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Abstract 
In order to prevent possible casualties and economic loss, it is critical to accurate 
prediction of the Remaining Useful Life (RUL) in rail prognostics health man-
agement. However, the traditional neural networks is difficult to capture the 
long-term dependency relationship of the time series in the modeling of the long 
time series of rail damage, due to the coupling relationship of multi-channel data 
from multiple sensors. Here, in this paper, a novel RUL prediction model with 
an enhanced pulse separable convolution is used to solve this issue. Firstly, a 
coding module based on the improved pulse separable convolutional network is 
established to effectively model the relationship between the data. To enhance 
the network, an alternate gradient back propagation method is implemented. 
And an efficient channel attention (ECA) mechanism is developed for better 
emphasizing the useful pulse characteristics. Secondly, an optimized Transfor-
mer encoder was designed to serve as the backbone of the model. It has the abil-
ity to efficiently understand relationship between the data itself and each other at 
each time step of long time series with a full life cycle. More importantly, the 
Transformer encoder is improved by integrating pulse maximum pooling to re-
tain more pulse timing characteristics. Finally, based on the characteristics of the 
front layer, the final predicted RUL value was provided and served as the 
end-to-end solution. The empirical findings validate the efficacy of the suggested 
approach in forecasting the rail RUL, surpassing various existing data-driven 
prognostication techniques. Meanwhile, the proposed method also shows good 
generalization performance on PHM2012 bearing data set. 
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1. Introduction 

With increasing railway speed and the development of railway heavy haul 
transportation [1] [2], more and more failures relating to the rail have occurred. 
Accurately predicting the remaining life of a rail and formulating a rail flaw de-
tection period for extending the remaining service life of the rail are significance 
in ensuring the safe operation of a railway line. Because rail maintenance inter-
vals and service life have a direct impact on the operational status of the line.  

Currently, the available methods for predicting Remaining Useful Life (RUL) 
can be classified into two distinct categories: one rely on model-based forecast-
ing and the other utilize data-driven forecasting techniques [3]. The methodol-
ogy with model employs failure mechanisms or damage laws to simulate the de-
terioration of the machine. Subsequently, statistical estimation techniques, in-
cluding linear least squares, maximum likelihood estimation, and sequential 
Monte Carlo [4], are utilized to determine the model parameters and forecast the 
RUL in the methodology with model. However, the irregularity of damage to 
heavy rail tracks poses a challenge for developing a precise failure model in actu-
ality. Consequently, the establishment of precise mathematical statistics and 
physical degradation models in practical applications is very difficult. For da-
ta-centric methodologies, it does not necessitate familiarity with overt machine 
malfunction mechanisms and have the ability to deduce concealed causal con-
nections within the data. 

In recent years, deep learning has gained a lot of interesting in data-driven 
RUL prediction [5] [6] [7] [8]. Compared with traditional machine learning 
technology, deep learning possesses a superior capacity for representation 
learning and is capable of autonomously acquiring multi-level representations 
from raw data [9] [10]. Hence, a prediction model is constructed directly from 
the raw sensor data via the utilization of deep learning technology, thereby eli-
minating the intricate procedure of manual feature extraction. And the predo-
minant approach for time series modeling is applied by recurrent neural net-
work (RNN) methodology. Moreover, the long short term memory (LSTM) 
network has obtained the significant attention due to its ability to address the 
issues of gradient explosion and vanish the gradient in RNN [11]. Zhao et al. in-
troduced a method for predicting RUL, which is a combination of bidirectional 
long short term memory (BILSTM) and attention mechanism [12]. The effec-
tiveness of this method was evaluated on two publicly available datasets. How-
ever, LSTM exhibits certain constraints, because LSTM is a serial structure in 
essence, which can not realize parallel computing. It has the low efficiency and 
hard capturing the long-term dependence in time series. Conversely, the trans-
former model [13] could not only improve the computational efficiency through 
parallel processing, but also effectively deal with the long-term dependence of 
time-series data over time. Remarkable outcomes have been attained across var-
ious domains, including but not limited to natural language processing and 
computer vision. 
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Recently, Transformer model was used to predict RUL. Mo et al. [14] adopted 
the Transformer encoder as the fundamental architecture of their model, and 
applied 1 gate convolution uni combined with the information of the local con-
text with each time to achieve RUL prediction. Zhang et al. [15] achieved quite 
good prediction results by using a completely self-attention encoder decoder 
structure and establishing a Transformer structure with the characteristics of the 
sensor characteristics and time step length as the input. Chen [16] introduced a 
RUL prediction method for the electro-mechanical actuators via a multimodal 
Transformer. However, the amount of Transformer model parameters is large, 
and so is the calculation consumption. If the training sample is insufficient, 
overfitting can be easily caused in Transformer model. In addition, the mul-
ti-channel vibration data sets of the rail RUL prediction are composed of signals 
obtained by different sensors and different channels, which are of two difficul-
ties: One is that the data from the many sensors include information has been 
degraded to differing degrees, and the other is the different sensors signals are of 
correlation. 

The spiking neural network (SNN), which is the third generation of artificial 
neural network, has been employed as a means to address the aforementioned 
issues. And it is closer to the working principle of biological neural systems [17]. 
With its working mechanism based on dynamic sparse pulse discharge, it is ex-
pected to overcome the existing shortcomings of the artificial neural network 
and realize the prediction function with strong generalization ability. At the 
same time, because the SNN itself processes the information through the dy-
namic pulse discharge process, it is easier to capture the spatio-temporal correla-
tion information in the time series. 

Some researchers have successfully improved the traditional SNN and have 
applied it to time series forecasting tasks. Hong et al. [18] introduced a mul-
ti-layer pulse neural network based on the improved pulse neuron model, and 
learned it through the pulse time error back-propagation algorithm to achieve 
short-term power load forecasting. However, the feature extraction ability of 
traditional SNN is limited by its structure, and its prediction accuracy of RUL 
time series is not high enough, which cannot be comparable with that of RNN 
and Transformer network. Therefore, how to improve the traditional SNN for 
effectively predict RUL is a problem to be solved. Inspired by reference [14], a 
model around a Transformer encoder is build to minimize model parameters 
and boost operational effectiveness. More importantly, the suggested network 
makes use of a brand-new, effective channel attention technique to further en-
hance network prediction performance. 

This paper’s principal contributions are outlined as follows: 
1) An improved pulse-separable convolutional network is proposed, which 

leverages 3 × 3 channel-by-channel convolution and 1 × 1 point-by-point con-
volution to effectively capture the inter-channel dependencies in multi-channel 
data. Additionally, an alternative gradient back propagation algorithm is em-
ployed to optimize the network performance. Furthermore, an ECA attention 
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mechanism is incorporated to re-calibrate the pulse feature map, thereby en-
hancing the discriminability of the information in the prediction network. 

2) A residual life prediction module with improved Transformer encoder as 
the core is proposed. Two encoder layers are used for stacking training, and the 
parallel computing power of multi-head self-attention mechanism is fully uti-
lized to dig the dependency among input characteristics and rail degradation 
degree and themselves. Combined with the information processing mechanism 
of SNN, the two-layer encoder is improved by blending pulse maximum pooling, 
which preserves more degradation time sequence features and improves the ac-
curacy of rail RUL prediction. 

The other parts of this article are organized as follows. Section 2 describes the 
main issues. Then section 3 introduces the proposed method, and section 4 gives 
the experiment. Finally, conclusions are drawn in section 5. 

2. Research Problem 

The objective of this paper is to develop a prognostic model for estimating the 
RUL of a system using vibration monitoring data obtained from multi-channel 
sensors. Specifically, M sets of rail vibration data to train an offline prediction 
model, encompassing the entire degradation process from normal state to slight 
fault and eventually to severe fault and then to severe fault were used to train the 
prediction model offline, and then the trained model was used to forecast the 
RUL of a new rail. 

In this paper, the multivariable time series prediction problem is defined as a 
sequence-to-sequence problem. The overall architecture for time series predic-
tion is described before the network architecture is specified. An input sequence 
( )1 2, , , Tx x x  was given to the time series signals, this is to predict the output 

( )1 2, , , TY y y y=  , corresponding to each respective time. The primary objec-
tive of serial modeling network z, as shown in Equation (1), is to build up a ma-
thematical relationship between the monitoring data and the rail degradation 
process: 

( ) ( )1 2 1 2, , , , , ,T Ty y y f x x x=                      (1) 

3. The Proposed Method 

Figure 1 depicts the comprehensive framework diagram of the network as pre-
sented in the paper, which is aimed at attaining a precise forecast of the rail 
RUL. The network is primarily comprised of two distinct components: improved 
pulse separable convolution coding module B and residual life prediction mod-
ule C. The improved pulse separable convolution module converts time series 
signals into pulse signals, thereby capturing the inter-sensordata relationship 
and reduce the information loss in the coding process. The alternative gradient 
back propagation technique was utilized to improve the network, and ECA at-
tention mechanism was added to re-calibrate the pulse feature map and high-
light the useful pulse features. Then, based on the effective pulse characteristics,  
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Figure 1. Overall framework of improved pulse separable convolution enhanced Transformer Encoder. 
 

the residual life prediction module adopted multi-head self-attention mode to 
comprehensively control the dependence of each time step of the fault characte-
ristics in the long timespan of the whole life cycle. Finally, the linear layer com-
pleted the RUL prediction. 

3.1. Improved Pulse Separable Convolution Coding Module 

The multi-channel data used in rail RUL prediction is collected by mul-
ti-sensors at different positions. On the one hand, the degradation information 
contained in vibration data captured by various sensors varies. On the other 
hand, these data are highly correlated (coupled), so it is difficult for traditional 
pulse coding to effectively model the pulse representation of the relationship 
between these data [19]. To solve the above problems, as shown in Figure 2, 
this paper proposes a multi-layer pulse separable convolutional coding module 
comprised of a depth separable convolutional layer and a pulse neuron coding 
layer. The data from the input multi-channel sensors was simply fed into the 
prediction network without any human feature extraction being performed be-
forehand. Secondly, depth-separable convolution was used so that the number 
of parameters maybe decreased while simultaneously realizing the separation of 
channels and regions. After that, Merge Channels and BatchNorm2d were 
processed so that the vibration data would not be too large before being sent 
into the improved pulse neuron layer, improving the stability of the network. 
Finally, the improved pulse neuron layer coding was constructed to get the 
pulse feature output. 
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Figure 2. Depth-separable convolution structure. 

3.1.1. Depth Separable Convolution 
Figure 2 depicts the structure of depth separable convolution [20], which is 
made up primarily of channel-by-channel convolution (Depthwise Convs) and 
point-by-point convolution (Pointwise Convs). The number of convolution 
nuclei in each channel of classical convolution is proportional to the number of 
input channels; however, a channel of per-channel convolution has only one 
convolution kernel, which means that per-channel convolution may significantly 
decrease the number of parameters and the amount of processing. The 
point-by-point convolution is a classic kind of convolution that utilizes a con-
volution kernel size of 1 by 1. Convolution on a point-by-point basis allows for 
the fusion of features that have been taken from matching points within each 
channel. This allows one to avoid critical characteristics that are only present in 
a single channel. In addition, both an increase in the number of features and a 
decrease in the dimensions may be accomplished by adjusting the number of 
channels appropriately. 

3.1.2. Coding layer of pulse neuron 
Pulsed neuron is the basic unit that makes up pulsed neural network (SNN) [17]. 
Different from convolutional neural network, pulsed neural network adopts a 
processing mechanism more in line with human brain, that is, pulse sequence as 
signal transmission. In current research, input information is usually encoded 
into pulse train by Poisson coding, delay coding and other methods. These cod-
ing methods [21] [22] have certain randomness, which may cause information 
loss and affect the effect of subsequent rail RUL prediction. In order to solve this 
problem, an improved pulse depth-separable convolution coding scheme is 
proposed in this section. 

The improved pulse depth-separable convolution coding method combines 
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the depth-separable convolution with the improved pulse neurons, and the mul-
ti-channel sensor data was fed directly into the network model. The rail RUL 
time sequence data was convolved on the convolution kernel of the separable 
convolutional neural network, and the voltage was accumulated in the mem-
brane potential of the postsynaptic neuron. If the voltage of the membrane po-
tential exceeded the set threshold voltage, the pulse neuron would send a pulse 
and then return to the resting potential. If the threshold voltage was not reached, 
the membrane potential would accumulate voltage and wait for the input of the 
next time window. 

In order to realize the coding process, the IF neuron model was adopted [23]. 
IF neuron model can be regarded as an ideal integrator. Its membrane potential 
voltage would not leak over time when it was not activated, as shown in Equa-
tion (2). The membrane potential voltage at time t was shown in Equation (3), 
where V (t) is the membrane potential voltage at time t, and I (t) is the input at 
the current time, Vth is the threshold voltage, and set to Vth = 1 in this paper. 
When the membrane potential voltage reached the threshold voltage, the pulse 
would be activated; otherwise, the pulse would be sent step by step, as shown in 
Equation (4). 

As can be seen from Equation (4), pulsed neurons themselves are non-differen- 
tiable, that is, non-derivable. As a result, it is not possible to update model pa-
rameters through direct back propagation in the training process. Therefore, this 
section adopts alternative gradient descent algorithm to complete the updating 
process of back propagation parameters and improves the traditional IF neu-
rons. Through the selection of a suitable function to substitute the impulse func-
tion during the back propagation process, the network still showed neuronal 
impulse characteristics in the forward propagation, while the continuous diffe-
rentiable function was used to replace the impulse function in the back propaga-
tion. 

In the proposed coding method, derivatives of Relu function, Sigmoid func-
tion and Piecewise LeakyRelu function were introduced to replace the derivative 
of θ during back propagation. The derivative expressions are described as equa-
tions (5) to (7): 

( ) ( )
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I t
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where, coefficient a is the smoothness of the activation function. This part aims 
to evaluate and contrast the impact of various alternative activation functions on 
the predictive efficacy of the network’s RUL in the experiment outlined in Sec-
tion 4.3.3. 

3.2. Remaining Life Prediction Module 

3.2.1. Multilayer Pulse Separable Convolution Algorithm 
Based on Section3.1, the multilayer pulse separable convolution algorithm in-
cludes a two-layer pulse separable convolution coding module, a high efficiency 
channel attention (ECA-Net) module and a pulse maximum pooling step. As 
shown in Figure 3, after the time sequence data of the input multi-sensor went 
through two-layer pulse separable convolutional coding module (Spilking Se-
parable Convs_1, 2), the time series signals were converted into pulse signals to 
capture the connection between data from various sensors, and to minimize the 
information loss during the process of coding. In order to highlight the useful 
pulse features, ECA attention mechanism was added to re-calibrate the pulse 
feature map. Pulse maximum pooling was adopted to retain more pulse features 
and facilitate subsequent RUL prediction. 

The majority attention mechanisms strive to enhance their performance by 
developing intricate attention modules, which unavoidably leads to an escalation 
in the model’s complexity. The ECA-Net [24] mainly improves the SE-Net mod-
ule [25] by introducing a local cross-channel interaction strategy (ECA module) 
that does not involve any dimension reduction. Additionally, it incorporates a 
method for the adaptive selection of one-dimensional convolution kernel size.  
 

 

Figure 3. Flow of multilayer pulse separable convolution algorithm. 
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This particular module has the ability to achieve noteworthy improvements in 
performance despite the addition of only a limited number of parameters. Fig-
ure 4 illustrates the schematic diagram of ECA-Net. 

3.2.2. Improving Transformer Encoder Algorithm 
When simulating lengthy time periods of rail deterioration, standard neural 
networks like RNN and SNN have trouble capturing the long-term dependency, 
which are easy to appear gradient disappearance or explosion, and sensitive to 
the length of input sequence. An enhanced Transformer encoder method is sug-
gested to take advantage of the original multi-head self-attention mechanism in 
order to address this issue. The relationship between input timing sequence 
characteristics and rail degradation degree itself and among each other is better 
excavated. The detailed formulation of the multi-head self-attention mechanism 
in the paper is shown in Figure 7 and Equation (11) section. The existing 
Transformer encoder is improved by integrating pulse maximum pooling opera-
tion to retain more effective pulse timing sequence features and to enhance the 
precision of rail RUL forecasting by combining the advantages of pulse separable 
convolution network in Section 3.1. 

Figure 5 illustrates the RUL prediction mechanism that is used by the en-
hanced Transformer encoder. On the basis of the pulse features provided by 
multi-layer pulse separable convolution, after two layers of Transformer encoder 
structure, pulse maximum pooling and linear full connection layer successively,  
 

 

Figure 4. Architecture schematic diagram of ECA-Net. 
 

 

Figure 5. Improved Transformer encoder RUL prediction flow. 
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the final residual life prediction value RUL will be output. The multiple encoder 
layers used have a similar structure, with each encoder layer stacked with mul-
tiple sub encoder layers of the same structure. As shown in Figure 5, each 
sub-coder layer includes a Multi-head Attention layer and a Feed Forward layer, 
and both of them apply Res Connect and Add & Norm operation to mitigate the 
issue of vanishing gradient and expedite the convergence of the model. 

Pooling processing can reduce the size of feature mapping after convolutional 
output and further reduce the overfitting degree of the model and the amount of 
training parameters of the network. Pooling processing methods include maxi-
mum pooling (selecting the largest neuron output in the pooling window) and 
mean pooling (carrying out two-dimensional mean pooling operation on every 
value in the pooling window). In the practical application, the maximum pooling 
operation is not only more in line with the information processing mechanism 
of SNN, but also retains more characteristic information in the timing data [26]. 
In order to retain more effective pulse timing features, this study adopted the 
maximum pooling operation (pooling kernel size of 8 × 1) for training. 

An essential component of the Transformer network is the self-attention me-
chanism [13]. In the process of computing the self-attention mechanism, each 
feature will be given a relative weight in comparison to the other characteristics. 
This will make it possible to recognize the connection that exists between the 
various features, and it will also enable the extracted features to be determined in 
accordance with the degree of correlation that exists between the features. Fig-
ure 6 illustrates the calculating process that is involved in the self-attention me-
chanism. 

The convolution feature output matrix X of the previous layer was multiplied 
with the corresponding three weight matrices QW , KW  and VW , to obtain the 
corresponding three vectors，query vector Q, key vector K and content vector V, 
respectively. The specific formula is Equation (9). 

q

k

v

Q XW
K XW
V XW

 =


=
 =

                             (9) 

The correlation matrix was obtained by calculating the dot product of Q and 
K, and the weight corresponding to each position was obtained after activated by 
Softmax function. Finally, the weight was superimposed to V to get the 
self-attention output A. The specific formula is Equation (10). 

( )
T

, , Softmax
K

QKA Q K V V
D

 
=   

 
                   (10) 

where KD  is the square root of the key vector dimension, which is used as a 
scaling factor to alleviate the gradient disappearance problem. 

Multi-head Attention layer adopts multi-head attention mechanism. This 
mechanism involves the calculation of multiple groups of Q, K, and V, which are 
subsequently combined to form the final output. In order to balance the possible 
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deviation of the same attention mechanism, and thus improve the model effect. 
Figure 7 presents a diagrammatic representation of its structural components. 

The corresponding calculation formula is 

( ) [ ]
( )

MuliHead 1, , , , ,

, ,
H

i i i i

A Q K V h h W

h A Q K V

 =


=



                   (11) 

In Equation (11), W represents the multi-head attention weight matrix; hi re-
fers to the i-th self-attention output; H is for attention heads. 

4. Experiment and Discussion 

The proposed method was used to predict the whole life cycle vibration data set 
of railway rail and the effectiveness of network generalization is verified using 
IEEE PHM2012 bearing data set. The experiment was implemented in Python, 
the environment was built under PyTorch framework, the number of random  
 

 

Figure 6. Schematic diagram of self-attention mechanism. 
 

 

Figure 7. Schematic diagram of multi-head self-attention mechanism. 
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seeds was fixed, and the weight of the network was randomly initialized. The 
configuration of the computer used is: 1) Processor (12th Gen Intel Core i9- 
12900H 2.90GHz); 2) Running memory (32G); 3) Graphics card (NVIDIA Ge-
Force GTX 3070 Ti). 

4.1. Performance Indicators 

In order to conduct a thorough evaluation of the method’s efficacy, three distinct 
performance metrics have been employed, namely the mean absolute error 
(MAE), the root mean square error (RMSE), and an enhanced scoring function 
(Score) which builds upon the original scoring function (iScore).  

Where, Equations (12) and (13) define the MAE and RMSE, respectively. The 
actual RUL is denoted as act

tRUL , the predicted RUL is denoted as act
tRUL , and 

n represents the total number of samples. It can be seen that, MAE and RMSE 
deploy equal weight for each prediction. However, in actual applications, later 
predictions (ert < 0) are punished more seriously than early predictions (ert > 0). 
Thus, the scoring function (Score) is introduced as a supplement. 

1

1MAE
n

act pre
t t

t
RUL RUL

n =

= −∑                      (12) 

( )2

1

1RMSE
n

act pre
t t

t
RUL RUL

n =

= −∑                    (13) 

In addition, it is worth noticing that the possibility of encountering failures in 
the early phases of the life cycle is comparatively minimal over the course of its 
operational lifespan. In another word, the precision of RUL estimation during the 
later phase assumes greater significance compared to the early stage. It means that 
it is better to give higher weight to the prediction of later stages. The prediction 
results will be better. So improve the scoring function in the 2012 Forecast and 
Health Management Data Challenge, and propose an improved scoring function 
( Scorei ) to make a comprehensive assessment of the performance of the predicted 
model. Therefore, an improvement action was taken on the scoring function for 
the 2012 Prognostics and Health Management Conference Data Challenge, and 
the optimized scoring function ( Scorei ) was proposed, for the purpose of a com-
prehensive performance assessment of the prediction model. 

( ) ( )( )
( ) ( )( )

exp ln 0.6 10 , 0

exp ln 0.6 40 , 0

act pre act pre
t t t t

t act pre act pre
t t t t

RUL RUL RUL RUL
iA

RUL RUL RUL RUL

 − × − − ≤= 
× − − ≥

   (14) 

1 2
1 1

1m n

Score t t
t m

i iA iA
n m

ω ω
= +

= +
−∑ ∑                    (15) 

According to Equation (14), iAt represents the weighted error that exists be-
tween the observed and anticipated values of PrediRUL at the time step t. The 
final improved scoring function is as shown in Equation (15), where n is the to-
tal number of sample, m is the percentage of early stages. 1ω  and 2ω  are the 
weights of early and late stages, respectively. In this paper, it is set that 
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1 0.35ω = , 2 0.65ω = , 2m n= , which makes the prediction of late stages more 
reliable and meaningful than that of the early stages [27]. Values of 1ω  and 2ω  
are determined according to the experiment entered by the user. The Score va-
riable is constrained to a range between 0 and 1. A positive correlation exists 
between the value and the predicted performance, indicating that a higher value 
corresponds to superior performance. 

4.2 Data Description and Application Details 
4.2.1 Description of Data Set 
Data on vibrations reflecting the full life cycle of railway rail from normal to 
damage and to final failure was collected. The vibration signals were obtained by 
sensors distributed at different positions in the train. Each sensor has three 
channels that can capture the vibration signal in three different directions: hori-
zontally, longitudinally and vertically. Depending on the train speed and loading 
status, 4 different operating conditions were considered and the corresponding 
data was collected. At each operating condition, there were three different types 
of rail damage types: corrugation, corner fine crack, and shelling defect, as 
shown in Table 1. The vibration signal and actual appearance of different defects 
are shown in Figure 8 and Figure 9. 

4.2.2. Design of Experimental Tag and Parameter Setting 
The life span of the rail is used as the output tag. As shown in the Equation (16), 
the actual RUL of the rail is normalized to the range of 0% - 100%, where S is the 
total time step, and St is the normalized value of the actual RUL at the time step t. 

100
t

n
t

SS
S

= ×                            (16) 

The Model structure parameter settings are shown in Table 2. 
 

Table 1. Railway Rail data set. 

Operating condition Speed of operation No load/load Type of injury 

condition1 Low speed No load corrugation(A_1) Fish scaly injury(B_1) Stripping off blocks(C_1) 

condition2 Low speed load corrugation(A_2) Fish scaly injury(B_2) Stripping off blocks(C_2) 

condition3 High speed No load corrugation(A_3) Fish scaly injury(B_3) Stripping off blocks(C_3) 

condition4 High speed load corrugation(A_4) Fish scaly injury(B_4) Stripping off blocks(C_4) 
 

 
(a) corrugation                    (b) Fish scaly injury                  (c) Stripping off blocks 

Figure 8. Data set of rail lifecycle degradation. 
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Figure 9. Three kinds of damage scene. 
 

Table 2. Model structure parameter settings. 

Types Operation parameter settings 

Improved pulse  
codingmodule 

Spilking Separable Convs_1 
Spilking Separable Convs_2 

 

Spilking Separable Convs_1 

Depthwise Convs Conv2d, out_channels = 3, kernel_size = (3,3), padding = 1, groups = 3 

Pointwise Convs Conv2d, out_channels = 128, kernel_size = (1,1), padding = 0, groups = 1 

BatchNorm2d out_channels = 128 

neuron.IFNode out_channels = 128 

Spilking Separable Convs_2 

Depthwise Convs Conv2d, out_channels = 128, kernel_size = (3,3), padding = 1, groups = 3 

Pointwise Convs Conv2d, out_channels = 128, kernel_size = (1,1), padding = 0, groups = 1 

BatchNorm2d out_channels = 128 

neuron.IFNode out_channels = 128 

 
ECABlock out_channels = 128 

PulseMaxpool2d out_channels = 128, kernel_size = (4,1), padding = 0 

RUL prediction module Transformer-Encoder MLP  

Transformer-Encoder 
Transformer-Encoder_1  

Transformer-Encoder_2  

Transformer-Encoder_1 

Multi-head Attention Input_dim = 3, d_model = 128, heads = 4, dropout = 0.1 

Add & Norm d_model = 128, Num_layers = 2 

Feed Forward dim_feedforward = 4* input_dim 

Add & Norm d_model = 128, Num_layers = 2 

Transformer-Encoder_2 

Multi-head Attention Input_dim = 3, d_model = 128, heads = 4, dropout = 0.1 

Add & Norm d_model=128, Num_layers = 2 

Feed Forward dim_feedforward = 4* input_dim 

Add & Norm d_model = 128, Num_layers = 2 

PulseMaxpool2d out_channels = 128, kernel_size = (8,1), padding = 0 

MLP LINEAR_1 Input = 32 * n; Ouput = 1 

Training Epoch = 1000 batch_size = 32; Optimizers = SGD; lr = 0.001 
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4.3. Experimental Design 

1) This paper devised the experimental procedure based on three distinct as-
pects. The comparative and analytical examination of the experimental out-
comes was conducted. Every experiment’s training set and test set were divided 
in exactly the same way. As shown in Figure 8, there are three kinds of injuries 
in the rail data set, and each injury has eight vibration signal data. In order to 
fully extract and analyze the RUL information of each rail injury, the training set 
and the test set were divided by the ratio of 7:1. When testing the RUL of a cer-
tain type of damage, the full life data related to the same type of damage are used 
for training. And the weights that perform best throughout the training were 
kept. 

2) To ascertain the legitimacy and indispensability of incorporating a modular 
design into the proposed model, an ablation study is conducted to perform a 
quantitative evaluation of the proposed approach. 

3) To assess the efficacy of alternative activation functions, namely Sigmoid, 
Leaky RelU, and RelU, a comparative analysis of activation functions was con-
ducted. Please refer to section 4.3.3 for the results of the comparison. To assess 
the efficacy of the proposed methodology, it was subjected to comparative analy-
sis with a range of established and contemporary techniques for time series data 
prediction, including SNN, CNN, and TCN-SA [27]. 

4) In addition, to enhance the model’s applicability and generalization capac-
ity, the approach outlined in this study was implemented using the PHM2012 
bearing degradation datasets. The results were compared with those of advanced 
methods performed with the same training data set and testing data set. 

4.3.1. Experimental results and performance evaluation 
First, according to the experimental design, as depicted in Figure 10, the most 
representative prediction effects of 3 kinds of injury are selected, the RUL pre-
diction curve of the technique suggested can relatively well follow its real label 
value in most cases, especially in the second half of the whole life cycle. The 
above findings demonstrate that the technique suggested in this study achieves 
favorable fitting outcomes and can provide more accurate RUL prediction results. 

4.3.2. Ablation Experiment 
To assess the function and impact of various crucial modules within the pro-
posed network, a process of ablation study is conducted whereby said modules 
are systematically removed or substituted while maintaining a constant number 
of remaining parameters. Ultimately, the subsequent four models have been de-
veloped for the purpose of conducting a comparative analysis. 

1) Model-without-ECA: keep the other structure of the network unchanged, 
remove the attention mechanism, and the present model is utilized for the as-
sessment of the attention mechanism. 

2) Model-without-separable: Replacing the Separable convolution with a stan-
dard convolution and keeping the other structure of the network unchanged, this  
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(a)                                                  (b) 

 
(c)                                                  (d) 

 
(e)                                                  (f) 

Figure 10. RUL prediction results of some rails: (a) A_1. (b) A_2. (c) B_2. (d) B_3. (e) C_2. (f) C_3. 
 

Model can illustrate the ability of separable convolution to capture the interrela-
tion between different sensor data. 
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3) Model-without-pulse maximum pooling: Keep other network structures 
unchanged and remove Pulse maximum pooling. This Model is used to evaluate 
the effect of the added pulse maximum pooling. 

4) Standard-encoder: encoder without separable convolution and attention 
mechanism. 

The experimental results are presented in Table 3. The superior predictive 
performance of the technique suggested is evident when compared to alternative 
models. The ablation experiment, the removal of separable convolution achieves 
a great impact on the network, which means that the incorporation of separable 
convolution is an effective means of modeling the pulse representation of mul-
ti-channel sensor data in the pulse coding module, and enables the preliminary 
feature extraction stage to capture the interdependence between different sensor 
data. Removing the ECA attention mechanism also affects the performance of 
the network, which indicates that the incorporation of the ECA attention me-
chanism enhances the network’s ability to discern pulse features and reduces the 
interference of noise signals. 

4.3.3. Comparative Experiment of Several Activation Functions 
The activation function can construct the mapping between input features and 
output features in a nonlinear relationship, so that the network model has the 
 

Table 3. Comparison of different methods under various operating conditions. 

Method 
Evaluating 
Indicator 

Condition1 Condition2 Condition3 Condition4 

Injury Types Injury Types Injury Types Injury Types 

Corrugation 
Fish 
scaly 

injury 

Stripping 
off 

blocks 
Corrugation 

Fish 
scaly 

injury 

Stripping 
off 

blocks 
Corrugation 

Fish 
scaly 

injury 

Stripping 
off 

blocks 
Corrugation 

Fish 
scaly 

injury 

Stripping 
off 

blocks 

Standard- 
encoder 

MAE 11.11 13.02 18.55 12.46 19.29 18.55 15.54 19.29 14.45 12.24 18.56 18.53 

RMSE 13.68 14.94 22.12 14.49 23.58 22.12 20.16 23.58 18.49 18.52 22.12 22.13 

Score 0.73 0.72 0.63 0.72 0.63 0.63 0.68 0.63 0.73 0.70 0.62 0.63 

W/o- 
Separable 

MAE 3.26 4.45 10.69 6.22 3.19 6.23 6.67 3.71 4.51 4.20 3.37 7.58 

RMSE 4.40 6.10 15.29 9.03 3.99 7.78 11.02 4.80 5.95 6.67 4.24 12.49 

Score 0.90 0.90 0.84 0.84 0.91 0.87 0.89 0.90 0.92 0.94 0.88 0.90 

W/o- 
ECA 

MAE 9.20 12.80 12.00 7.33 7.26 8.39 13.18 5.41 8.38 10.34 3.03 9.57 

RMSE 12.87 15.60 16.03 9.39 11.52 13.64 17.06 7.06 11.43 13.40 3.81 15.38 

Score 0.75 0.80 0.78 0.77 0.80 0.81 0.62 0.84 0.79 0.78 0.90 0.75 

W/o- 
Pulsemaximum 

pooling 

MAE 9.18 9.56 9.41 6.44 10.04 8.28 8.45 9.75 3.63 3.90 9.76 8.31 

RMSE 12.70 12.99 12.83 12.44 13.26 10.27 10.67 12.71 4.64 5.54 12.71 11.27 

Score 0.82 0.80 083 0.88 0.72 0.79 0.78 0.76 0.91 0.92 0.76 0.78 

Proposed 
method 

MAE 2.05 3.26 9.19 2.72 2.03 3.05 2.36 1.95 2.16 3.21 1.51 4.52 

RMSE 2.76 4.43 16.89 3.43 2.83 3.87 3.05 2.45 2.67 4.31 1.95 5.61 

Score 0.96 0.93 0.89 0.95 0.97 0.93 0.95 0.95 0.96 0.92 0.96 0.92 
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ability to learn complex function mapping from input data, and can better pre-
dict, classify and judge the output results of the network. The alternative activa-
tion function gradient descent method is employed to address the challenge of 
non-differentiability exhibited by spiking neural networks during the back 
propagation process. To assess the efficacy of alternative activation functions, 
the activation functions of Sigmoid, Leaky RelU and RelU are employed for the 
purpose of comparing various activation functions. Taking condition 1 as an 
example, three experiments are designed for comparison, and the comparative 
outcomes are presented in Table 4. Figure 11 illustrates the comparison of RUL 
prediction effects of the three activation functions. 

1) Model-with-Piecewise LeakyRelU: the selected Model. 
2) Model-with-RelU: The pulse piecewise LeakyRelU activation function has 

been substituted for the standard RelU activation function, and the other struc-
tures of the network are kept unchanged. The efficacy of the pulse piecewise 
LeakyRelU activation function in augmenting the expressive capacity of deep 
neural networks can be validated by the Model. 

3) Model-with-Sigmoid: The impulsive piecewise LeakyRelU activation func-
tion has been substituted for the Sigmoid activation function, and the other 
structures of the network are kept unchanged. This Model can verify the advan-
tage of impulsive LeakyRelU activation function in enhancing the expression 
ability of deep neural networks. 

Based on the findings presented in Table 4, it is evident that the prediction 
effect of using Sigmoid activation function is poor, mainly reflected in the gap 
between the evaluation indicators MAE, RMSE and Score values, and the pulse 
convolutional network is easy to disappear the gradient when the gradient is 
back propagated. In the case of RelU activation function, the evaluation index is 
slightly better than that of Sigmoid activation function. The model using Piece-
wise EleakyRelU activation function achieved the best prediction effect. Al-
though the MAE and RMSE indexes of Piecewise EleakyRelU doubled compared  
 

Table 4. Comparison of different activation functions under condition 1. 

Method Evaluating Indicator 
Injury Types 

Corrugation Fish scaly injury Stripping off blocks 

Model-With-Sigmoid 

MAE 3.15 3.78 7.90 

RMSE 4.30 4.83 10.43 

Score 0.93 0.93 0.86 

Model-With-RelU 

MAE 2.40 3.22 4.04 

RMSE 2.94 4.47 5.17 

Score 0.96 0.94 0.86 

Model-With-Piecewise LeakyRelU 

MAE 2.05 3.26 9.19 

RMSE 2.76 4.43 16.89 

Score 0.96 0.93 0.89 
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(a) Sigmoid                            (b) RelU                     (c) Piecewise Leaky RelU 

Figure 11. Prediction effect of different activation functions for Corrugation damage under condition 1. 

 

with RelU, the score of the improved scoring function increased by 3.49%. The 
higher the score index, the more reliable the network RUL prediction in the later 
stage, thereby aligning more closely with practical engineering applications. 
Therefore, considering the performance evaluation index, the Piecewise Eleaky-
RelU activation function is selected as a solution to address the issue of 
non-differentiability of spiking neural network in the process of back propaga-
tion. 

4.3.4. Comparison Experiments of Different Networks 
Secondly, to enhance the objectivity of the research findings, a comparative 
analysis is conducted between the proposed model and other time series fore-
casting models. Furthermore, a comprehensive examination of the predictive 
outcomes of the model is carried out. Table 5 compares the outcomes of rail 
RUL prediction using the proposed technique with the established CNN, SNN, 
and TCN-SA methods in the literature [27]. The present study demonstrates that 
the prediction model proposed in this paper exhibits superior performance in 
comparison to several alternative models, as evidenced by various performance 
evaluation metrics. 

4.3.5. Research on Model Generalization 
Finally, to evaluate the efficacy and generalizability of the proposed approach in 
predicting the remaining lifespan of the entire life cycle, it was implemented on 
the PHM2012 rolling bearing dataset [28] and compared against methods that 
have demonstrated exceptional predictive performance on the same dataset. The 
data was gathered utilizing the accelerated aging platform known as 
PRONOSTIA, and the PHM2012 rolling bearing dataset provided by 
PRONOTIA contains data on rolling bearings during the period from normal 
operation to failure. Two accelerometers were positioned in the horizontal and 
vertical orientations to acquire vibration signals along these two axes, utilizing a 
sampling frequency of 25.6 kHz. 

There are similarities between the PHM2012 bearing dataset and the rail da-
taset in this paper, specifically in the following aspects: 1) Similarly, vibration 
signals in both directions were collected in horizontal and vertical directions for  
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Table 5. Comparison of prediction performance of different methods under various operating conditions. 

Method 
Evaluating 
Indicator 

Condition1 Condition2 Condition3 Condition4 

Injury Types Injury Types Injury Types Injury Types 

Corrugation 
Fish 
scaly 

injury 

Stripping 
off blocks 

Corrugation 
Fish 
scaly 

injury 

Stripping 
off blocks 

Corrugation 
Fish 
scaly 

injury 

Stripping 
off blocks 

Corrugation 
Fish 
scaly 

injury 

Stripping 
off blocks 

Regular- 
CNN 

MAE 9.32 10.9 10.26 10.3 11.8 11.28 9.56 10.58 10.45 10.69 11.45 10.56 

RMSE 11.2 13.01 11.36 12.0 14.13 12.38 11.36 13.12 12.38 11.03 14.13 12.38 

Score 0.80 0.78 0.77 0.79 0.77 0.76 0.79 0.77 0.76 0.79 0.77 0.76 

Regular- 
SNN 

MAE 5.41 8.62 8.18 6.8 8.07 10.16 7.71 5.82 11.06 8.35 6.27 15.93 

RMSE 6.9 11.35 11.5 8.51 11.51 12.82 9.77 7.96 15.21 10.99 8.69 20.83 

Score 0.9 0.86 0.84 0.88 0.87 0.8 0.83 0.83 0.77 0.86 0.85 0.73 

TCN-SA 
[25] 

MAE 4.56 6.23 5.68 5.98 6.67 7.12 5.02 6.13 7.03 4.51 5.02 10.89 

RMSE 5.66 6.9 7.22 7.12 8.6 7.89 6.85 8.64 8.5 6.29 7.01 13.65 

Score 0.92 0.89 0.88 0.9 0.86 0.88 0.91 0.85 0.86 0.9 0.88 0.79 

Proposed 
method 

MAE 2.05 3.26 9.19 2.72 2.03 3.05 2.36 1.95 2.16 3.21 1.51 4.52 

RMSE 2.76 4.43 16.89 3.43 2.83 3.87 3.05 2.45 2.67 4.31 1.95 5.61 

Score 0.96 0.93 0.89 0.95 0.97 0.93 0.95 0.95 0.96 0.92 0.96 0.92 

 

processing and analysis.  
2) Also according to the experimental conditions, a variety of conditions were 

set up, which is convenient for a large number of network model tests and re-
sults analysis. The advantages of this option are: 1. Verify the generalization 
ability of the model: By testing the model on similar data sets, it is possible to 
better evaluate whether the model can handle previously unseen data, which is 
an important indicator of the generalization ability of the model. 2). Reduce the 
risk of overfitting: Using different datasets can help identify if the model is over-
fitting the characteristics of the training data, thus ensuring that the model can 
maintain good performance on new, unseen data. 3). Improve the applicability 
of the model: If the model performs well on multiple similar data sets, then it is 
more applicable and can be applied to real problems with more confidence. 

In this paper, the utilization of data obtained from two distinct working con-
ditions is demonstrated in Table 6, and both horizontal and vertical vibration 
signals are employed as input. The data collected at each time is divided into a 
sample, that is, the input data shape is 2 * 2560. In each condition, a single bear-
ing data is designated as the test set while the remaining data are utilized as the 
training set. The output labels were established in a manner akin to the rail data, 
wherein the output label was determined by the lifetime percentage of the bear-
ing, and the RUL of the bearing was normalized to a scale ranging from 0 to 
100%. 

The efficacy of the proposed methodology is evaluated using the bearing da-
taset and juxtaposed with alternative methodologies. Table 7 displays partial  
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Table 6. Operating conditions and bearing numbers in the PHM2012 dataset. 

Operating condition Loading force Rotating speed No. tested bearings 

Condition 1 4000 N 1800 rpm B1-1 - B1-7 

Condition 2 4200 N 1650 rpm B2-1 - B2-7 

 
Table 7. Comparison of RUL prediction performance test results for PHM2012 bearing data set. 

Method Evaluating Indicator 
Bearing number 

B1-1 B1-2 B1-3 B2-4 B2-5 B2-6 

Standard-encoder 

MAE 22.64 22.88 22.51 22.81 22.73 23.07 

RMSE 26.79 27.10 26.69 27.21 26.62 27.40 

Score 0.59 0.60 0.58 0.57 0.58 0.59 

Model-Without-Separable 

MAE 13.02 10.50 10.53 14.12 14.63 15.16 

RMSE 15.95 13.76 14.66 17.91 19.45 18.10 

Score 0.71 0.79 0.78 0.71 0.67 0.71 

Model-Without-ECA 

MAE 14.55 17.47 15.58 17.23 18.14 17.86 

RMSE 18.55 21.91 19.31 21.21 21.77 23.34 

Score 0.71 0.66 0.67 0.63 0.65 0.65 

Model-Without-Pulse maximum pooling 

MAE 9.24 7.77 10.68 6.84 18.19 10.96 

RMSE 11.20 10.96 13.67 8.33 22.69 13.79 

Score 0.79 0.81 0.78 0.84 0.64 0.76 

DANN [29] 
MAE 13.3 15.3 28.4 12.0 22.7 20.6 

RMSE 16.0 17.2 33.5 14.3 27.5 23.3 

TCN-SA [27] 

MAE 10.4 13.0 9.7 5.18 13.3 10.9 

RMSE 11.3 16.9 11.7 6.42 16.1 13.8 

Score 0.87 0.80 0.81 0.91 0.78 0.83 

Proposed method 

MAE 6.00 5.93 4.54 6.70 12.42 10.03 

RMSE 7.59 7.43 5.81 9.10 14.95 12.36 

Score 0.85 0.85 0.85 0.85 0.70 0.77 

 

findings. The findings indicate that the proposed model exhibits enhanced MAE, 
RMSE, and Score metrics when applied to the PHM2012 bearing dataset. More-
over, the proposed model demonstrates a favorable predictive performance. 

5. Conclusions 

The present study introduces a novel model for predicting RUL that utilizes an 
enhanced pulse separable convolution technique to augment the feature output 
of a Transformer encoder. In addition, ECA attention mechanism is incorpo-
rated to readjust the pulse feature map to highlight the useful pulse features. 
Then, based on the effective features, the multi-head self-attention mechanism is 
employed to comprehensively control the dependency of fault features at each 
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time step in the long time span of the entire lifespan. Finally, the final RUL result 
is obtained through the improved Transformer encoder algorithm and the linear 
layer. Through the generalization experiment with the widely used PHM2012 
bearing data set, the findings indicate that the predictive capacity of the model 
proposed in this study surpasses that of other sophisticated algorithms currently 
available. This confirms that the model presented in this paper can significantly 
enhance the precision of rail Remaining RUL prediction. 

In the future work, we are interested in further improving the prediction abil-
ity from the following two aspects: First, it is to search for an optimized tag set-
ting method to better explain the RUL. Second, the combination of the 
end-to-end RUL prediction method and the traditional degradation mechanism 
of rail damage needs further exploration. In addition, the network proposed in 
this paper has the potential to be applied to aero-engine RUL prediction and 
other fields to further improve RUL prediction. 
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