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Abstract 
As government agencies continue to tighten emissions regulations due to the 
continued increase in greenhouse gas production, automotive industries are 
seeking to produce increasingly efficient vehicle technology. Hybrid electric 
vehicles (HEVs) have been introduced to mitigate problems while improving 
fuel economy. HEVs have led to the demand of creating more advanced con-
trols software to consider multiple components for propulsive power in a ve-
hicle. A large section in the software development process is the implementa-
tion of an optimal energy management strategy meant to improve the overall 
fuel efficiency of the vehicle. Optimal strategies can be implemented when 
driving conditions are known a prior. The Equivalent Consumption Minimi-
zation Strategy (ECMS) is an optimal control strategy that uses an equiva-
lence factor to equate electrical to mechanical power when performing torque 
split determination between the internal combustion engine and electric mo-
tor for propulsive and regenerative torque. This equivalence factor is deter-
mined from offline vehicle simulations using a sensitivity analysis to provide 
optimal fuel economy results while maintaining predetermined high voltage 
battery state of charge (SOC) constraints. When the control hierarchy is 
modified or different driving styles are applied, the analysis must be redone 
to update the equivalence factor. The goal of this work is to implement a 
fuzzy logic controller that dynamically updates the equivalence factor to im-
prove fuel economy, maintain a strict charge sustaining window of operation 
for the high voltage battery, and reduce computational time required during 
algorithm development. The adaptive algorithm is validated against global 
optimum fuel economy and charge sustaining results from a sensitivity analy-
sis performed for multiple drive cycles. Results show a maximum fuel econ-
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omy improvement of 9.82% when using a mild driving style and a 95% suc-
cess rate when maintaining an ending SOC within 5% of the desired SOC re-
gardless of starting SOC. 
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1. Introduction 

In 2019, greenhouse gas emissions from transportation accounted for roughly 
29% of the total greenhouse gas emissions in the U.S. In terms of the overall 
trend, from 1990 to 2019, the number of vehicle miles traveled (VMT) by 
light-duty vehicles increased by 48% due to contributing factors such as popula-
tion and economic growth [1]. HEVs can produce less tailpipe related emissions 
when using gasoline because they can operate more efficiently. Life cycle emis-
sions include all emissions related to both fuel and vehicle production, use, and 
disposing. When determining life cycle emissions, all emissions are included for 
extracting petroleum from the ground, refining to gasoline, distribution, and ve-
hicle consumption. Electric vehicles generally produce fewer life cycle emissions 
because most emissions are lower for electricity generation and can be further 
minimized by using electricity generated from renewable sources including solar 
or wind [2]. 

Hybrid vehicles can be broken down into two different classifications: Plug-in 
hybrid electric vehicles (PHEV) and non-plug in HEVs. PHEVs are characte-
rized by large HV batteries that give a vehicle the advantage of functioning as a 
fully electric vehicle or a hybrid. When driving, the vehicle can follow charge 
depletion (CD) where the electric motor is used solely for propulsion until a 
predefined HV battery state of charge (SOC) is reached.  

HEVs can be characterized by their smaller battery packs. In standard driving 
conditions, the battery pack is not large enough to provide electric-only vehicle 
operation; however, the motor can be utilized in case of emergencies if the ve-
hicle runs out of gas and needs to be moved off of the road. HEVs also cannot be 
plugged into a standard wall outlet to charge in between trips. Normal operating 
conditions for a HEV include using the motor to augment and optimize the op-
erating modes of the engine.  

HEVs have three architectures: series, parallel and a combination of both (se-
ries-parallel) shown in [3]. Each architecture serves a different purpose, with the 
price typically increasing due to the additional complexity of both the hardware 
and software of the system. 

The objective of this research is to design and implement a fuzzy logic con-
troller for implementation with an energy management strategy for a student 
designed hybrid electric vehicle (HEV). The main goal of the implemented con-
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trol strategy is to improve from the baseline fuel economy for multiple unknown 
test cycles and maintain charge sustaining (CS) vehicle operations. The purpose 
of implementing an advanced control strategy in a hybrid electric vehicle is to 
maximize efficiency by splitting the torque between multiple components in-
cluding the internal combustion engine (ICE) and electric motor. These ad-
vanced strategies are known as torque-split algorithms (TSAs) and exist in mul-
tiple ways; however, not all are created equally. Some strategies are rule-based 
which do not involve explicit optimization, but rather rely on different sets of 
rules that decide what value of control to apply. Optimization strategies involve 
calculating the optimal set point by minimizing a cost function over a known 
driving cycle which leads to a global solution. Globally optimal strategies are the 
best performing; however, they are only implementable if all future driving con-
ditions are known during the algorithm development period. Normal day to day 
driving prevents every driving condition from being available so adaptive strate-
gies have been implemented to achieve close to optimal performance [4]. Im-
plementation of adaptive control strategies allow the optimization of an algo-
rithm during use, which will lead to increased vehicle efficiency over the dura-
tion of a drive cycle.  

2. Vehicle Testing Architecture 

The vehicle modeled in this work is a P4 parallel HEV architecture that the West 
Virginia University EcoCAR team designed in the EcoCAR Mobility Challenge 
as part of the Advanced Vehicle Technology Competition (AVTC). The archi-
tecture is provided below in Figure 1.  

The performance metrics for the hybrid powertrain are shown in Table 1 [5]. 
 
Table 1. West virginia university EcoCAR team competition vehicle architecture power-
train performance metrics. 

Component Specifications 

Engine 
• General Motors (GM) 2.5 L Naturally Aspirated LCV 
• Peak Power: 148 kW 
• Peak Torque: 255 Nm 

Transmission • GM M3D (9T50) 9-Speed Automatic 

Fuel • E10 Regular 

Energy Storage System 
• GM HEV4 
• Peak Power: 50 kW 
• Energy Capacity: 1.5 kWh 

Motor 

• Magna Powertrain Electrified Rear Axle Drive (eRAD) 
• Peak Power: 50 kW 
• Peak Torque: 200 Nm 
• Integrated Gear Ratio: 9.17 

Inverter • Magna Dual Inverter 
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Figure 1. West virginia university EcoCAR team competition vehicle architecture [5]. 

 
Increasing efficiency entails moving the engine into an area where the brake 

specific fuel consumption (BSFC) is minimized. Reducing the BSFC will help to 
maximize the efficiency of the engine, but now the problem is creating an effec-
tive and efficient torque split algorithm that can recognize engine inefficiencies. 
If the most efficient split is commanded between the engine and motor, the en-
gine would never be used due to the higher efficiency of the electric motor. The 
torque split algorithm selected must understand the operating regions for both 
propulsion components in order to calculate the ideal operating regions. 

Consider an engine efficiency map shown in Figure 2 [6]. The engine speed is 
on the x-axis and engine torque is located on the y-axis. The red line indicates 
the maximum engine torque available from the engine at any given operating 
point. The multicolored lines indicate the BSFC at different operating points. 
Consider the following scenario shown in Figure 2 (Left). If the engine is pro-
ducing roughly 60 Nm of torque at 2200 rpm (point A), it is less efficient than an  

https://doi.org/10.4236/jtts.2024.141007


J. A. Diethorn et al. 
 

 

DOI: 10.4236/jtts.2024.141007 92 Journal of Transportation Technologies 
 

 
Figure 2. Engine optimization with an electric motor. 

 
operating point at 100 Nm and roughly 2200 - 2300 rpm (point B). To move the 
engine to the more efficient operating point B, the torque split algorithm can in-
crease the amount of torque requested from the engine. To mitigate a torque 
overshoot, the electric motor can be used to provide negative torque on the rear 
axle of the vehicle. This negative torque will be equal to the increased engine 
torque (roughly 40 Nm), which will allow the engine to be loaded into a more ef-
ficient region, reducing fuel consumption. Now consider the following situation 
(Figure 2, right) when the engine is producing a higher amount of torque at an 
increased engine speed. The engine can move into the more efficient BSFC re-
gion by producing less torque while the motor provides increased torque to 
maintain the original driver request. For this transition to happen, however, the 
engine speed must also be adjusted by shifting to a lower gear.  

3. Literature Review 
3.1. The Basic Problem 

When designing an HEV control strategy, there are two important factors to 
consider: Improving fuel economy and reducing vehicle emissions. This strategy 
is highly complex and must take component limitations and efficient operating 
regions into consideration. Strategies can be broken down into 2 categories: 
Rule-based and Optimal-based strategies. This paper will focus on Optim-
al-based strategies which can be further broken down into 2 categories: Numer-
ical and analytical. Numerical optimization methods include dynamic pro-
gramming, genetic algorithms, and stochastic dynamic programming. Analytical 
methods use an analytical problem formulation to find the solution in a closed 
form that makes the numerical solution faster. Included in this method are Pon-
tryagin’s minimum principle (PMP) and the ECMS [4]. 

Rizzoni et al. [4] introduces a formula to minimize the total mass of fuel con-
sumed, as follows:  

https://doi.org/10.4236/jtts.2024.141007


J. A. Diethorn et al. 
 

 

DOI: 10.4236/jtts.2024.141007 93 Journal of Transportation Technologies 
 

( )( )
0

, dft
ft

u t tJ m t= ∫                         (1) 

where fm  is the mass flow rate of fuel used (g/sec), ( )u t  is the control varia-
ble leading to the minimization of fuel consumed for the cost function, J, over a 
drive cycle starting at time 0t  and ending at time ft . The cost function varies 
based on constraints in the system that can be broken down into two categories: 
global and local constraints. Global constraints include imposed constraints, 
such as state of charge (SOC) targets while local constraints focus more on 
component power, speed, and torque limits and/or predefined SOC boundaries 
[4].  

3.2. Dynamic Programming 

Dynamic Programming (DP) uses numerical methods to solve the global energy 
management problem for a given drive cycle by operating backwards over time. 
DP can provide the optimal solution to any variety of complex problems within 
computational limits, but it is only implementable using a simulation environ-
ment. Information must be known a priori for DP to be successful due to the 
nature of looking at the optimization horizon. The algorithm used for DP is 
based on Bellman’s principle of optimality, which starts from the final step and 
works backwards to generate an optimal cost-to-go solution as shown below [4]:  

( ) ( ) ( )( )( )1arg mi, , ,n ,
k

k kuk k kU k k k kL Y fu x k x u x u uµ∗
+∈

= +=         (2) 

where 1 ,1k N= −  . ( )1,1x  is found in the last iteration of the algorithm and 
is equal to the optimal cost ( )0J x∗  discussed above. ( ),Nx N  is equal to the 
terminal cost and is dependent on the final state of Nx . ( ),kx k  represents the 
optimal “cost-to-go” from time k  to the end of the optimization horizon. 
( ),k kY x u  is dependent on the control variable uk  which represents all values 

that the cost-to-go function can assume. The control sequence is performed 
backwards where values for the optimal choice at each time instance k  and 
state value xk  are stored in the matrix u ∗  [4]. The numbers on each segment 
represent the cost from the minimum cost-to-go function ( ),x k  at each in-
stant. Once the DP algorithm is finished, the minimum cost is selected for the 
implemented control algorithm. Work in DP has been conducted at West Vir-
ginia University on a similar vehicle model by Aaron mull et al. [5]. 

3.3. Equivalent Consumption Minimization Strategy 

The ECMS provides an effective solution to energy management problems dis-
cussed previously by using a heuristic method. This algorithm works by applying 
a cost to the use of electrical, mechanical, and fuel energy when determining the 
optimum torque split ratio between both powertrains. The key idea, however, is 
that an equivalent fuel consumption value is associated with the use of all elec-
trical energy in the system [4]. This relationship is shown below in the following 
equation:  
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( ) ( ) ( ),f eqv f ressm t m t m t= +                       (3) 

where fm  is the actual fuel consumption, ressm  is the equivalent electrical fuel 
consumption, and ,f eqvm  is the total equivalent fuel consumption. 

The actual fuel consumption of the engine is based on the lower heating value 
of the fuel used ( lhQ , MJ/kg) along with the engine efficiency ( engη ) and power 
produced by the engine ( engP ) as shown below.  

( ) ( )
( )

eng
f

eng lhv

t
m t

P
t Qη

=                        (4) 

The electrical energy is given an equivalent fuel consumption value, or virtual 
fuel, shown in Equation (5) and can be found by assigning its’ own virtual spe-
cific fuel consumption ( eqsfc , g/kWh) at the current time and multiplying by the 
battery power ( battP ) [4]. It should be noted that proper unit conversions are 
needed in these equations when converting from MJ to kJ etc. 

( ) ( ) ( )ress eq battm t sfc t P t= ∗                     (5) 

The virtual fuel consumption is determined by applying the equivalence factor 
( ( )t ), which is a vector of values used for both charging and discharging the HV 
battery. This relationship can be seen in Equation (6).  

( ) ( )
eq

lhv

s t
sfc t

Q
=                          (6) 

Now the global problem of reducing the total cost can be condensed down to 
the local problem of minimizing the equivalent fuel consumption in Equation 
(3). At each instance of time, the equivalent fuel consumption is determined for 
multiple candidates of the control variable battP  which will provide the smallest 
equivalent fuel consumption value. The ECMS does not explicitly rely on infor-
mation about the future driving conditions, however, the constant values for the 
equivalence factor must be selected beforehand which will affect both the power 
output and fuel consumption for the system [6]. During operation with the 
ECMS, boundaries must be determined to prevent the HV battery from violating 
any admissible limits that could harm the battery pack. Due to these limitations, 
a multiplicative penalty function is generated to ensure all SOC limits are ob-
eyed. 

( ) ( ) target

max min

SOC SOC
SOC 1 SOC SOC

2

a

t
p

 
 −

= −  − 
 

                (7) 

This function takes deviations from the target SOC into account and will ap-
ply a penalty based on the direction of the deviation. Figure 3 shows 3 different 
penalty functions for varying values of the exponent a  [4]. 

As seen in the above sigmoid function figure, smaller exponential values of a  
will result in steeper penalties being applied. As the SOC deviates to the left from 
the target towards the minimum specified SOC, the penalty being applied will  
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Figure 3. Varying penalty for HV SOC. 

 
increase which in turn will increase the cost to use the battery, making a dis-
charge event less likely. If the SOC moves to the right from the target to the 
maximum specified SOC, the penalty will decrease, resulting in a lower cost to 
use the HV system for a discharging event. This penalty function is added to 
Equation (3) as follows:  

( ) ( ) ( ) ( ) ( ), SOCf eqv f batt
lhv

s t
m t m t P t p

Q
= + ∗ ∗               (8) 

Applying the ECMS through Equation (3) provides results comparable to 
those achieved through DP. Different drive cycles require different values for the 
penalty function as well as different equivalence factors which must be obtained 
through numerical optimization beforehand. In ideal conditions through drive 
cycle simulation with prior knowledge, the ECMS results are very close to the 
global optimum [4]. 

3.4. Adaptive Optimal Supervisory Control 

Optimal fuel economy cannot be guaranteed if real-world information, such as 
the drive cycle or environment, is not available. To combat this problem, adap-
tive optimal supervisory control (A-OSC) algorithms are introduced [4]. The 
A-OSC can be broken down into numerous groups depending on how the con-
trol algorithm(s) is being optimized. For this paper, several methods will be dis-
cussed for an adaptive ECMS (A-ECMS) strategy, however, emphasis will be 
placed on using fuzzy logic with ECMS. Adaptive drive cycle prediction focuses 
on adding “on-the-fly” algorithms to the ECMS to estimate the equivalence fac-
tors.  

Several works have included using A-ECMS for speed predictions and chain-
ing neural networks [7] [8] using the look-ahead horizon to determine the most 
likely behavior of the battery in the near future. This behavior helped to adjust 
the equivalence factor and apply the ECMS to split commanded torque between 
the engine and motor. 
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Adaptive drive pattern recognition involves training an algorithm to recognize 
a previous driving pattern. The current algorithm parameters are then adjusted 
based on the information learned from previous drive cycle patterns. In work 
done by [9] [10], multi-mode control algorithms were designed using driving 
pattern recognition. Numerous driving patterns were identified to obtain differ-
ent characteristics, including stop/total time, acceleration, and average cycle ve-
locity. A neural network decides, when driving, which representative driving 
pattern is closest to the current pattern by comparing the correlation related to 
the characteristic parameters. 

3.5. Fuzzy Logic 

Conventional control theory relies on an analytical model of a process to be 
controlled; however, this process can fall short if the model of the process is dif-
ficult to obtain or is highly nonlinear. Automotive companies have begun de-
signing control systems to produce autonomous vehicles, but humans have been 
driving for decades without needing mathematical models. This is where fuzzy 
logic can be introduced to help simplify the mathematical model. Fuzzy logic 
uses if-then rules and sets to define the meaning of qualitative values for a con-
troller input [11]. A fuzzy logic controller consists of three major areas or mod-
ules: the fuzzification input, inference engine, and defuzzification output, shown 
in Figure 4.  

When converting from the crisp inputs to the fuzzy inputs for the inference 
engine, linguistic variables and values are implemented. Linguistic variables are 
qualitative in nature and serve as a classification such as height, age, error levels, 
temperature, vehicle speed, position, etc. Linguistic values can vary for the lin-
guistic variables [12]. Membership functions of a fuzzy set determine the degree 
to which a crisp value for a linguistic variable belongs to a certain linguistic value.  
 

 
Figure 4. Overview of fuzzy logic architecture. 
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Membership functions can take on various shapes, however, the more common 
shapes are trapezoidal, triangular, bell shaped, and sinusoidal. The final step in 
the fuzzy algorithm is the defuzzification process. Defuzzification methods have 
the purpose of converting the command from a fuzzy to a crisp output that is 
executed by the control system. There are several conversion algorithms that are 
based on the height of the fuzzy sets and/or the area of the sets, including Cen-
ter-of-Sum, Height-at-Lower-Value, Height-at-Peak-Value, and Last-of-Maxima 
[12]. 

In [13] [14], adaptations were made to the equivalence factor for the ECMS 
using fuzzy logic with proportional integral controllers, along with adapting 
based on the deviation of the actual SOC level. Constraints were placed on the 
model where the ending SOC had to equal the starting SOC. To impose the SOC 
constraints, the following cost function equation was implemented:  

( )( ) ( )( ) ( )( )
( )

( )( )

0 0

max

2

d 1, d
t SoC t

oct SoC t
LHV

f

r

QJ SoC t V SoC
H

SOC So

m

t

u t t

C

t η

β

= + −

+ −

∫ ∫

       (9) 

where rSOC  is the reference SOC value, ( )rSOC SoC t−  is the delta SOC 
value during operation, η  is the average component efficiency of the motor 
over the engine, fm  is the equivalent engine fuel consumption, LHVH  is the 
lower heating value, ocV  is the open circuit voltage, and β  is a tunable penal-
ty coefficient. In both works, the adaptive ECMS improved fuel economy by 1% 
- 5%. 

Denis et al. [15] proposed a control strategy based on fuzzy logic by feeding 
the proposed controller with driving condition information. Two inputs for the 
fuzzy controller were used: a moving average of the past speed and the global 
discharge rate. The moving average was used to locate the current speed among 
three speed distributions to use the past driving information to adapt the control 
logic. The global discharge rate is computed by dividing the difference between 
the current and targeted SOC with the remaining distance in the cycle left. Three 
membership functions were used for the moving average and nine functions 
were used to define the global discharge rate. 

4. Methodology 

The objective of the current work is to present an adaptive ECMS strategy using 
a fuzzy logic controller to dynamically update the equivalence factor based on 
the deviation of the SOC from the target value and the wheel torque command. 
The vehicle model is composed of 5 key areas (Figure 5). The Driver subsystem 
contains a driver model along with the drive cycle selected for the current simu-
lation. The Controller subsystem contains all code that is flashed onto real-time 
hardware for any vehicle testing that is performed. The Plant model contains 
simulated versions of the engine, HV battery, and motor. The three subsystems 
are connected through virtual interfaces to mimic communication processes that  

https://doi.org/10.4236/jtts.2024.141007


J. A. Diethorn et al. 
 

 

DOI: 10.4236/jtts.2024.141007 98 Journal of Transportation Technologies 
 

 
Figure 5. Hybrid vehicle model overview. 

 
would be observed in a vehicle. The two remaining subsystems serve to visualize 
and log signals that are used in the post-processing part of the simulation. A 
high-level order for a simulation is as follows:  

1) The driver model provides an accelerator pedal input to follow the drive 
trace.  

2) The accelerator pedal is read into the Controller subsystem and torque 
commands are determined for the ICE and EM.  

3) The torque commands are sent to the Plant subsystem where the engine 
and EM models produce torque that is translated to the wheels to move the ve-
hicle.  

4) The relative velocity is fed back to the Driver subsystem where the driver 
model determines whether the accelerator or decelerator pedal should be pressed 
to follow the drive trace. 

5) Results are recorded in the Logging subsystem for post processing and 
comparison between different simulations.  

Steps 1-4 are repeated until the simulation is complete. 
The Controller system (Figure 6) consists of 3 main subsystems: The Input 

Layer, Hybrid Supervisory Controller (HSC), and Output Layer. The Input and 
Output layers are dedicated to organizing and distributing all relevant signals 
that the hybrid supervisory controller, or Application Layer, receives and sends 
out to the system. No calculations are performed in the input and output layers. 
Their purpose is to organize the signals being received and transmitted to other 
systems within the model. 

The Application Layer (HSC) consists of two main systems: The Accel Pedal 
and Regen Braking and Energy Management subsystems. The following discus-
sion will focus on modifications made to the Energy Management subsystem. 
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Figure 6. Controller overview. 

 
The Energy Management system, shown below in Figure 7, is composed of 3 

subsystems: The Control Domain, Powertrain Constraints, and ECMS. The 
ECMS subsystem outlined with a dashed box contains the FLC designed and 
implemented for this work. 

The Control Domain subsystem generates a predefined vector of possible 
wheel torque commands for the motor based on driver input. Pure electric pro-
pulsion, no electric propulsion, and a combination of the difference between the 
two are all considered and pushed into a “mux” block to combine the 3 inputs 
into a vector. The output of the mux block is fed into a “reshape” block to 
change the dimensions of the vector to output a vector with a size of [1, 1]. 

The Powertrain Constraints subsystem is used to determine component tor-
ques and infeasible operating conditions. At each timestep of the simulation, the 
limits for each powertrain component are determined. If the commanded torque 
exceeds a limit, an infeasible flag is set that will affect the torque output down-
stream. If one of the three infeasible flags are set, the entire torque command is 
flagged to ensure that no powertrain limits are exceeded during operation. 

There are 3 different infeasible flags that can be set: An engine, motor, or bat-
tery flag. In the Engine Constraint subsystem, the motor wheel torque vector is 
subtracted from the wheel torque vector to determine the engine wheel torque 
vector possibilities. This vector is converted to a component torque and is com-
pared to the maximum torque that the engine can produce at the current vehicle 
speed. If the command exceeds the calculated maximum, the infeasible flag will  
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Figure 7. Energy management overview. 

 
be set. This subsystem also determines the engine fuel flow rate by interpolating 
through a 2-dimensional look-up table using the engine speed and possible en-
gine torque commands. 

A similar process is followed in the Motor Constraint subsystem. The motor 
speed is read into the subsystem and pushed through a 1-D look-up table to de-
termine the maximum motor torque available at the given speed. An assumption 
is made that the minimum available motor torque is equal to the maximum mo-
tor torque with a sign flip from positive to negative. If the commanded motor 
torque is greater than the maximum or less than the minimum available torque, 
the infeasible motor condition will be set. The total motor power used for each 
portion of the torque vector is also calculated using an efficiency map. This 
power vector is sent into the Battery Constraint subsystem. The Battery Con-
straint subsystem determines the actual current draw and infeasible operating 
conditions on the HV battery. The actual battery current is calculated by divid-
ing the motor power vector by the actual battery voltage to obtain the current 
draw on the HV battery. If this current exceeds the maximum or minimum cur-
rent reported from the Plant model (HV battery in the vehicle), an infeasible flag 
will be sent downstream. Similarly, the battery SOC is fed into 1 dimensional 
look-up tables to determine the maximum and minimum available power. The 
purpose of these tables is to limit the HSC from overcharging or overdrawing 
power from the HV battery. The output of the tables is a gain value that ranges 
from 0 - 1. This final value is compared to the calculated motor power vector 
and if limits are exceeded, an infeasible flag will be set. 
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The ECMS subsystem, shown in Figure 8, is composed of the equivalence 
factor and associated SOC penalty calculations, battery power, fuel flow rate, the 
infeasible flag condition, tractive power error and the engine power delta. Each 
input is composed of a vector determined upstream in the Control Domain sub-
system. The summation is as follows in Equation (10): 

( ) ,SOCfuel batt P PE eng RLH P s P p Con Trac P= + ∗ ∗ + + +          (10) 

where fuelP  is fuel power, s  is the equivalence factor, battP  is the associated 
battery power, ( )SOCp  is the multiplicative penalty factor, PCon  is the in-
feasible flag constraint factor, PETrac  is the tractive power error, and ,eng RLP  is 
the engine power delta. 

The battery power is determined using the HV battery reported voltage and 
the current calculated in the Battery Constraint subsystem. This power is mul-
tiplied by the multiplicative penalty factor, which is a function of the battery 
SOC at each timestep. In this analysis, the penalty factor was adjusted so that 
from 40% - 60% SOC, the penalty would be approximately 1 (a = 3 curve in 
Figure 3).  

The equivalence factor, or “s”, is typically a constant value determined offline 
but can be a dynamic variable that updates during online operations and is used 
to relate the total amount of battery energy to power. This value can take on a 
multitude of ranges, but the range that applies to most drive cycles is between 2 
and 4. The engine power delta calculation is performed by multiplying both the 
current engine torque vector and the previous commanded engine torque by the 
engine speed to determine power. The purpose of this calculation is to deter the 
management strategy from oscillating the commanded engine torque. As the 
commanded engine power differs from the previous power, the associated penalty 
will continue to increase, making the command more costly. The final engine 
power delta is the absolute value of the current engine power vector minus the  
 

 
Figure 8. ECMS overview. 
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previous engine power command. The tractive power error penalty is calculated 
upstream and is implemented to prevent the minimization strategy from select-
ing a cost that will prevent the total wheel torque command from being obeyed. 
In a similar fashion, the infeasible flag is multiplied by a gain of 1E7. An ex-
tremely high gain is used to prevent the minimization strategy from selecting a 
cost that would cause damage to one of the powertrain components. The engine 
fuel flow rate is multiplied by the lower heating value to obtain the fuel power in 
kilowatts for each element in the commanded engine torque vector. 

Once H is determined, the MATLAB function block is implemented to find 
the minimum allowable value for the vector of the cost function. This creates an 
index value “idx” which is used downstream in the multiport switches to pass 
the desired torque command. In the case where all torque splits are infeasible, 
the strategy will use the first index which is defined as the total driver demanded 
wheel torque that is saturated between the minimum and maximum torque values.  

Fuzzy Logic Additional Control Block 

The focus of this work was to implement a fuzzy logic controller in the man-
agement strategy to improve overall fuel economy and charge sustainability of 
the system. The fuzzy controller accepts two inputs: the difference in SOC be-
tween the actual and target (50%), and the driver wheel torque command shown 
below in Figure 9.  

Membership functions were defined for both inputs using the Fuzzy Logic 
Controller which belongs to the Fuzzy Logic Toolbox in Simulink [16]. The 
wheel torque command was added to allow the fuzzy controller to make accurate 
updates to the equivalence factor based on the power demanded from the driver. 
During low power or torque demands, the controller may determine that the 
motor can be favored over the engine until the SOC decreases below the setpoint. 

The delta SOC variable shown in Figure 10 was designed to operate in a range 
of +−10% around the target SOC of 50% satisfying the defined operating win-
dow of 40% - 60% SOC. Functions include large negative (LN), medium negative 
(MN), small negative (SN), zero (Z), small positive (SP), medium positive (MP) 
and large positive (LP).  

 

 
Figure 9. Fuzzy logic simulink controller. 
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The wheel torque input (Figure 11) was created to operate in the range of 0 - 
4100 Nm. Negative wheel torque was not considered due to the functionality of 
the management strategy. When the wheel torque is not a positive value, the 
management strategy is disabled to favor regenerative torque from the motor. 
This torque input is considered the net input to the system and during opera-
tion, if the wheel torque command is positive but the HV battery SOC is low, the 
ECMS will favor an OC scenario to increase the load requested from the engine 
to provide regenerative torque from the motor. If the torque command exceeds 
4100 Nm, the input function will default to VL. 

The output membership function shown in Figure 12 is a delta equivalence 
factor value. A delta was selected in order to help prevent the fuzzy controller 
from selecting an equivalence factor that would make the battery power too 
cheap, which could cause the battery to discharge down to a lower limit. The 
output of the controller is added to a predefined input to ensure that the equiva-
lence factor will always take on an appropriate value, regardless of starting SOC 
or the selected drive cycle.  

 

 
Figure 10. Delta SOC membership functions. 

 

 
Figure 11. Wheel torque command membership functions. 
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Once the membership functions for both inputs and the output were created, 
the inference rule matrix was designed. The inference rule matrix includes the 
“if-then” rules that dictate how the controller functions. 

Figure 13 provides a high-level overview of the closed-loop system in the MIL 
environment with the integrated FLC. The flow of the diagram flows from left to 
right and top to bottom until each drive cycle is complete. Table 2 defines the 
inference rule matrix. 

 

 
Figure 12. Delta EF membership functions. 
 

 
Figure 13. High-level control with integrated fuzzy logic controller. 
 
Table 2. Inference rule matrix. 

WTC|DSOC LN MN SN Z SP MP LP 

VS MP SP MN MN MN LN LN 

S MP SP MN MN MN LN LN 

MS MP SP SN MN MN LN LN 

MS LP MP SN MN MN LN LN 

ML LP MP SN SN MN MN LN 

L LP LP Z Z SN MN LN 

VL LP LP SP Z SN MN LN 
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5. Results 

The results are broken down into 3 parts: Optimal, average, and fuzzy ECMS. 
The optimal ECMS is defined as the absolute best fuel economy that can be 
achieved while maintaining CS over each drive cycle and is performed with a 
brute force approach. The average ECMS uses the average EF (sum of all EF di-
vided by the total number of drive cycles) found during the brute force analysis 
to determine how effective the ECMS can be over multiple drive cycles when the 
EF is generalized. The fuzzy ECMS uses the same initial EF for each drive cycle 
and the additional FLC updates the EF. Table 3 highlights the validation drive 
cycles and their respective characteristics. 

Each drive cycle was cyclically run 4 times in Simulink to determine the op-
timum equivalence factor for each cycle at each equivalence factor. The selected 
range for the tested equivalence factor values spanned from 2 to 4 in 0.05 incre-
ments. Constraints were put in place to prevent the ECMS from using an EF set 
too low, so charge sustainability was defined in a 5% window from the starting 
SOC of 50%. Table 4 provides the optimum EF for each drive cycle and the av-
erage over all cycles. 

The average EF was used to determine charge sustainability over each drive 
cycle without tuning for the specific cycle. Each cycle was repeated 4 times to 
capture multiple iterations of data in varying scenarios. A starting SOC of 50% 
and 32.5% were defined as well as different driver reaction times of 0.1 and 0.5 
seconds respectively. The difference in starting SOC provides a varying approach 
to determining how well the average EF can obtain CS results when the average  
 
Table 3. Validation drive cycles and characteristics. 

Drive Cycle 
Simulation 

Time (s) 
Max Speed 

(m/s) 
Avg. Speed 

(m/s) 

Max  
Acceleration  

(m/s2) 

Min  
Acceleration  

(m/s2) 

NYCC 1196 12.38 3.17 2.68 −2.64 

SC03 1200 24.50 9.60 2.28 −2.73 

US06 1200 35.90 21.46 3.76 −3.08 

EMC City 1478 31.75 11.70 3.63 −3.41 

RTS95 1772 37.35 14.58 2.88 −2.71 

HWFET 1530 26.78 21.56 1.43 −1.48 

HUDDS 2120 25.93 8.43 1.96 −2.07 

EMC Highway 5924 35.90 25.91 3.56 −2.89 

UDDS 2738 25.35 8.76 1.48 −1.48 

LA92 2870 30.04 11.00 3.08 −3.93 

Artemis Rural Road 2164 30.97 15.96 2.36 −4.08 

https://doi.org/10.4236/jtts.2024.141007


J. A. Diethorn et al. 
 

 

DOI: 10.4236/jtts.2024.141007 106 Journal of Transportation Technologies 
 

Table 4. Optimal equivalence factors. 

Drive Cycle Equivalence Factor 

NYCC 3.5 

SC 03 2.45 

US 06 3.05 

EMC City 2.75 

RTS 95 2.85 

HWFET 2.75 

HUDDS 2.95 

EMC Highway 3.05 

Average 2.92 

 
EF is found for a starting SOC of 50%. 50 and 32.5% starting SOC values were 
selected to provide variability in the real-world when turning a vehicle on and 
driving, however, the 32.5% SOC scenario is used to show how the control sys-
tem will react when starting a cycle from a very low SOC. Similarly, the aggres-
sive driver with a response time of 0.1 seconds will attempt to follow the drive 
cycle as close as possible, minimizing deviations while the mild driver with a re-
sponse time of 0.5 seconds tends to smooth out the drive trace to better mimic 
actual human driving response times. 

Fuzzy ECMS 

Results from the optimal and average ECMS showed that the model performed 
best when operating in an EF range of 2 - 3, however, there were certain in-
stances where the SOC would deviate from the defined operating range of 40% - 
60% SOC. Due to these deviations, the output delta SOC function was defined to 
have a range of −1.5 to 1.5 to allow the EF to increase above 3 if the engine was 
needed to provide OC and decrease below 2 after large energy capturing in-
stances. Creating a delta output rather than an absolute output provides the 
controller with added flexibility of adjusting the EF without losing resolution by 
expanding or reducing the total range of the output. A similar process was fol-
lowed as discussed above where the starting SOC and driver styles were varied to 
test the robustness of the F-ECMS strategy. 

6. Discussion 

Table 5 below shows the fuel economy and SOC results for the brute force anal-
ysis discussed above. From these results, the absolute best fuel economy for each 
drive cycle using the imposed SOC CS constraints can be seen. These results 
provide us with the baseline for all future testing using the current vehicle model 
configuration. 
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Table 5. Optimal ECMS results. 

Drive Cycle 
Equivalence  

Factor 
Ending SOC  

(%) 
Fuel Economy  

(mpg) 

NYCC 3.5 47.41 19.85 

SC 03 2.45 52.27 36.40 

US 06 3.05 54.95 30.55 

EMC City 2.75 53.78 33.15 

RTS 95 2.85 50.23 26.99 

HWFET 2.75 52.22 41.19 

HUDDS 2.95 54.92 35.66 

EMC Highway 3.05 49.56 30.22 

 
Drive cycles with mild accelerations and decelerations allow for more robust 

energy management from both powertrain components while harder accelera-
tions and decelerations with lower top speeds such as the NYCC correlate to in-
creased penalties associated with the electric motor due to poor energy recap-
ture, resulting in a higher EF. Once a cycle is complete, a charge correction is 
applied to adjust the final fuel economy based on the ending SOC of the HV 
battery. In CS operations, the fuel economy may be adjusted if the ending SOC is 
different than the starting SOC, indicating that the drive may have been charge. 
The difference in the SOC value is considered in the charge correction equation, 
which defines the correlation between equivalent electric gasoline used or stored 
and actual fuel flow from the engine model. Charge correction has been applied 
to the fuel economy results shown in the table below. 

Table 6 provides the charge corrected fuel economy results from the average 
and F-ECMS for both driving styles with varying initial SOC values. The table is 
broken down into 4 main sections. The first row contains the different driving 
style and initial SOC value. The second column contains the drive cycle header 
and type of EF applied. The average EF is represented with an “A-EF” and the 
fuzzy EF is represented with an “F-EF”. Drive cycles used in the experiment are 
listed on the left-hand side of the table in the first column, and fuel economy 
data in units of mpg is displayed in the remainder of the table. The fuzzy EF 
competes with the average EF for each driver style and starting SOC value, im-
proving fuel economy over the course of several drive cycles. 

Equation (11) is used to determine the percent difference between the average 
and fuzzy EF strategies.  

% 100F Avg
Diff

Avg

FE FE
FE
−

= ∗                    (11) 

where AvgFE  is the charge corrected fuel economy from the average ECMS and 

FFE  is the charge corrected fuel economy from the F-ECMS. Table 7 provides 
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the total percentage difference for the fuel economy over each drive cycle for the 
average and optimal ECMS compared to the F-ECMS. Positive percentages 
represent an increase in fuel economy for the F-ECMS while negative percen-
tages highlight a decrease in fuel economy over the average or optimal ECMS. 
 

Table 6. Fuel economy results in mpg for Avg. and fuzzy EF for aggressive and mild drivers at 50 and 32.5% initial SOC. 

Drive Cycle 
Aggressive 50% Mild 50% Aggressive 32.5% Mild 32.5% 

A-EF F-EF A-EF F-EF A-EF F-EF A-EF F-EF 

NYCC 18.69 19.46 19.18 19.92 19.55 21.47 19.92 21.85 

SC 03 36.12 34.14 36.25 34.33 38.26 35.98 38.19 36.03 

US 06 27.72 27.94 28.60 28.83 28.27 28.12 29.22 28.92 

EMC City 31.41 30.68 31.85 30.94 32.51 31.65 32.74 31.88 

RTS 95 26.88 26.78 25.97 27.49 27.39 27.21 28.07 27.89 

HWFET 39.46 38.81 40.52 39.63 40.22 39.49 41.01 40.93 

HUDDS 32.08 31.55 33.58 32.76 33.05 32.58 34.65 33.81 

EMC Highway 30.06 30.59 30.07 31.54 30.63 30.69 31.41 31.63 

UDDS 33.65 33.67 34.00 34.33 34.60 34.72 34.65 34.94 

LA 92 31.48 30.93 32.00 31.51 32.08 31.48 32.54 32.03 

Artemis Rural Road 37.30 36.69 38.26 37.23 38.02 38.99 37.41 30.05 

 
Table 7. Total fuel economy % comparison. 

Drive Cycle 
Average Comparison Optimal Comparison 

Aggressive  
50% 

Mild  
50% 

Aggressive  
32.5% 

Mild  
32.5% 

Aggressive  
50% 

Mild  
50% 

Aggressive  
32.5% 

Mild  
32.5% 

NYCC 4.12 3.86 9.82 9.69 −1.96 0.35 8.16 10.08 

SC 03 −5.48 −5.30 −5.96 −5.66 −6.21 −5.69 −1.15 −1.02 

US 06 0.79 0.80 −0.53 −1.02 −8.54 −5.63 −7.95 −5.34 

EMC City −2.32 −2.86 −3.54 −2.62 −7.45 −6.67 −4.52 −3.83 

RTS 95 −0.37 5.85 −0.65 −0.64 −0.78 1.85 0.82 3.33 

HWFET −1.64 −2.19 −1.82 −0.19 −5.78 −3.79 −4.13 −0.63 

HUDDS −1.65 −2.44 −1.42 −2.42 −11.53 −8.13 −8.64 −5.19 

EMC Highway 1.76 4.89 0.20 0.70 1.22 4.37 1.56 4.67 

UDDS 0.06 0.97 0.35 0.84     

LA 92 −1.75 −1.53 −1.87 −1.57     

Artemis Rural Road −1.64 −2.69 2.55 1.71     
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Please note, the optimal EF was only found for a starting SOC of 50%. For the 
tests comparing the optimal to the F-ECMS algorithms, the 32.5% SOC tests are 
used for comparing the hypothetical possibility of using an adaptive equivalence 
factor to highlight differences in fuel economy.  

The F-ECMS may not perform as well when looking at the percent difference 
compared to the optimal ECMS, however the best improvement was 4.37% dur-
ing the EMC Highway cycle. The average decrease was 1.62% when looking at 
the drive cycles where the F-ECMS performed worse when compared to the av-
erage EF. In the case of the mild driver when starting at 50% SOC, the F-ECMS 
was able to improve fuel economy in 3 out of the 8 original cycles that the op-
timal ECMS was calibrated for. The adjustment in the EF allowed the ECMS al-
gorithm to better optimize the engine by utilizing the motor during launching 
events and the engine at higher speeds achieved in cycles such as the EMC 
Highway cycle.  

Table 8 provides the ending SOC results from the average ECMS strategy 
along with the F-ECMS for both driving styles with varying initial SOC. The first 
row of both tables groups the tests into 4 categories which pertain to the driver 
type (aggressive or mild) and starting SOC value (50% or 32.5%). In the second 
row, the average ECMS and F-ECMS are denoted with an A and F respectively. 
The average EF keeps the control strategy operating in a CS mode roughly 73% 
of the time. The drive cycles that fail share common characteristics: Higher 
speeds, aggressive accelerations, and reduced idle times. In comparison, the 
F-ECMS shows a success rate of 95% when looking at the ending SOC in com-
parison to the defined ending range of +/− 5%. 
 

Table 8. Average and fuzzy ECMS ending SOC comparison. 

Drive Cycle 
Aggressive 50% Mild 50% Aggressive 32.5% Mild 32.5% 

A-EF F-EF A-EF F-EF A-EF F-EF A-EF F-EF 

NYCC 38.12 44.22 39.63 46.41 31.61 46.27 30.74 46.40 

SC 03 61.61 46.15 60.61 45.75 61.60 46.13 56.57 45.74 

US 06 52.10 49.74 58.93 50.27 52.25 49.71 58.33 50.27 

EMC City 61.70 50.13 65.07 50.17 62.56 50.18 65.00 50.19 

RTS 95 50.74 52.55 49.78 53.67 51.24 52.57 49.76 53.67 

HWFET 62.82 49.77 65.30 50.24 62.65 49.79 65.15 50.24 

HUDDS 51.95 47.55 59.01 47.83 50.92 47.54 60.40 47.85 

EMC Highway 47.69 51.84 52.07 51.18 47.63 51.84 52.06 51.18 

UDDS 43.23 45.73 40.64 45.20 44.73 45.71 38.60 44.92 

LA 92 63.13 48.25 62.57 48.65 63.31 48.24 62.58 48.61 

Artemis Rural Road 56.31 46.35 63.61 46.79 56.34 46.33 64.08 49.18 
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Why is the trend of SOC over time an indication of good EF management? 
The EF will affect how the ECMS optimizes torque between the engine and mo-
tor. An EF that is set very low may improve fuel economy by utilizing the motor 
more often, however, adjusting the EF allows the HV battery and motor to oper-
ate in constrained but efficient cases to keep the SOC within predefined limits, 
regardless of the driving style or cycle. Different driving styles also influence the 
fluctuations in SOC over different drive cycles with varying top speeds and acce-
lerations. The trend in SOC over each drive cycle can also help to pinpoint er-
rors in a constant or average EF. 

6.1. EMC Highway Cycle 

The F-ECMS improved fuel economy for all 4 tests when compared to the op-
timal ECMS with a maximum increase of 4.37%. When compared to the average 
ECMS, the F-ECMS improved fuel economy by a maximum of 4.89%. This cycle 
is characterized by aggressive accelerations, high speeds of 80 mph, and reduced 
idle periods, as shown in Figure 14.  

Figure 15 and Figure 16 provide simulation results for a starting SOC of 50%. 
The optimal CS EF was found for the best fuel economy and as seen in Figure 
15, the SOC oscillates through the range of 40% - 50% SOC throughout the 
cycle. The average ECMS produces CS results for both driving styles, however, 
differences can be seen in the figure below. The aggressive driver SOC curve fol-
lows the optimal for most of the cycle, with minor discrepancies at both the start  
 

 
Figure 14. EMC highway drive cycle. 
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Figure 15. EMC highway 50% SOC comparison. 

 

 
Figure 16. EMC highway 50% EF comparison. 
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and roughly 3000 seconds into the cycle. Conversely, the average ECMS tends to 
charge the battery to a higher SOC when using a mild driving style. The F-ECMS 
is able to maintain 45% SOC for a large portion of the drive cycle and does not 
deviate below the upper or lower SOC bound. This is due in part to the nature of 
the drive cycle, with aggressive accelerations and decelerations that cause the 
SOC to fluctuate rapidly. When this happens, the algorithm must be tuned of-
fline to combat the changes. However, with the F-ECMS, the fluctuations in SOC 
are not drastic due to the algorithm adapting to the driver torque demands on 
both the accelerations up to the maximum speed and back down to 0 mph. This 
can be viewed better for the case of the Mild driver below where the average 
ECMS consistently violates the upper SOC bound, but the F-ECMS does not. 
Fluctuations in the EF are due to the rapid changes in accelerator and decelera-
tor pedal from the driver. During simulations, the driver will try to match the 
speed profile exactly, which can cause the algorithm to adjust to varying positive 
and negative torque requests at each timestep. 

Figure 17 and Figure 18 provide the SOC and EF results for the EMC High-
way drive cycle with a starting SOC of 32.5%. Results are similar to those shown 
above where the F-ECMS updates every timestep to match the response from the 
driver following the speed profile which contributes to a smoother SOC profile 
that does not violate the min/max threshold. The EF for the F-ECMS algorithm 
reaches a maximum at the beginning of the cycle due to the large acceleration 
request from the driver and low starting SOC. This causes the algorithm to raise  
 

 
Figure 17. EMC highway 32.5% SOC comparison. 
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Figure 18. EMC highway 32.5% EF comparison. 

 
the SOC above the minimum threshold before adjusting based on a lower acce-
leration request from the driver. In a similar fashion to the results shown above, 
the EF updates rapidly for the aggressive driver in response to following the 
speed profile with as little error as possible. While this does not represent 
real-world driving profiles, it does support the basis of charge sustainability 
without the need to tune the algorithm for individual driving characteristics.  

6.2. EMC City Cycle 

The EMC City drive cycle/speed profile is shown below in Figure 19.  
The F-ECMS may not have improved fuel economy during simulations, how-

ever, substantial improvements for charge sustainability and SOC stability were 
performed. Figure 21 and Figure 20 provide results with a starting SOC of 50% 
while Figure 22 and Figure 23 provide the 32.5% starting SOC results for the 
EMC City drive cycle.  

In Figure 21, the F-ECMS adjusts the EF to maintain a rough average of 45% 
SOC. The F-ECMS maintains CS at the end of the cycle while the average ECMS 
violates the upper 55% window during both the aggressive and mild driver for 
the ending SOC, providing OC for both driving styles. When the EF is set higher 
than needed for a drive cycle, the motor will not be favored in launching events. 
During decelerations, energy is captured, however, because the motor is not fa-
vored in certain instances, the SOC does not deplete, leading to the CS operations  
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Figure 19. EMC city drive cycle. 

 

 
Figure 20. EMC city 50% EF comparison. 
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Figure 21. EMC city 50% SOC comparison. 

 

 
Figure 22. EMC city 32.5% SOC comparison. 
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Figure 23. EMC city 32.5% EF comparison. 

 
for both drivers. The F-ECMS adjusts the EF at the beginning of each cycle to 
compensate for acceleration requests from the driver. These responses help the 
SOC follow a trend similar to the optimal for the EMC City cycle, indicating that 
the F-ECMS achieves close to optimal results by updating the EF from driver 
inputs to the system. 

Figure 20 highlights the effectiveness of the F-EF to maintain CS operations 
over the course of the drive cycle. 

Figure 22 and Figure 23 showcase the ability of the F-ECMS to adapt to a 
lower starting SOC and retain CS operations within the first 100 seconds of the 
drive cycle. A large regenerative event at 200 seconds in the cycle causes the av-
erage ECMS to raise the SOC above the maximum threshold due to the untuned 
EF. Harder accelerations at the beginning also cause the delay of an SOC in-
crease for the average ECMS while the F-ECMS is able to raise the SOC above 
the minimum threshold within the first 75 seconds. Once above this threshold, 
the F-ECMS adapts to the driver demands to follow an SOC curve similar to the 
one determined through the brute force analysis. Lower speeds in the cycle con-
tribute to a lower EF average for the F-ECMS, with the average maintaining 
roughly 2.1 over the cycle.  

7. Limitations 

While the above results show promise that an adaptive strategy can be imple-
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mented to improve vehicle efficiency and charge sustainability, there can be 
drawbacks introduced into the system. Fuzzy logic shows promise for tuning a 
system to specifications or functions; however, some background knowledge is 
required in order to tune the system efficiently. The same results can be obtained 
if prior knowledge is not used, but this can make the end goal longer to reach, 
costing more time or money in the process. Similarly, the intended algorithm is 
very computationally expensive, which will require implementation on a strong-
er processor to run in real-time. For this reason, automotive companies may opt 
to use rules-based algorithms to reduce the hardware and essentially, vehicle 
costs for consumers.  

8. Conclusions and Recommendations 

In conclusion, the objective of this work was to design and integrate a fuzzy log-
ic-based controller to implement with the ECMS. The fuzzy logic controller was 
selected due to the adaptability of the controller regardless of driver style or se-
lected cycle. The goals of this work were to maintain or improve fuel economy 
when compared to the optimal baseline achieved by the ECMS through a brute 
force analysis along with improving the charge sustainability of the control algo-
rithms and HV battery life. Throughout this work, multiple conclusions and 
recommendations were identified. 
• Performance of the ECMS is dependent on adjustment of the EF. 
• Each drive cycle and driving style require a different EF. 
• The implemented fuzzy logic controller provides a robust method for updat-

ing the EF. 
• Additional drive cycles should be analyzed that provide a wider range of op-

timal EFs. 
• Adjusting the output of the EF to control the raw EF will help reduce the 

amount of prior EF calculations and modeling. 
• The addition of a sliding time window to gradually adjust the EF rather than 

at each timestep will help with lessening oscillations in the EF. 
• Modifying the FLC to prioritize regenerative braking will increase efficiency 

of the algorithm and reduce losses through the mechanical brakes. 
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