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Abstract 
Constructed Wetlands (CWs) are currently one of the most promising tech-
niques for wastewater treatment, having demonstrated their effectiveness. 
However, the choice of substrate particle size is critical to the smooth opera-
tion of the process, as hydrodynamic constraints require a coarse particle size, 
whereas wastewater treatment recommends a fine particle size. This study in-
vestigates the suitability of laterite and shale as substrates of different sizes (1 
- 3, 3 - 5 and 5 - 8 mm) in CWs for domestic wastewater treatment. The study 
was carried out in an experimental pilot plant consisting of 12 parallelepiped 
beds (C × C = 0.4 × 0.4 m2; H = 0.6 m) filled from bottom to top with 0.1 m of 
gravel and 0.4 m of shale or laterite of different grain sizes with two replica-
tions. During the six months of operation, plant biomass and stem diameter 
of Pennisetum purpureum used as vegetation in the CWs were determined. 
Raw and treated water were also sampled and analyzed for pollutants, includ-
ing chemical oxygen demand (COD), biochemical oxygen demand (BOD5), 
total Kjedahl nitrogen (TKN), total phosphorus (TP), and total suspended sol-
ids (TSS), using International Organization for Standardization (ISO) analyt-
ical methods. P. purpureum developed much better in the CW beds lined with 
shale; plant biomass ranged from 13.8 to 14.7 kg/m2 and from 11.2 to 12.5 
kg/m2 in the beds lined with shale and laterite, respectively, as did stump di-
ameter, which ranged from 15.5 to 16.1 cm and from 11.10 to 12.7 cm, respec-
tively. However, the highest values for biomass and stump diameter for each 
material were obtained in the beds lined with 1 - 3 mm geomaterials. Pollutant 
removal efficiencies were highest in the CWs lined with laterite and shale of 1 
- 3 mm grain size (76.9% - 83% COD, 78% - 84.7% BOD5, 55.5% - 72.2% TKN, 
58.4% - 72.4% TP, 78.1% - 80.2% TSS), with the highest values recorded in the 
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shale-lined beds. However, the 3 - 5 mm grain size of both materials provided 
quality filtrates (140 - 174 mg/L COD, 78.5 - 94.8 mg/L BOD5, 4.6 - 5.7 mg/L 
TP) in line with local wastewater discharge levels. This size of geomaterials 
appears to be suitable for optimization purposes, although further work with 
these materials, such as increasing the depth of the wetland, is required to im-
prove the level of NTK and TSS discharge. 
 

Keywords 
Constructed Wetlands, Domestic Wastewater, Laterite, Pennisetum  
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1. Introduction 

Constructed wetlands (CWs), also known as artificial wetlands, are currently one 
of the most promising wastewater treatment technologies, having demonstrated 
their effectiveness in removing pollutants from a wide range of wastewater types 
(domestic, industrial, landfill, etc.) for decades [1]-[3]. CWs are also known for 
their relatively low installation and operating costs and energy consumption com-
pared to conventional wastewater treatment technologies such as activated sludge, 
biological discs, etc. [4] [5]. Furthermore, in addition to the potential of CWs to 
offset energy demand (through the use of plant biomass) and water demand in 
agriculture (through the use of treated wastewater for irrigation) [6], artificial wet-
lands have an asset related to the aesthetics of the landscape in which they are 
installed or located [7]-[9]. 

The treatment of wastewater in constructed wetlands is carried out by physical, 
chemical and biological mechanisms and in all cases involves the components of 
CWs: the plant, the micro-organisms and the filtration material that forms the 
substrate for the first two. While the microorganisms develop naturally in the sub-
strate of the constructed wetland during its operation, the plant and the filtration 
material are selected by the manufacturer during the implementation of the pro-
cess [2] [10]. However, the contribution of plants used in constructed wetlands to 
the process of reducing the pollutant load of wastewater is both direct and indirect 
in the wastewater treatment process. Plants have the capacity to assimilate nutri-
ents (nitrogen and phosphorus) from wastewater for their metabolism and/or to 
store them. However, several studies seem to show that plants play a minimal role 
in the direct removal of nutrients by assimilation. However, some plants secrete 
antibiotics and use these metabolites to help eliminate pathogenic microorgan-
isms from wastewater. The indirect contribution of plants to the purification pro-
cess can be seen in the stabilization of the substrate by the root system, the mainte-
nance of flow capacity, the creation of a microclimate and the oxygenation of the 
substrate, all of which are conducive to the establishment of periphyton and puri-
fying microorganisms. However, in addition to adaptation to climatic conditions, 
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resistance to anoxic and hyper-eutrophic situations and the ability to absorb pol-
lutants are suggested for the selection of plants in constructed wetlands [2] [7] 
[11] [12]. 

Due to their particle size, substrates play a role in filtering suspended solids (SS) 
present in wastewater and provide, among other things, a physical support for plants 
and a reactive surface for the transformation of chemical elements, as well as an 
ecosystem for microbial fauna and/or macrofauna in the constructed wetlands [10]. 
The chemical constituents of the substrate (e.g. iron, aluminium, etc.) influence the 
chemical reactions that take place there in the CWs. Therefore, the selection of the 
substrate based on, among other things, its potential to absorb pollutants from the 
wastewater to be treated seems to be an added value to the wastewater treatment 
process using constructed wetlands (Vymazal, 2022) [2]. Several research reviews, 
including those by Sanjrani et al. [13], Rahman et al. [10], Ji et al. [14], Sandoval 
Herazo et al. [15] and Wang et al. [16] on substrates based on natural mineral ma-
terials commonly used in constructed wetlands mention sand, gravel, clay, calcite, 
marble, bentonite, dolomite, limestone, shell, zeolite, peat and others. However, ge-
ological materials such as shale and laterite remain largely unexplored, although 
they are abundant in some areas and their mineralogical composition gives them 
adsorptive properties that could be put to good use in the purification performance 
of constructed wetlands. In addition to the kaolinite present in shale and laterite, the 
iron and alumina oxides and hydroxides present in laterite and the other forms of 
clay (albite and dolomite) present in shale enable them to bind the nitrogen and 
phosphorus compounds present in wastewater [17] [18]. 

However, while hydrodynamic constraints (i.e. adequate flow rate) require a 
coarse particle size for the filtration material, wastewater treatment requires a fine 
particle size; this remains a major trade-off to be considered when selecting filtration 
material for constructed wetlands [19] [20]. Therefore, the choice of particle size for 
the filtration material has to fulfil a double objective: to ensure the effectiveness of 
the wastewater treatment and to guarantee the lifetime of the constructed wetlands. 
This has led to several studies, including those by Zhao et al. [21] [using zeolites, 
gravel and anthracites] and [22] [using ceramics], among others. Relative to shale 
and laterite, these geomaterials have been successfully tested simultaneously for the 
treatment of domestic wastewater in constructed wetlands due to their availability 
and abundance [23]. However, optimizing the granulometry of these materials, tak-
ing into account only compliance with the effluent discharge limits into the receiv-
ing environment, would reduce the effort and resources required to crush these ma-
terials. This is because fine-grained materials require larger quantities of geomateri-
als to be crushed than coarser-grained materials [24]. Similarly, fine-grained mate-
rials are more prone to rapid clogging of constructed wetlands, which reduces the 
lifetime of the wetland, even though the treatment of wastewater pollutants is more 
advanced in this type of material [19] [25] [26]. 

This study investigates the influence of the grain size of shale and laterite (used 
as substrates) on the operation of constructed wetlands for the treatment of 
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domestic wastewater. The objectives are to determine the purification perfor-
mance of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), 
Total Nitrogen Kjedahl (TNK), Total Phosphorus (TP) and Total Suspended Sol-
ids (TSS) in constructed wetlands equipped with laterite and shale of different 
grain sizes (1 - 3, 3 - 5 and 5 - 8 mm), to access the compliance of wetland effluent 
pollutant concentrations with wastewater discharge levels to the receiving envi-
ronment, and to investigate the response of plant growth in the constructed wet-
lands (i.e. above ground biomass and plant stump diameter). 

2. Methods 
2.1. Experimental Setup 

The study was carried out at the experimental pilot plant previously described by 
Traoré et al. [23] at the Nangui Abrogoua University, Abidjan, Côte d’Ivoire. The 
site is characterized by a humid tropical climate with an average temperature of 
25 to 33.2 C and an average rainfall of 23 to 525 mm [27]. The experimental set-
up consisted of twelve (12) beds in the shape of a square-based right block (C × C 
= 0.4 × 0.4 m2, with H = 0.6 m), six (6) of which were filled with the same geo-
materials (i.e. shale or laterite). The beds were filled from bottom to top with a 0.1 
m layer of gravel (5/25 mm) and a 0.4 m layer of substrate consisting of shale or 
laterite of different grain sizes (1 - 3, 3 - 5 and 5 - 8 mm), separated by a geotextile. 
Each bed was equipped with an outlet (Ф = 32 mm) to drain the percolation water 
(treated water). 

The beds were planted with young Pennisetum purpureum plants (20 cm tall) 
from a nursery established for this purpose at the experimental site. Three (3) 
three-week-old plants of the same vigor were transplanted into each reactor, with 
a spacing of 30 cm between plants, relatively similar to that used by Zahui et al. 
[28]. The lilies were fed for three days a week (i.e. Monday, Wednesday and Fri-
day) with raw domestic wastewater (6.43 L·d−1), collected from the Nangui Abrogoua 
University wastewater network and stored in a cubitainers (1 m3) 1.5 m above 
ground, from which the beds were fed (Figure 1). 

2.2. Preparing Substrates for Constructed Wetlands 

Laterite and shale blocks crushed for use as substrates in constructed wetlands 
were collected from the Lomo-Nord site at Toumodi in central Côte d’Ivoire 
(6˚39'0''N 4˚58'60''W). The samples were washed and steamed, then separately 
crushed with a hammer and sieved through a series of sieves (Figure A1). Gran-
ular fractions with diameters of 1 - 3 mm, 3 - 5 mm and 5 - 8 mm (Table 1) were 
collected for the processing tests. Thus, the choice of particle sizes was based on 
literature data [29] [30]. Once the granular fractions were obtained, they were 
washed to remove any impurities before being placed in the various artificial wet-
land beds. The mineralogical analysis of these geomaterials shows that they are 
rich in Al and Fe, with respectively 49.9% Fe2O3 and 30% Al2O3 for the shale and 
31.40% Fe2O3 and 66.01% Al2O3 for the laterite. 
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Figure 1. Schematic of the experimental pilot.  
 
Table 1. Raw geomaterials and crushed geomaterials with a range of grain sizes for use in 
experiments. 

Raw geomaterials Crushed geomaterials 

Laterite 

 

1 - 3 mm 

 

3 - 5 mm 

 

5 - 8 mm 

 

Shale 

 

1 - 3 mm 

 

3 - 5 mm 

 

5 - 8 mm 
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2.3. Monitoring Pennisetum purpureum Growth in Constructed  
Wetland Beds 

Plant growth in the constructed wetland beds was monitored by measuring the 
diameter of the plant stumps and the plant biomass produced. The plants were 
harvested at the end of the two-month growth cycle of the P purpureum stems 
and the diameter of the plant stumps was measured to the millimeter during mow-
ing. A total of three plant harvests were made, during which the production of 
fresh plant biomass was determined after weighing the harvested biomass accord-
ing to Equation (1) 

FBP
S

=                                  (1) 

with: P: production (kg/ m2), FB: fresh biomass (kg) and S: surface of the bed (m2). 

2.4. Water Sampling and Analysis of Physico-Chemical Parameters 

Water samples were taken at the inlet and outlet of the constructed wetland beds 
at regular intervals of 15 days and stored in polyethylene bottles at 4˚C until anal-
ysis, i.e. 12 samples at the inlet and outlet of each bed. Physical parameters such 
as pH, dissolved oxygen (DO), electrical conductivity (EC) and suspended solids 
(SS) were determined according to ISO 10523 [31], ISO 5814 [32], ISO 7888 [33] 
and ISO 11923 [34] respectively. As for the analysis of chemical parameters, Chem-
ical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), Total Nitro-
gen Kjedahl (TNK) and Total Phosphide (TP) were determined according to ISO 
6060/2 [35], ISO 5815/1 [36], ISO 5663 [37] and ISO 6878/2 [38] respectively. 

Based on the concentrations of the above-mentioned pollutants (i.e. COD, 
BOD5, NTK, TP and TSS), the purification efficiencies of the wetlands were cal-
culated according to relationship 2 described by Abissy and Mandi [39]. 

( ) ( ) ( )
( )

Input load mg Output load mg
Purification efficiency % 100

Input load mg
−

= ×  (2) 

with: 
Input load = concentration (mg/L) × volume of raw wastewater (L) fed to the 

bed; 
Output load = concentration (mg/L) × volume of water (L) returned at the out-

let of the bed. 

2.5. Data Analysis 

In order to analyze the data, statistical tests were carried out to compare the data 
from the beds of the different constructed wetlands (i.e. biomass production, plant 
stump diameter, pollutant concentrations, wetland purification efficiencies, vol-
umes of water returned at the outlet of the beds, etc.). The tests used were the 
Shapiro-Wilk test to determine the normality of the data, followed by the ANOVA 
and T-test in the case of a normal distribution of the data, or the Kruskal-Wallis 
test followed by the Mann-Whitney test, depending on whether the data followed 
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a non-normal distribution. In all cases, the difference was considered significant 
when p < 0.05. These statistical tests were performed using R studio 3.3.2 software. 

3. Results 
3.1. Plant Growth Response 

Figure 2 shows the plant biomass and stump diameter developed by Pennisetum 
purpureum in beds filled with shale and laterite during the experiment. Overall, the 
plant biomass and stump diameter of the plants increased as the grain size of the 
geomaterials decreased, regardless of the geomaterials. However, the plant biomass 
and stump diameter measured in the shale beds were higher than those in the laterite 
beds. As shown in Figure 2(A), the biomasses were 14.7 ± 0.5 kg/m2, 14.1 ± 0.5 kg/m2 
and 13.8 ± 0.3 kg/m2 in beds filled with shale of grain sizes 1 - 3, 3 - 5 and 5 - 8 mm, 
respectively, and 12.5 ± 0.1 kg/m2, 11.9 ± 0.2 kg/m2 and 11.2 ± 1 kg/m2 in beds filled 
with laterite of grain sizes 1 - 3, 3 - 5 and 5 - 8 mm, respectively. Figure A2 shows 
plant growth in the beds of constructed wetlands.  

As for the stump diameter (Figure 2(B)), the measurements taken were 16.1 ± 
1.3 cm, 15.5 ± 1.4 cm and 14 ± 1.5 cm in the beds filled with shale of grain sizes 1 
- 3, 3 - 5 and 5 - 8 mm, respectively, and 12.7 ± 1.4 cm, 11.9 ± 1.4 cm and 11.1 ± 
1.8 cm in the beds filled with laterite of grain sizes 1 - 3, 3 - 5 and 5 - 8 mm, 
respectively. Statistical analysis showed that the biomass and stump diameter of 
the plants produced in the constructed wetlands lined with shale were significantly 
higher than those in the wetlands lined with laterite, considering the homologous 
grain sizes (T-test: p < 0.05). On the other hand, there was no significant differ-
ence when comparing plant biomass and stump diameter measured in beds of the 
same geomaterials (shale or laterite) (T-test: p > 0.05). 
 

 
Figure 2. Biomass (A) and stump diameter (B) of Pennisetum purpureum in constructed 
wetlands lined with slate laterite with grain sizes of 1 - 3, 3 - 5 and 5 - 8 mm, respectively. 
Histogram with same letter indicates no significant difference (p > 0.05).  

3.2. Wastewater Treatment Performance  
3.2.1. Physical Parameters 
Table 2 shows the minimum, maximum and average values of effluent volume, 
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pH, dissolved oxygen (DO) and electrical conductivity (EC) measured at the inlet 
and outlet of wetland beds lined with shale and laterite of grain sizes 1 - 3 mm 
(Sch1-3, Lat1-3), 3 - 5 mm (Sch3-5, Lat3-5) and 5 - 8 mm (Sch5-8, Lat5-8). Over-
all, the volume of water returned at the outlet of the wetland beds was significantly 
less than the volume of effluent applied [Mann-Whitney test: p < 0.05]. However, 
the volumes of water collected at the outlet of the laterite filled beds (13.63 - 14.42 
liters) were higher than those of the shale filled beds (12.96 - 14.40 liters). How-
ever, for beds lined with the same material (shale or laterite), the volume of water 
returned increased with the grain size of the geomaterials. The same was true for 
electrical conductivity, for which 451 µS·cm−1 (Sch1-3), 478 µS·cm−1 (Sch3-5) and 
527 µS·cm−1 (Sch5-8) were measured at the outlet of beds lined with shale, and 479 
µS·cm−1 (Lat1-3), 519 µS·cm−1 (Lat3-5) and 569 µS·cm−1 (Lat5-8) at the outlet of 
beds lined with laterite. 

On the other hand, the values measured for dissolved oxygen were higher at the 
outlet of the beds than in the raw water and decreased with increasing geomateri-
als grain size (T-test: p < 0.05). For an average of 2 mg/L in the raw water, 7.2 
mg/L (Sch1-3), 6.1 mg/L (Sch3-5) and 5.2 mg/L (Sch5-8) were recorded at the 
outlet of beds lined with shale, and 6.4 mg/L (Lat1-3), 5.4 mg/L (Lat3-5) and 4.6 
mg/L (Lat5-8) at the outlet of beds lined with laterite. As for the pH, the average 
value recorded in the wastewater (7.9) fell sharply in the filtrates from the wetland 
beds (7.2 - 7.4) [T-test: p < 0.05]. However, the values varied very little from one 
geomaterials to another and from one grain size to another (T-test: p > 0.05). 
 

Table 2. Minimum, maximum and average values for volumes of wastewater, pH, dissolved oxygen and electrical conductivity 
measured at the inlet (wastewater) and outlet (filtrates) of constructed wetlands. 

Treatment and parameter Volume (L) CE (µS/cm) OD (mg/L) pH 

Wastewater 

Aver 15a 1633 ± 94.7b 2 ± 0.5b 7.9 ± 0.4a 

Max - 1825 3 9.5 

Min - 1446 1.1 6.8 

Be
ds

 li
ne

d 
w

ith
 sh

al
e 

Sch1-3 

Aver 12.96 ± 0.5b 451 ± 48.7a 7.2 ± 0.9a 7.2 ± 0.3b 

Max 14 577 9 7.8 

Min 12 342 4.8 6.4 

Sch3-5 

Aver 13.29 ± 0.4b 478 ± 54.1a 6.1 ± 1ad 7.4 ± 0.3b 

Max 14 625 8 8 

Min 13 340 3.5 6.7 

Sch5-8 

Aver 14.04 ± 0.1c 527 ± 45.7a 5.2 ± 1.1d 7.4 ± 0.3b 

Max 14.5 681 7.5 7.8 

Min 13.5 441 2.9 6.6 
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Continued 
Be

ds
 li

ne
d 

w
ith

 la
te

ri
te

 

Lat1-3 

Aver 13.63 ± 0.5d 479 ± 51.2a 6.4 ± 1.1a 7.3 ± 0.2b 

Max 14.5 603 8.5 7.8 

Min 13 365 3.6 6.8 

Lat3-5 

Aver 14 ± 0.1d 519 ± 58.8a 5.4 ± 1.2ac 7.3 ± 0.3b 

Max 14.5 689 7.2 7.8 

Min 13.5 379 2.6 6.5 

Lat5-8 

Aver 14.42 ± 0.2e 569 ± 42.8a 4.6 ± 1c 7.4 ± 0.3b 

Max 14.5 701 6.3 7.8 

Min 14 483 2 6.1 

Values in the same column followed by the same superscript letter (i.e. a, b, c...) indicate no significant difference (p > 0.05). Beds lined 
with shale (Sch1-3, Sch3-5 and Sch5-8) and laterite (Lat1-3, Lat3-5 and Lat5-8) with grain sizes of 1 - 3, 3 - 5 and 5 - 8 mm respectively. 

3.2.2. Chemical Parameters 
Table 3 shows the minimum, maximum, average and purification efficiency values 
for total suspended solids (TSS), chemical oxygen demand (COD) and biochemical 
oxygen demand (BOD5), total Kjedahl nitrogen (TKN) and total phosphorus (TP) 
measured at the inlet (wastewater) and outlet (filtrates) of wetland beds lined with 
shale and laterite with grain sizes of 1 - 3 mm (Sch1-3, Lat1-3), 3 - 5 mm (Sch3-5, 
Lat3-5) and 5 - 8 mm (Sch5-8, Lat5-8). Overall, the TSS at the outlet of the wetland 
beds was significantly lower than that of the raw water (238.9 mg/L) [Mann-Whit-
ney test: p < 0.05]. However, the average TSS concentrations obtained at the outlet 
of the laterite-lined beds (51.7 mg/L [Lat1-3], 73.7 mg/L [Lat3-5] and 86.3 mg/L 
[Lat5-8]) were higher than those of the shale-lined beds (48.7 mg/L [Sch1-3], 68.4 
mg/L [Sch4-5] and 79.8 mg/L [Sch5-8]). However, for beds lined with the same ma-
terial (shale or laterite), TSS concentrations increased with the grain size of the ge-
omaterials. Thus, TSS removal rates decreased with increasing geomaterials grain 
size, with values ranging from 65.2 to 80.2% for beds lined with shale and from 61.2 
to 78.1% for beds lined with laterite. The same was true for the chemical oxygen 
demand (COD), which was 481.3 mgO2/L in the raw water, with average values of 
92.4 mgO2/L (Sch1-3), 140.5 mgO2/L (Sch3-5) and 208.9 mgO2/L (Sch5-8) measured 
at the outlet of the beds lined with shale, and 118.7 mgO2/L (Lat1-3), 174.5 mgO2/L 
(Lat3-5) and 267.7 mgO2/L (Lat5-8) at the outlet of the beds lined with laterite. 
These corresponded to BOD5 removal efficiencies of 58.5 to 83% in the shale-lined 
beds and 46.1 to 76.9% in the laterite-lined beds. 

Like TSS and COD, the concentrations of biochemical oxygen demand measured 
were lower at the outlet of the beds than in the raw water, and decreased when the 
grain size of the geomaterials decreased (T-test: p < 0.05). For an average of 288.6 
mgO2/L in raw water, 48.3 mgO2/L (Sch1-3), 78.5 mgO2/L (Sch3-5) and 118.2 
mgO2/L (Sch5-8) were recorded at the outlet of beds lined with shale, and 65.4 
mgO2/L (Lat1-3), 94.8 mgO2/L (Lat3-5) and 151.3 mgO2/L (Lat5-8) at the outlet of 
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beds lined with laterite. Equivalent BDO5 purification efficiencies ranged from 60.2 
to 84.7% in the shale-filled beds and from 48.2 to 78% in the laterite-filled beds. As 
for total Kjedahl nitrogen, the mean value recorded in the raw water (143.6 mg/L) 
decreased significantly in the wetland bed filtrates [Mann-Whitney: p < 0.05]. How-
ever, the NTK concentrations obtained at the outlet of laterite-filled beds (71.9 mg/L 
(Lat1-3), 81.5 mg/L (Lat3-5) and 92.6 mg/L (Lat5-8)) were higher than those of shale-
filled beds (46.5 mg/L (Sch1-3), 66.2 mg/L (Sch3-5) and 78.3 mg/L (Sch5-8)). How-
ever, for beds filled with the same material (shale or laterite), NTK concentrations 
increased with the grain size of the geomaterials. This represented between 49.9 and 
72.2% NTK removal in beds filled with shale and between 38.3 and 55.5% in beds 
filled with laterite. Like TSS, COD, BOD5 and NTK, total phosphorus concentrations 
were lower at the bed outlet, and decreased as the grain size of the geomaterials de-
creased (T-test: p < 0.05). The mean values recorded indicated 11.8 mg/L in the raw 
water, 3.7 mg/L (Sch1-3), 4.6 mg/L (Sch3-5) and 5.5 mg/L (Sch5-8) at the outlet of 
the beds lined with shale and 5.4 mg/L (Lat1-3), 5.7 mg/L (Lat3-5) and 6.7 mg/L 
(Lat5-8) at the outlet of the beds lined with laterite. Total phosphorus purification 
efficiencies ranged from 56.3% to 72.4% in the shale-filled beds and from 44.7% to 
58.4% in the laterite-filled beds. These yields, as for the above-mentioned parameters 
apart from NTK and TSS, differed significantly overall for each grain size. (T-test: p 
< 0.05). However, overall, the yields obtained by the beds filled with materials of grain 
size 1 - 3 mm were statistically different from the others (p < 0.05). 
 

Table 3. Minimum, maximum and average concentrations determined in wastewater and in filtrates from beds lined with shale 
(Sch1-3, Sch3-5 and Sch5-8) and laterite (Lat1-3, Lat3-5 and Lat5-8). 

Treatment and parameter 

TSS COD BOD5 TNK TP 

Value 
(mg/L) 

R (%) 
Value 

(mgO2/L) 
R (%) 

Value 
(mgO2/L) 

R (%) 
Value 

(mg/L) 
R (%) 

Value 
(mg/L) 

R (%) 

Wastewater 

Aver 238.9a - 481.3a - 288.6a - 143.6a - 11.8a - 

Max 480 - 644.8 - 389.3 - 194.7 - 13.8 - 

Min 166.8 - 297.4 - 163.5 - 97.5 - 10.2 - 

Be
ds

 li
ne

d 
w

ith
 sh

al
e 

Sch1-3 

Aver 48.7b 80.2a 92.4b 83a 48.3b 84.7a 46.5b 72.2a 3.7b 72.4a 

Max 59.5 93.1 133.7 92.1 89.2 96.4 86.4 88.6 4.9 81.7 

Min 20.3 71.3 45.8 68.2 15.2 67 16.7 50 2.8 65.6 

Sch3-5 

Aver 68.4cd 71.5b 140.5c 73.1b 78.5c 74.1b 66.2b 60.6ba 4.6c 65.5b 

Max 89 92 204.3 86.8 112.4 88.5 126.2 87 5.5 73.2 

Min 42.5 57.6 81.5 54.7 50.3 50.7 21 32.7 3.8 53.2 

Sch5-8 

Aver 79.8d 65.2c 208.9d 58.5c 118.2d 60.2c 78.3b 49.9bc 5.5d 56.3c 

Max 101.3 86.7 298.1 72.6 176.2 75.1 139.2 79.8 6.8 64.5 

Min 48.4 50.6 125.8 38.8 64.7 34.7 29 26.6 4.2 48.8 
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Continued 
Be

ds
 li

ne
d 

w
ith

 la
te

ri
te

 

Lat1-3 

Aver 51.7b 78.1a 118.7b 76.9a 65.4b 78d 71.9b 55.5d 5.4ef 58.4d 

Max 62 91.9 208.1 89.7 105.4 90.4 143.4 79.9 6.2 65 

Min 24.4 68.9 69.6 52.3 38.7 58.2 34.6 30.4 4.4 49.3 

Lat3-5 

Aver 73.7cd 67.7b 174.5c 64.9b 94.8c 67.6e 81.5b 48bd 5.7f 55.1e 

Max 92.3 90.6 267.5 79.7 137.5 80.3 153.9 77.9 6.8 62 

Min 48.3 53.4 90.4 36.4 59.3 39.2 35.9 22.7 4.8 51.4 

Lat5-8 

Aver 86.3d 61.2d 267.7e 46.1d 151.3d 48.2f 92.6b 38.3eb 6.7g 44.7f 

Max 115 85.4 267.5 67.9 250.2 68.9 166.7 72.1 7.8 54.3 

Min 52.7 45.8 92.5 27.1 92.5 26.4 37.1 14.2 6.1 35.6 

Values in the same column followed by the same superscript letter (i.e. a, b, c...) are not significantly different at p < 0.05. Sch1-3 
Sch3-5 and Sch5-8 = shale-filled beds with grain sizes of 1 - 3, 3 - 5 and 5 - 8 mm respectively; Lat1-3, Lat3-5 and Lat5-8 = laterite-
filled beds with grain sizes of 1 - 3, 3 - 5 and 5 - 8 mm respectively. 

4. Discussion 

This study investigated the influence of grain size (1 - 3, 3 - 5 and 5 - 8 mm) of 
shale and laterite on the functioning of constructed wetlands treating domestic 
wastewater. With regard to plant growth in the wetland beds, the results showed 
greater development of Pennisetum purpureum in the shale-filled beds than in 
the laterite beds. However, for both filtration materials (shale and laterite), the 
smaller the grain size, the greater the plant biomass produced, as well as the di-
ameter of the plant stumps. This is explained by the fact that fine-grained materi-
als tend to increase the residence time of water in the constructed wetland sub-
strate [16]; this allows greater uptake of nutrients and water by the plants, thereby 
promoting much better plant growth. Furthermore, the greater plant biomass rec-
orded in shale-filled beds (between 13.8 and 14.7 kg/m2) compared to laterite beds 
(between 11.2 and 12.5 kg/m2) is justified by the nature of shale to retain or absorb 
water in wetland beds, making water available to plants [23]. This observation is 
consistent with the volumes of water returned by the wetland beds, which ap-
peared to be lower at the outlet of the shale-lined beds than those of the laterite 
beds. Studies such as that by Ama et al. [40] have also shown that the hydraulic 
conductivity of shale is lower than that of laterite, leading to a longer residence 
time in the former material and hence to a greater availability of water in the sub-
strate that can be taken up by the plant to ensure its growth. 

Monitoring of the physicochemical parameters of the effluent and filtrates dur-
ing the treatment trial revealed lower pH values in the filtrates than in the raw 
water. This situation, as far as pH is concerned, is the result of the biodegradation 
of organic matter and/or the metabolism of plant nutrient assimilation [41] or the 
mineralogical composition of the geomaterials. The decrease in pH in filtrates 
from beds lined with shale and laterite reflects an acidification of the environment, 
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which could be explained by the composition of these materials on the one hand, 
and by nitrification and oxidation of organic matter on the other. In addition, the 
decrease in pH in the filtrates could be explained by the neutralization of H+ ions 
in the water by rock oxides [42]. According to Pambrun [43], ammonium adsorp-
tion tends to lower the pH. Furthermore, Li et al. [44] have shown that a decrease 
in pH leads to a higher COD removal efficiency. However, the pH values of fil-
trates discharged from shale and laterite lined beds comply with the wastewater 
discharge standards in Côte d’Ivoire (5.5 ≤ pH ≤ 8.5) [45]. Furthermore, the in-
crease in dissolved oxygen in the different bed filtrates is due to the aeration of the 
raw water during its application to the wetland beds, especially since the wetlands 
tested in the present study are those with vertical flow, which provides a high ox-
ygenation rate in addition to the oxygen released at the top of the plant roots [46] 
[47]. As for the electrical conductivity (EC), the values remain significantly lower 
in the bed filtrates compared to the raw effluent. This difference in EC could be 
explained by the retention of dissolved salts contained in the wastewater by the 
substrates of the beds lined with shale and laterite. According to Tchobanoglous 
et al. [48], filtration mechanisms, absorption, ion exchange, oxidation, neutraliza-
tion, precipitation and complexation, contribute to the retention of dissolved salts 
in the reactor filter bed during the passage of wastewater. 

The results of the concentration of total suspended solids (TSS) in the raw 
wastewater and in the bed filtrates showed a significant reduction in the filtrates, 
especially in the beds lined with small particle size material, i.e. beds lined with 1 
- 3 mm shale (20.3 - 59.5 mg/L) and 1 - 3 mm laterite (25.4 - 62 mg/L). This is 
mainly due to the physical retention of particles in suspension in the pores of the 
filtration materials, which provide greater filtration potential for TSS in wetland 
substrates [49]-[51]. Wetland substrates act as a sieve or filter, retaining particles 
larger than the pores. They largely retain all the relatively coarse material at the 
surface of the beds and the fine material at depth, which is retained by clogging 
between the pores or by interception and attachment to the grains [16]. Further-
more, the shale-filled beds showed the best TSS retention performance compared 
to the laterite beds. This difference can be explained by the difference in hydraulic 
conductivity between these beds. However, only the TSS concentration of the bed 
lined with shale of grain size 1-3 (Sch1-3) met the applicable national standards 
(50 mg/L) set by [45]. In addition, the TSS removal efficiency of the 1 - 3 mm shale 
bed (80.2%) is higher than that obtained by Abdelhakeem et al. [50] (75%). 

In terms of the removal of organic compounds such as BOD5 and COD, the 
filtrates from the shale and laterite lined beds had significantly lower concentra-
tions than those in the raw water. This significant reduction in organic matter in 
the filtrates from the shale and laterite lined beds is attributed to the good coloni-
zation of the substrates by the purifying microorganisms and the good oxygena-
tion of the filtration mass [1] [52]. In fact, the resting phases of wetlands such as 
those developed in this study (vertically draining wetlands) favor the biological 
oxidation of the carbon load and the release of pores, which is necessary for the 
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metabolism of bacteria during the biodegradation of organic matter [53]. How-
ever, considering the average concentrations of BOD5 and COD discharged at the 
wetland outlet in the filtrates of the beds lined with shale and laterite, it appears 
that the beds lined with materials (shale and laterite) with grain sizes of 1 - 3 mm 
and 3 - 5 mm (i.e. 48, 3 - 94.8 mgO2/L [BOD5] and 92.4 - 174.5 mgO2/L [COD]) 
that are lower than the two limits for BOD5 (100 mgO2/L) and COD (300 mg 
O2/L) specified in the regulations for wastewater discharge in Côte d’Ivoire [45]. 
In addition, the purification efficiencies recorded for beds lined with shale and 
laterite of grain sizes 1 - 3 mm and 3 - 5 mm (67.6-84.7% [BOD5] and 64.9-83% 
[COD]) are higher than those of Coulibaly et al. [54] [55] (65% - 70% COD) and 
Masharqa et al. [56] (78% BOD5).Therefore, in order to optimize the grain size of 
the geomaterials, a reasonable choice of size would be 3 - 5 mm, for both shale 
and laterite, provided that the quality of the filtrates obtained from the wetlands 
filled with the latter is assumed to be without major inconvenience to the receiving 
environment. 

The reduction in NTK concentrations recorded in beds lined with shale and 
laterite can be explained by the ability of these geomaterials to adsorb nitrogen 
compounds, as mentioned by Rao and Batra [57]. Similarly, the harmonious 
plant development observed in the wetland beds during the experiment is clearly 
dependent on the plants taking up nutrients from the wastewater, including ni-
trogen compounds, to meet their nutritional needs [58] [59]. In addition, several 
studies have shown the significant involvement of purifying organisms in the 
degradation of wastewater pollutants, including nitrogen compounds [52] [60]. 
However, in the present study, a much higher density of microorganisms was 
favored by Pennisetum purpureum, as in the work of Zahui et al. [28], who ob-
tained a higher total bacterial flora in wetlands planted with P. purpureum than 
those of plants such as Andropogon gayanus, Chrysopogon zizanioides, Echi-
nochloa pyramidalis and Tripsacum laxum. Furthermore, the smaller the grain 
size of the filtration materials, the higher the purification efficiency of the NTK, 
as in the work of Christos and Vassilios [61], where higher nitrogen yields were 
obtained in wetlands with fine gravel than in those with coarse gravel. This result 
can be explained by the smaller pore sizes of fine geomaterials, which maximize 
the fraction retained by inter-pore clogging phenomena. In addition, the very 
rapid occupation of the pores by suspended particles during wetland operation 
favors a longer contact time between the wastewater and the purifying organisms, 
resulting in a more refined treatment in wetlands lined with fine materials com-
pared to coarse materials. However, the higher NTK purification yields observed 
in shale-lined beds can be explained by their physicochemical nature, specific sur-
face area [17] and grain size. In the presence of water, the shale becomes friable, 
breaking into numerous layers and transforming into a highly plastic or swelling 
clay [62]. By swelling, the clay exerts additional mechanical pressure on the struc-
ture of the rock, which can lead to varying degrees of cracking, creating space for 
greater absorption and development of plant roots. This root development would 
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have been beneficial for shale-lined wetlands, particularly as roots promote sig-
nificant secretion of root exudates, which serve as a complementary energy source 
for the activity of purifying microorganisms [63] [64]. However, only the concen-
tration of NTK in the bed lined with 1 - 3 mm shale (46.48 mg/L) remains below 
the limits (50 mg/L) allowed by the regulations for wastewater discharges in Côte 
d’Ivoire [45]. In addition, the NTK purification efficiency obtained on the 1 - 3 
mm shale bed (72.2%) was higher than those obtained by Hube et al. [65] (34% - 
67%). The wetland filtrates had significantly lower concentrations of total phos-
phorus (TP) than the raw water. These results are mainly attributed to a process 
of adsorption and precipitation on the filtration material [66] [67], but also to 
microbial assimilation [68] [69] of phosphorus in the substrates of the different 
beds. In addition, the removal of phosphorus compounds is also related to the 
ability of these materials to release iron, which can react with 4

3PO −  in wastewater. 
Because of their high porosity, shale and laterite allow water to pass through 
them, causing dissociation of iron oxides in solution in the form of Fe3+ and Fe2+ 
ions, which form Fe(OOH)-P complexes with phosphorus, resulting in hydrox-
ylated iron phosphate by precipitation [70]. Furthermore, the difference in total 
phosphorus removal performance between shale-filled and laterite-filled beds 
could be explained by the rapid flow of effluent in laterite-filled beds, resulting 
in a reduction in the contact time required for the physico-chemical reactions 
of adsorption or precipitation in wetlands. The good removal rates obtained 
with filters lined with medium and fine gravel can be explained by their nature. 
If the filter media is fine, this means that the particles in the media form a very 
fine porous layer with a very large specific surface area. This facilitates the ad-
sorption of phosphate ions. The finer the filter bed, the longer the residence time 
of the effluent in the bed. This gives microorganisms enough time to form a 
biofilm on which to bind phosphate ions, leading to their reduction in the fil-
trates [30]. The higher the specific surface area of the filter bed, the greater the 
adsorption and dissolution of phosphate ions [71]. However, the average con-
centrations of total phosphorus discharged at the outlet of wetlands lined with 
both materials (shale and laterite) [varying between 3.7 and 6.7 mg/L] are below 
the limit (15 mg/L) indicated in the regulations for wastewater discharges in 
Côte d’Ivoire [45]. In addition, we note that the purification efficiencies rec-
orded on beds lined with shale and laterite of grain sizes 1 - 3 mm, 3 - 5 mm and 
5 - 8 mm (44.7% - 72.4%) are higher than those of Abdelhakeem et al. [50], (22 
and 56%). Therefore, in order to optimize the grain size of the geomaterials, the 
choice would be limited to 3 - 5 mm to also allow the treatment of organic matter 
(COD and BOD5). 

The good removal efficiencies obtained with beds packed with medium and fine 
substrates can be explained by their nature. A fine filter bed means that the parti-
cles form a very fine porous layer, with a very large total pore surface area. This 
facilitates the adsorption of pollutants by this layer, resulting in their retention on 
the surface of the geomaterials (shale and laterite). 
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5. Conclusions 

This study investigated the influence of grain size (1 - 3 mm, 3 - 5 mm and 5 - 8 
mm) of shale and laterite on the operation of constructed wetlands treating do-
mestic wastewater. The use of these geomaterials as filter materials with different 
grain sizes resulted in good removal of total suspended solids (TSS), chemical ox-
ygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen Kjedahl 
(NTK) and total phosphorus (TP) from the wastewater. The plant species P. pur-
pureum used as vegetation material is well adapted to the different artificial wet-
land beds, with higher plant biomass production and plant stump diameter in 
beds lined with shale and laterite with grain sizes of 1 - 3 mm.  

The highest efficiencies in the removal of effluent pollutants were obtained in 
constructed wetlands lined with shale with a grain size of 1 - 3 mm (TSS [80.2%], 
COD [83%], BOD5 [84.7%], NTK [72.2%] and TP [72.4%]) and laterite with a 
grain size of 1 - 3 mm (TSS [78.1%], COD [77%], BOD5 [78%], NTK [55.5%] and 
TP [58.4%]). However, the choice of geomaterials grain size (3 - 5 mm) could be 
an advantage compared to the effort and resources required to purchase a quantity 
of geomaterials to obtain a grain size of 1 - 3 mm. This is because the filtrates 
discharged from beds lined with geomaterials (shale and laterite) are expected to 
be free of major organic and phosphorus contaminants. However, increasing the 
depth of the wetlands to be lined with 3 - 5 mm shale and laterite beyond that of 
the present study would refine the treatment of nitrogen compounds and total 
suspended solids. 
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Appendix 

  
Figure A1. Illustration of the crushing and screening stage of the geomaterials. 

 

 
Figure A2. Overview of the experimental plant after one month of operation. 
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