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Abstract 
A robust parameter identification method based on Kiencke model was pro-
posed to solve the problem of the parameter identification accuracy being af-
fected by the rail environment change and noise interference for heavy-duty 
trains. Firstly, a Kiencke stick-creep identification model was constructed, 
and the parameter identification task was transformed into a quadratic pro-
gramming problem. Secondly, an iterative algorithm was constructed to solve 
the problem, into which a time-varying forgetting factor was added to track 
the change of the rail environment, and to solve the uncertainty problem of 
the wheel-rail environment. The Granger causality test was adopted to detect 
the interference, and then the weights of the current data were redistributed 
to solve the problem of noise interference in parameter identification. Finally, 
simulations were carried out and the results showed that the proposed me-
thod could track the change of the track environment in time, reduce the 
noise interference in the identification process, and effectively identify the 
adhesion performance parameters. 
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1. Introduction 

The implementation of the locomotive traction force is limited by the adhesion 
force [1]. While for the adhesion performance between locomotive wheels and 
rails, the medium on the wheel-rail contact interface has the greatest impact. 
When the third medium is water or oil, the wheel-rail surface roughness de-
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creases, thus making the wheel-rail adhesion performance worse [2]. Therefore, 
the identification of rail surface state is of great importance, as there is noise in-
terference for the parameters of the identification, it is necessary to construct a 
robust identification method for rail surface state. 

Currently, parameter estimation methods such as least square method, gene-
ralized moment estimation method, Bayesian estimation method and maximum 
likelihood estimation method are used parameter estimation. Reference [3] used 
search and recursive least square method to obtain the adhesion parameters of 
wheel-rail surface, so as to adapt to the dynamic change of model parameters. 
Reference [4] preset typical performance parameters to identify the rail surface 
performance parameters online, and the identification speed and accuracy were 
improved. Reference [5] applied the generalized moment estimation method to 
estimate with various short-term interest rate models, and found that the mo-
ment estimation method had a poor estimation performance. Reference [6] stu-
died the Bayesian estimation with term structure model of interest rate, and ob-
tained good results. And the performance of posterior mean estimation was 
without significant difference. For the parameter identification of locomotive 
adhesion model in time-varying environment, Reference [7] constructed a 
maximum likelihood method to the estimate adhesion performance. By intro-
ducing in a time-varying forgetting factor, the accuracy of the algorithm and its 
sensitivity to environmental changes were improved. However, the above men-
tioned parameter estimation methods did not consider the interference of noise 
during the identification process. However, according to Reference [8], noise 
will reduce the accuracy of parameter identification. Therefore, a new method is 
proposed in this paper, with the following main contributions. 

1) The time-varying forgetting factor in the model parameter identification 
algorithm is improved, with optimized upper and lower limits, for a quicker 
converge and adaptation to the change of rail surface environment. 

2) The Granger causality test is introduced to detect the noise, and the weights 
of the current data are redistributed after the noise is detected. This reduces the 
interference of noise to model parameter identification and makes the identifica-
tion result more accurate. The experimental results show that the improved al-
gorithm can adapt to the change of rail surface environment more quickly, iden-
tify model parameters fast, as well as reduce the noise interference. 

2. Problem Description 

The relationship curve between adhesion force and creep rate is called the adhe-
sion characteristic curve. The actual adhesion characteristic curve is a curve with 
a certain width [7]. The wheel-rail adhesion model is not only affected by the 
deterministic factors such as wheelset state and rail surface state, but also by the 
uncertain factors such as ambient temperature and humidity and rail surface 
cleanliness. Thus, it is difficult to obtain a very accurate adhesion model. The 
adhesion-creep mechanism models can be divided into linear models and non-
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linear models. 
The Kiencke model is a nonlinear mechanism model that can relatively accu-

rately describe the adhesion-creep behavior between wheel and rail. It is as fol-
lows [9]: 

( ) 0
2

1 21
a

p p
λµ λ

λ λ
=

+ +
                     (1) 

where, ( )µ λ  is the adhesion coefficient with creep rate λ  as the variable. 0a  
is the initial slope of the adhesion characteristic curve, which is a constant. 1p ,

2p  are model parameters and they are variables. For dry, normal and wet rail 
surfaces, the curves of Kiencke model are shown in Figure 1, respectively. 

In view of the single-peak feature of the adhesion characteristic curve in Fig-
ure 1, the creep rate is controlled in the range of d d 0svµ ≈ , thereby achieving 
optimal utilization of the adhesion coefficient [7]. However, this method is ex-
tremely sensitive to interference due to the existence of differential operations, 
and has limitations in practical application. 

If a real-time adhesion model can be established according to the rail surface 
condition, the optimal creep rate and adhesion coefficient can be obtained to 
adapt to the real-time rail surface condition, so that the sensitivity of differential 
operation to interference can be weakened. The premise of finding the optimal 
adhesion point is to obtain the real-time adhesion parameters of the locomotive. 

It can be known from Reference [7] that the optimal creep rate mλ  and its 
corresponding maximum adhesion coefficient ( )m mµ λ  are: 

 

 
Figure 1. Kiencke model diagram under different orbit environment. 
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( ) 0

2 1 2

1 ,
2m m m
a

p p p
λ µ λ= =

+
                 (2) 

As shown in Equation (2), the optimal creep rate mλ  depends on 2p , and 
the maximum adhesion coefficient ( )m mµ λ  depends on 1p  and 2p . 

3. Identification of Rail Surface Performance Parameters 

The identification structure of the model parameters is as shown in Figure 2. 
From Reference [7], it is known that a nonlinear Kiencke model can be con-

verted into a linear model, with input as U , output as Z , then there is  
( ) ( ) ( )T 2U k λµ λ λ µ λ =    and ( ) ( )0Z k a λ µ λ= − . By identifying parame-

ters, the interference of Gaussian noise ( ) ( )0,v k N σ  occurred, therefore the 
quadratic programming is used to solve the extreme value function, where: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 2

1 1 2 2 2

L

k

U k U k U k U k
H k

U k U k U k U k=

 ⋅ ⋅ 
=  ⋅ ⋅ 
∑               (3) 

( ) ( ) ( ) ( ) ( )1 2
1

2
L

k
f k Z k U k Z k U k

=

= − ⋅ ⋅  ∑               (4) 

( ) ( ) ( )( )T
1 2x k p k p k=                      (5) 

In Equation (3), (4) and (5), ( )H k  is a symmetric matrix, ( )f k  is a vector 
matrix, ( )x k  is the input matrix, while ( )1p k  and ( )2p k  are inputs at the 
k  moment. The objective function ( )J k  is obtained to be: 

( ) ( ) ( ) ( ) ( ) ( )T1 2
2

J k x k H k x k f k x k= ⋅ ⋅ + ⋅              (6) 

It can be seen from the above that the ( )x k  enabling Equation (6) of the 
minimum value is the parameter estimate we are looking for. The quadratic 
programming iteration methods such as quasi-Newton’s method can be used to 
solve this extremum. 

3.1. Time-Varying Forgetting Factor 

In order to track the change of rail adhesion state, a time-varying forgetting fac-
tor is introduced as follows [7]: 

( ) ( ) ( ) ( )2
1

2
H k H k I k

η
η

−
= − +                    (7) 

 

 
Figure 2. Structure of model parameter identification. 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
2

1 2
2

f k f k Z k U k Z k U k
η

η
−

= − + ⋅ − ⋅ ⋅          (8) 

In Equation (7), η  is the forgetting factor, and  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 2

1 2 2 2

2 2
2 2
U k U k U k U k

I k
U k U k U k U k

 ⋅ ⋅ 
=  ⋅ ⋅ 

 refers to the current data. The influence  

of forgetting factor on the estimation algorithm is mainly on the sensitivity of 
the algorithm. When the forgetting factor is small, the influence of historical da-
ta on the algorithm estimate is small, and the influence of current data on the 
algorithm estimate is large, that is, the algorithm is more sensitive to parameter 
sharp change caused by environment change and the accuracy of the estimate is 
affected. When the forgetting factor is large, the influence of historical data on 
the algorithm estimate is large, while the influence of current data on the algo-
rithm estimate is small, therefore the accuracy of the algorithm is high. 

As the environment change is unpredictable, a feedback control with upper 
and lower limits is used to adjust the forgetting factor in real time, so as to track 
the environment change [10]. The time-varying forgetting factor of feedback 
control is designed as follows: 

max min

min min

p k k
k

k

Kη ξ η η
η

η η η
− ⋅ >

=  ≤
                   (9) 

where, kη  refers to the forgetting factor at the k  moment, i.e. the time-varying 
forgetting factor. ( ) ( )ˆk k kξ µ µ= −  is the error at the k  moment, i.e. the dif-
ference between the observed value ( )kµ  and estimated value ( )ˆ kµ . pK  is 
the control parameter, while maxη  and minη  are the upper and lower limits of 

kη . When the error becomes larger and the forgetting factor decreases, it indi-
cates that the environment has changed or that the model parameters have not 
been accurately identified. The weight of historical data is small, and the weight 
of current data is large. Therefore, the algorithm is more sensitive to changes in 
the environment, so as to identify the model parameters faster. When the error 
is reduced to be in a certain range and the forgetting factor is increased to a cer-
tain extent, it indicates that the algorithm has been able to accurately identify the 
model parameters at this moment. The weight of the historical data is as large as 
that of the current measurement data, and the amount of information is in-
creased. The accuracy of the algorithm is improved. 

3.2. Weight Redistribution 

In order to reduce the interference of noise to parameter identification and im-
prove the parameter identification speed, the Granger causality test method is 
applied [11]. 

This method detects by defining the signal-to-noise ratio. When 5k > , two 
consecutive sample subsets 1X  and 2X  are constructed as follows: 

( ) ( ) ( ){ }1 , 1 , 2X I k H k H k= − −                   (10) 

( ) ( ) ( ){ }2 3 , 4 , 5X H k H k H k= − − −                 (11) 
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where, ( )I k  refers to the current data, ( )1H k − , ( )2H k − , ( )3H k − , 
( )4H k − , ( )5H k −  refer to data at the moment ( )1k − , ( )2k − , ( )3k − , 

( )4k − , ( )5k − , respectively. Thus, the average values 1X and 2X  of sample 
subsets 1X  and 2X  are as follows: 

( ) ( ) ( )
1

1 2
3

I k H k H k
X

+ − + −
=                  (12) 

( ) ( ) ( )
2

3 4 5
3

H k H k H k
X

− + − + −
=                (13) 

And the variances 1S , 2S  of sample subsets 1X  and 2X  are: 

( )( ) ( )( ) ( )( )2 2 2

1 1 1
1

1 2

3 3 3

X I k X H k X H k
S

− − − − −
= + +        (14) 

( )( ) ( )( ) ( )( )2 2 2

2 2 2
2

3 4 5

3 3 3

X H k X H k X H k
S

− − − − − −
= + +     (15) 

As the sample subsets 1X , 2X  and variances 1S , 2S  are all matrices, the 
signal-to-noise ratio is expanded into a signal-to-noise ratio matrix, with the 
following definition equation S  [11]: 

1 2

1 2

X XS
S S
−

=
+

                         (16) 

In general, the larger the signal-to-noise ratio matrix, the better. However, the 
critical signal-to-noise ratio matrix can be changed according to different ob-
jects. The critical matrix interval designed in this paper is as follows: 

1 2 1 2

3 4 3 4

a a b b
S

a a b b
   

< <   
   

                    (17) 

where, 1a , 2a , 3a , 4a , 1b , 2b , 3b , 4b  are all constants to be designed. 
When the signal-to-noise ratio matrix is within this interval, the time-varying 
forgetting factor kη  in Equation (9) is to be reassigned a new value, i.e. 

maxkη η= . The weight of historical data is increased to enhance the influence of 
historical data on algorithm estimates. By such weight redistribution, the inter-
ference is reduced, the convergence speed is higher, and so is the identification 
accuracy. 

3.3. Algorithm Flow 

The algorithm flow chart is shown in Figure 3. 

4. Simulation Results and Analysis 

Define abbreviations and acronyms the first time they are used in the text, even 
after they have been defined in the abstract. Abbreviations such as IEEE, SI, 
MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations 
in the title or heads unless they are unavoidable. In order to verify the influence 
of improved time-varying forgetting factor, its range and weight redistribution  
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Figure 3. Algorithm flow chart. 
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on the parameters of the identification model, a comparative simulation experi-
ment was carried out by using Matlab program. The experiment is as follows: 

A time-varying forgetting factor was introduced into Algorithm 1, as shown 
in Equation (7). The weight of the current data ( )I k  was ( )2 2η− . The value 
range of the time-varying forgetting factor was 0.251 ~ 1 , and the weight redi-
stribution step was added. For Algorithm 2, the weight of the current data ( )I k  
was 1, the value range of the time-varying forgetting factor was 0.971 ~ 1 , and 
the weight redistribution step was not added. The simulation results are shown 
in Figures 4-6. 

It can be seen from Figures 4-6 that when k = 30, Algorithm 1 had already 
identified 1p , when k = 250, Algorithm 1 had already identified 2p , and with 
an identification accuracy up to 1%. When k = 230, the accuracy of Algorithm 1 
in estimating the maximum adhesion coefficient was up to 0.1%. Compared with 
Algorithm 2, Algorithm 1 identifies model parameters faster and with smaller 
fluctuations, which improves the accuracy of algorithm identification. When the 
rail surface status changes, Algorithm 1 can track the parameter changes faster. 

In summary, the identification of the model parameters can be improved 
when the weight of the current data ( )I k  is ( )2 2η− , the value range of the 
time-varying forgetting factor is 0.251 ~ 1 , and with the weight redistribution 
step added. Meanwhile, the speed of identification is faster, the fluctuation is 
smaller, the noise reduction effect is better, and the algorithm identification ac-
curacy is higher. When the rail surface state changes, such algorithm can track 
parameter changes faster. 
 

 
Figure 4. Comparison diagram of identification of model parameter p1. 
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Figure 5. Comparison diagram of identification of model parameter p2. 

 

 
Figure 6. Comparison diagram of maximum adhesion coefficient estimates. 

5. Conclusion 

An iterative algorithm is constructed by this paper to identify model parameters. 
A time-varying forgetting factor is introduced into the iterative algorithm to 
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change the weight of historical data and current data. When the value range of 
the time-varying forgetting factor is chosen to be 0.251 ~ 1 , the algorithm can 
quickly track changes in the track environment. The Granger causality test me-
thod is adopted by the iterative algorithm to detect interference in the identifica-
tion, so that the weights can be redistributed to make the identification results 
more accurate. In the next step of research, FIR filter is to be added in to the 
identification algorithm to further reduce the noise interference and improve the 
identification accuracy. 

Funding Statement 

This word was supported by the National Natural Science Foundation of China 
under Grant 62173137, Project of Hunan Provincial Department of Education 
grant number 23A0426. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] He, J., Liu, J.H. and Zhang, C.F. (2018) Research Review on Wheel-Rail Adhesion 

Utilization Technology of Heavy Duty Locomotive. Journal of the China Railway 
Society, 40, 30-39. 

[2] Wang, H. (2013) Research on Wheel-Rail Adhesion Characteristics under the Third 
Medium Condition. Master’s Thesis, Southwest Jiaotong University, Chengdu. 

[3] Li, Y.F., Feng, X.Y. and Liur, K. (2011) Maximum Adhesion Control of Railway 
Based on Sliding Mode Control System. Advanced Materials Research, 383-390, 
5242-5249. https://doi.org/10.4028/www.scientific.net/AMR.383-390.5242 

[4] Spiryagin, M., Cole, C. and Sun, Y.Q. (2014) Adhesion Estimation and Its Imple-
mentation for Traction Control of Locomotives. International Journal of Rail 
Transportation, 2, 187-204. https://doi.org/10.1080/23248378.2014.924842 

[5] Faff, R. and Gray, P. (2005) On the Estimation and Comparison of Short-Rate 
Models Using the Generalised Method of Moments. Journal of Banking and 
Finance, 30, 3131-3146. https://doi.org/10.1016/j.jbankfin.2005.09.016 

[6] Cheng, B. (2017) Bayesian Estimation of Short-Term Interest Rate Model. Master’s 
Thesis, Nanjing University of Science and Technology, Nanjing. 

[7] He, J., Liu, G.W. and Zhang, C.F. (2017) Maximum Likelihood Identification Me-
thod for Adhesion Energy Parameters of Heavy Duty Locomotive. Chinese Journal 
of Electronic Measurement & Instrument, 31, 170-177. 

[8] Li, F., Liang, M.J. and Luo, Y.S. (2022) Two-Stage Identification of Hammerstein 
Nonlinear System Corrupted by Colored Noise. Information and Control, 51, 
610-617+630. https://doi.org/10.13976/j.cnki.xk.2022.1241  

[9] Liu, G.F. (2007) An Investigation of Vehicle Anti-Lock Braking System Based on 
Slip-Ratio. Ph.D. Thesis, National University of Defense Technology, Changsha. 

[10] He, J., Yang, X.X., Zhang, C.F. and Xiao, M.J. (2023) Sliding Mode Consistency 
Tracking Control of Multiple Heavy Haul Trains Under Input Saturation and Safety 

https://doi.org/10.4236/jtts.2024.141004
https://doi.org/10.4028/www.scientific.net/AMR.383-390.5242
https://doi.org/10.1080/23248378.2014.924842
https://doi.org/10.1016/j.jbankfin.2005.09.016
https://doi.org/10.13976/j.cnki.xk.2022.1241


S. Qian et al. 
 

 

DOI: 10.4236/jtts.2024.141004 63 Journal of Transportation Technologies 
 

Distance. Constraints, Journal of the Franklin Institute, 360, 9028-9049. 
https://doi.org/10.1016/j.jfranklin.2022.07.003 

[11] Wu, M. (2012) Theoretical Study of Semi-Parametric Statistical Method and Its Ap-
plication in Climate. Master’s Thesis, Xi’an Polytechnic University, Xi’an. 

 

https://doi.org/10.4236/jtts.2024.141004
https://doi.org/10.1016/j.jfranklin.2022.07.003

	Robust Parameter Identification Method of Adhesion Model for Heavy Haul Trains
	Abstract
	Keywords
	1. Introduction
	2. Problem Description
	3. Identification of Rail Surface Performance Parameters
	3.1. Time-Varying Forgetting Factor
	3.2. Weight Redistribution
	3.3. Algorithm Flow

	4. Simulation Results and Analysis
	5. Conclusion
	Funding Statement
	Conflicts of Interest
	References

