Landsat 8 (2013/04/28 and 
2019/02/24) were used in the modelling process to determine vegetation com-
munity distribution. Two different satellites were used so that a longer period of 
images was available. Landsat 5 was launched in 1984 and decommissioned in 
2013, and Landsat 8 was launched in 2013 and is still active. The Landsat TM 5 
has seven spectral bands in the visible, infrared, and thermal portions of the 
electromagnetic spectrum. Landsat 8 OLI has eleven spectral bands in the visible, 
infrared, and thermal portions and a panchromatic band of the electromagnetic 
spectrum. All Landsat 5 bands were used, except band 6, the thermal band, for 
spectral extraction and modelling purposes. Bands 1 - 7 of Landsat 8 were used 
for spectral extraction and modelling. 

2.2.3. Modelling 
The Landsat images were the spectral data sources used for the classification 
modelling and prediction mapping. The GPS points were used to match spectra 
from the Landsat images to their respective vegetation type using R [23] and the 
raster package. The spectra and associated vegetation classes were combined into 
a data frame for analysis. Random Forest was used to create models to predict 
vegetation classes across the entire wetland [24]. First, a training model was built 
using 70% of the total data by means of the bootstrap resampling method and 
the other 30% to validate and choose the best model for prediction mapping. 
After the best training model was created two types of models were built. The 
first model was built on the assumption that for each image the vegetation type 
at those GPS points would remain the same as 2019 in situ classification. The 
second model was built on the assumption that the spectral signature of each 
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vegetation type would remain the same as the 2019 classification. Neither of 
these assumptions is strictly accurate in a natural environment but using images 
at similar times of year the assumption was that the reflectance value as a prod-
uct of photosynthetic action of each vegetation community would be similar and 
therefore adequate for modelling purposes. 

Rasters of the wetland vegetation for each Landsat image were created from 
the predicted values generated in the Random Forest model. The percentage of 
land cover of each vegetation type was calculated from the number of pixels of 
that vegetation type as a proportion of all pixels on the wetland. 

2.2.4. Analyses 
Changes in vegetation structure and distribution were analysed using Pearson 
correlations. Correlations were performed between vegetation classes over time 
and the effect of one vegetation class on another. 

3. Results 
3.1. Determining a Change in Extent of Wetland 

To determine if the boundary of the Wakkerstroom wetland has changed over 
time, the wetland was studied from several aerial photographs that were col-
lected in 1938, 1953, 1969, 1979 and an orthophoto from 2009 (Figure 3). The 
boundary for each year was determined as the distinctive visual border that 
separated wetland vegetation from surrounding grassland. Figure 4 suggests that 
the boundary of the wetland is relatively dynamic. Each image illustrates that 
while a general shape of the wetland exists, the edges of the wetland shift no-
ticeably over time. 

 

 
Figure 3. Aerial images of Wakkerstroom wetland for 1938, 1953, 1969, 1979 and 2009 
with border outlined in red. 
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Figure 4. Overlays depicting the Wakkerstroom wetland boundaries created from aerial 
photographs for years 1938, 1953, 1969, 1979 and 2009. 

 
The boundary in 1979 was the first visual appearance of open water east of the 

Paul Kruger Bridge. The construction of the causeway across the wetland over 
which the Amersfoort Road passes led to the wetland damming and creating the 
open water area seen in 1979 (personal correspondence, 2019). 

The area inside each boundary was calculated and plotted in Figure 5. The 
largest increase in wetland area occurred between 1969 and 1979 with the ex-
pansion of the wetland east of the Paul Kruger bridge. The area increased by 
0.243 km2 whereas the area increases between 1938 to 1953, 1953 to 1969 and 
1979 to 2009 was 0.085 km2, 0.068 km2 and 0.087 km2 respectively. 

3.2. Creating a Random Forest Model for Vegetation Classifications 

The in situ vegetation recorded at the GPS points were used to construct Ran-
dom Forest models with the respective spectra from the Landsat images. Two 
approaches to Random Forest models were tested. The first model was built on 
the assumption that for each image the vegetation type at those GPS points 
would remain the same as 2019 in situ classification. The second type of  
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model was built on the assumption that the spectral signature of each vegetation 
type would remain the same. A model was derived for the 2019 image and then 
applied to prior years. Neither of these assumptions is strictly accurate in a nat-
ural environment but using images at similar times of year the supposition was 
that the reflectance value as a product of photosynthetic action of each vegeta-
tion community would be similar and therefore adequate to be used for model-
ling purposes. The second type of modelling using the reflectance of each vege-
tation community created models with the same error rates and modelling val-
ues as the first model and so model one was used hereafter (Table 1). 

Each model was trained with 70% of the total data. As the model was cali-
brated, each decision tree component of the random forest model was tested 
by the samples not used in building that tree. This is known as the out of bag 
error estimate as it is an internal error estimate of a random forest model as it is 
being constructed. The final models were tested with the remaining 30% of the  

 

 
Figure 5. Plot depicting the area of Wakkerstroom wetland for years 1938, 1953, 1969, 
1979 and 2009. 

 
Table 1. Number of pixels attributed to each vegetation class of a Landsat 8 image 
(24/02/2019) using random forest derived Model 1 and Model 2. 

 
Model 1 Model 2 

 
Pixel Count 

Percentage of  
wetland covered (%) 

Pixel Count 
Percentage of  

wetland covered (%) 

Grass 594 12.5 595 12.6 

Open Water 
 

0 
 

0 

P. australis 1283 27.1 1284 27.1 

P. australis/T. capensis mix 580 12.2 580 12.2 

T. capensis 2278 48.1 2276 48.1 

https://doi.org/10.4236/jwarp.2021.1310043


V. A. Stockdale et al. 
 

 

DOI: 10.4236/jwarp.2021.1310043 815 Journal of Water Resource and Protection 
 

data to validate and select the best model for prediction and mapping purposes. 
The model calculated 100% accuracy for the classifications produced using the 
calibration data with no misclassifications. Using the 1997 image, a 27.5% out of 
bag error estimate was calculated when classifying the validation data points. 
Class error (Table 2) represents the likelihood of misclassification and so a 
higher percentage result correlates to a higher likelihood of misclassifying the 
vegetation classification. Table 2 illustrates that the model had the most diffi-
culty classifying grass (42.9% classification error) and P. australis (58.8% classi-
fication error). The validation model predicted a 70% total accuracy when using 
the out of bag data points to create a vegetation classification and so 70% of the 
time a data point will be classified correctly to its in situ classification. 

Table 3 shows the calibration model created for a Landsat 8 image dated 
24/02/2019. An out of bag error estimate of 42% was calculated for the 2019 im-
age when classifying the validation data points. In addition to the estimated er-
ror rate, the model had a 53% accuracy value when using the validation data to 
predict vegetation classes from Landsat spectra when compared to in situ classi-
fication. Therefore 53% of the time a data point will be classified correctly to its 
in situ classification. 

Similarly in Table 2, the 1997 classification model struggles to classify grass 
(57.1% likelihood of misclassification) and P. australis (70.6% likelihood of mis-
classification) but additionally, this model struggles to classify P. australis/T. 
capensis mix (60% likelihood of misclassification). 

This study used six reflectance bands from Landsat 5 for modelling and 
 

Table 2. The likelihood of misclassifying vegetation types on Wakkerstroom wetland us-
ing validation model 1 created from a Landsat 5 image dated 11/02/1997. 

Misclassification likelihoods Grass 
Open  
water 

P. australis 
P. australis/ 

T. capensis mix 
T. capensis 

Class error  
(%) 

Grass 4 0 0 0 3 42.9 

Open Water 0 3 0 0 0 0 

P. australis 0 0 7 3 7 58.8 

P. australis/T. capensis mix 0 0 0 9 1 10 

T.capensis 1 0 3 1 27 15.6 

 
Table 3. Table of the misclassification likelihood between vegetation types on Wakkerstroom 
wetland using the validation model created from a Landsat 8 image dated 24/02/2019. 

Misclassification  
likelihoods 

Grass 
Open  
water 

P. australis P. australis/ 
T. capensis mix 

T. capensis Class error  
(%) 

Grass 3 0 0 0 4 57.1 

Open Water 0 3 0 0 0 0 

P. australis 0 0 5 4 8 70.6 

P. australis/T. capensis mix 0 0 4 4 2 60 

T. capensis 1 0 5 1 25 21.9 
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prediction purposes. Peak reflectance for each vegetation type’s spectral reflec-
tance derived from Landsat 5 occurred at bands 4, 5 and 7 (Figure 6). These 
bands represent the red (0.76 - 0.90 µm) and shortwave infrared 1 and 2 bands 
(1.55 - 1.75 and 2.08 - 2.35 µm, respectively). Nine reflectance bands from 
Landsat 8 were used in the modelling and prediction mapping. Peak reflectance 
for each vegetation type’s mean spectral reflectance derived from Landsat 8 oc-
curred at bands of 4, 5 and 6 (Figure 6). These bands represent the red (0.64 - 
0.67 µm), near infrared (0.85 - 0.88 µm) and shortwave infrared band (1.57 - 
1.65 µm). Infrared bands are most reflected by photosynthetic vegetation due to 
the moist cell walls and airspace between cell walls. Vegetation absorbs blue and 
red light to power photosynthesis. Plants with higher chlorophyll concentrations 
absorb more red light than less photosynthetically active vegetation. Each of the 
vegetation communities had overlapping spectral signatures and this is a partial 

 

 
Figure 6. Reflectance values for vegetation communities within the Wakkerstroom wetland for 1997, 2005, 2013 and 2019. 
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explanation as to why the model struggles to create classifications with high ac-
curacy values and clear differentiations between vegetation types. 

Once the strongest model was found after testing it against in situ data—a 
classification model for the entire wetland for each year was generated. Two 
meaningful trends are worth noting. The first is the steady increase of P. aus-
tralis distribution on the wetland: in 1997 it represented 16.3% of the wetland 
and by 2019 it represented 29.7% of all vegetation types on the wetland however 
this increase was not statistically significant (r = 0.89, p = 0.11, Table 4). 

4. Discussion 
4.1. Examining the Change in Wetland Extent  

Using Aerial Photographs 

Tuominen and Pekkarinen [25] discussed how aerial photography has assisted in 
vegetation and landscape mapping since the 1930s. Aerial photographs provide a 
general “big picture” view of landscapes and the surrounding terrain that can be 
used to delineate site boundaries including wetland borders [26]. The use of ae-
rial photographs from 1938, 1953, 1969, 1979 and 2009 revealed that Wakkerstroom 
wetland has a non-static boundary, and its extent shifts irregularly over time due 
possibly to changing climatic conditions. However, since wetlands are transi-
tional zones between aquatic and terrestrial ecosystems, wetland borders are 
commonly indistinct to other land classes [27] [28]. Civco, Kennard and Lefor 
[29] identified the subjectivity of border placement, even by experienced photo 
interpreters, over 40 years ago. Their observation was illustrated by the variabil-
ity in boundary creation by individual experts and so composite agreement maps 
had to be produced by photo interpreters. The low frequency of aerial data ac-
quisition and high variability of wetland hydrodynamics hindered accurate 
boundary formation especially if images were collected in different seasons. 

A consideration put forward by Davis and Wang [30] is that each image should 
be geo-referenced to the same base map using the same reference coordinate  

 
Table 4. Pearson correlation values used to determine the relationships between vegeta-
tion over time. 

Vegetation over time Correlation value (r) p-value 

T. capensis 0.70 0.30 

P. australis 0.89 0.11 

P. australis/T. capensis mix 0.92 0.07 

Open water 0.60 0.93 

Grass 0.71 0.29 

Effect of vegetation types on one another Correlation value (r) p-value 

P. australis and T. capensis 0.88 0.12 

P. australis/T. capensis mix and P. australis 0.68 0.32 

P. australis/T. capensis mix and T. capensis 0.37 0.63 
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system to ensure that applicable comparisons can be produced. Orthophotos are 
aerial images that have been geo-referenced and corrected for sensor perspective 
and topography and are commonly used as base maps. In this study, the 2009 
aerial image had been orthorectified by the Survey General’s office of South Af-
rica and provided the base map to register the aerial images for 1938, 1953, 1969 
and 1979. 

The development of the open water area east of the Paul Kruger Bridge, which 
is likely due to the building of the causeway in 1979, is a distinctively visual ex-
ample of human induced change to the wetland extent. The continual increase in 
wetland extent from 1938 to 2009 could possibly be attributed to the competitive 
and rapid growth pattern of P. australis [9]. The dense rooting network created 
by homogenous stands of P. australis slows water flow velocity, increases diffuse 
flow across the wetland and encourages sediment deposition which prolongs pe-
riods of flooding. These conditions may possibly have led to an increase in lat-
eral extension of the wetland. 

4.2. Mapping and Quantifying the Distribution of Each Vegetation 
Type Using Remote Sensing 

To gather the longest historical record of data, images from both Landsat 5 (TM) 
and Landsat 8 (OLI) satellites were used. Both satellites have the same image 
spatial resolution and although these satellites have different spectral resolutions, 
the presence of infrared sensors on each satellite allowed vegetation identifica-
tion possible. Supervised classifications can be used to classify vegetation classes 
automatically using computer algorithms to determine the probability that a 
pixel belongs to a certain class. One such method is Random Forest which is a 
non-parametric extension of decision tree modelling where unclassified vegeta-
tion classes can be categorised using in situ training samples [24]. The results of 
the random forest modelling demonstrated that with each Landsat image the 
predicted vegetation communities changed, most noticeably P. australis density 
increased and T. capensis density decreased. Various studies have used satellite 
imaging with some success [31] [32] [33] whereas others have found that the 
technology is inadequate to map vegetation in smaller areas [34] [35]. The aim 
to map the distribution of vegetation types present on the wetland did not pro-
vide significant results that demonstrated the model could classify vegetation 
with a high level of certainty but these results did allow for an improved under-
standing of wetland vegetation dynamics. Factors that might be responsible for 
these results could include the spatial and spectral resolution of the data inter-
preted from each satellite. Repeating the modelling using other satellites that 
have a finer spectral or spatial resolution might be useful for this type of study. 
Photosynthetic vegetation which contains chlorophyll a and b tend to absorb 
light of the wavelengths ~400 - 700 nm and has a much higher reflectance in the 
near infrared region between ~700 - 1400 nm. The results showed that the spec-
tral reflectance using the Landsat narrow bands for each vegetation type was 
very similar and contained no discernible contrast with which to make distinc-
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tive classifications. This could be attributed to the vegetation types having simi-
lar concentrations of photosynthetic pigments and similar photosynthetic activ-
ity. Mahdavi et al. [36] and Wang et al. [37] attributed the difficulty they en-
countered when using satellite imagery to differentiate between vegetation types 
to wetlands having a high intra-species and low inter-species variability in re-
flectance. 

5. Conclusion 

The conservation of the Wakkerstroom wetland is critical due to its importance 
in providing a habitat for numerous bird and invertebrate species. It is necessary 
to understand the dynamics of the size of the wetland as well as changes in vege-
tation over time. Aereal photographs and Landsat 5 and 8 satellite images were 
used over the period 1938-2019. It was shown that the weland has increased in 
extent by 0.483 km2 from 1938 to 2009. The P. australis population density in-
creased significantly over time (r = 0.89), whereas the T. capensis population den-
sity had a strong negative correlation over time (r = −0.70). A strong negative 
relationship between P. australis and T. capensis existed (r = −0.88). This is wor-
rying as P. australis is extremely aggressive and limits the types of habitats avail-
able for the birds and invertebrates. A carefully governed fire regime with occa-
sional herbicide application would be the only management tool that would help 
limit the spread of P. australis. The fire should be used to introduce a mosaic of 
vegetation species and herbicide application to limit the regrowth of P. australis. 
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