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Abstract 
Current traffic signal split failure (SF) estimations derived from high-resolution 
controller event data rely on detector occupancy ratios and preset thresholds. 
The reliability of these techniques depends on the selected thresholds, detec-
tor lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory 
data can more definitively show when a vehicle split fails by evaluating the 
number of stops it experiences as it approaches an intersection, but it has li-
mited market penetration. This paper compares cycle-by-cycle SF estimations 
from both high-resolution controller event data and CV trajectory data, and 
evaluates the effect of data aggregation on SF agreement between the two 
techniques. Results indicate that, in general, split failure events identified 
from CV data are likely to also be captured from high-resolution data, but 
split failure events identified from high-resolution data are less likely to be 
captured from CV data. This is due to the CV market penetration rate (MPR) 
of ~5% being too low to capture representative data for every controller cycle. 
However, data aggregation can increase the ratio in which CV data captures 
split failure events. For example, day-of-week data aggregation increased the 
percentage of split failures identified with high-resolution data that were also 
captured with CV data from 35% to 56%. It is recommended that aggregated 
CV data be used to estimate SF as it provides conservative and actionable re-
sults without the limitations of intersection and detector configuration. As 
the CV MPR increases, the accuracy of CV-based SF estimation will also im-
prove.  
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1. Introduction 

The steady growth of vehicle miles travelled in the United States, from 2.62 tril-
lion in 1999 to 3.15 trillion in 2022, has contributed to increased congestion in 
transportation systems [1]. A significant portion of these delays, between 5 to 10 
percent, occur at traffic signals, which corresponds to nearly $23 billion in con-
gestion costs when considering urban areas [2]. Thus, transportation agencies 
put great emphasis on traffic signal management, which is only possible with re-
liable performance measurements. Reliable and accurate signal performance meas-
ures allow agencies to identify intersections with congestion problems, analyze 
the cause of such problems, and develop location-specific solutions. 

A popular traffic signal performance measure that provides insights on the 
level of congestion at a location of interest is split failure (SF) [3] [4]. A split 
failure event is when a traffic signal phase fails to serve its entire demand within 
one cycle, and the performance measure SF refers to the percentage of cycles in a 
time period which exhibit split failure. The SF value at a signal can be a useful 
metric to guide appropriate maintenance decisions [5] [6]. 

2. Literature Review 

Previous research has focused on the development of traffic signal performance 
measures [4] [7] [8] [9] [10]. These performance measures allow practitioners to 
validate expected operations, assess demand, capacity, or progression, and quan-
tify delay and travel time [4]. Signal performance measures are essential to trans-
portation agencies for developing improvements [11]. 

Over the last decade, traffic signal performance has mainly been derived 
from controller-based automated traffic signal performance measures (ATSPMs). 
ATSPMs transform high-resolution controller event data into meaningful per- 
formance metrics that can readily be used by traffic engineers to prioritize 
maintenance and retiming activities, as well as conduct before-after studies. The 
Federal Highway Administration (FHWA) emphasized ATSPM implementation 
in round four of their Every Day Counts (EDC-4) initiative [12]. Additionally, 
FHWA released a cost-benefit evaluation, concluding that in most cases, the re-
timing savings are well worth the installation costs of ATSPM infrastructure 
[13]. High-resolution controller event data has not just been used to evaluate in-
dividual signals, but several studies have implemented this data with ATSPMs at 
the corridor and system level as well [14] [15] [16]. Widespread use of ATSPMs 
has led to commonly accepted performance measures such as arrival on green 
(AOG), green occupancy ratio (GOR), red occupancy ratio (ROR), and SF [4] 
[17]. 

Split failure events provide an indication that a traffic signal movement re-
quires increased capacity either through signal retiming or capital investment. 
Freije et al. proposed a combination of phase termination cause and occupancy 
ratio thresholds during the green and red phases to determine when a split fail-
ure had likely occurred from high-resolution controller event data [18]. This 

https://doi.org/10.4236/jtts.2023.134032


S. Gayen et al. 
 

 

DOI: 10.4236/jtts.2023.134032 691 Journal of Transportation Technologies 
 

method is used in the current study to predict when a split failure has occurred 
from controller event data. Li et al. expanded on this research by using the 
aforementioned split failure criteria and developing a scalable method to identify 
signal phases without sufficient green time [19]. A heuristic for reallocating split 
times using this approach was also developed shortly after [6]. 

Recently, connected vehicle (CV) trajectory data, which consists of frequent 
and accurate geospatial passenger vehicle information, has emerged as a viable 
alternative to generate traffic signal performance measures. Accordingly, there 
has been significant research on calculating signal performance measures and 
improving intersection efficiency using CV trajectory data [20] [21] [22] [23] 
[24]. A 2023 study has already used CV trajectory data to identify locations with 
signal retiming opportunity to reduce SF [5]. The current study employs a simi-
lar approach to predict when a split failure has occurred from CV trajectory da-
ta. Nevertheless, the major limiting factor of CV-based studies is the data set’s 
low market penetration rate (MPR). Several studies that estimate CV MPR have 
been published over the last few years and have concluded that current MPR 
values are near 5% [25] [26] [27]. Regardless of this limitation, some studies 
have made signal operational decisions from aggregating CV-based data [28] 
[29]. 

3. Motivation and Objective 

Estimating SF and other signal performance measures from high-resolution 
controller event data and CV trajectory data has been well-documented. Both 
data sources can provide useful performance measures given a sufficient time 
interval or sufficient CV trajectory sample size. However, controller-based SF es-
timation discrepancies resulting from different intersection and detector geome-
tries have been discussed in previous research [7] [30]. Specifically, variation in 
detector length and vehicle arrival characteristics significantly impact the GOR 
and ROR used to identify phases with split failures.  

In a recent study, Saldivar-Carranza et al. compared AOG estimations from 
high-resolution controller events (vehicle detection) and CV trajectories for 52 
signalized intersections in Utah [31]. This study highlights the advantages of us-
ing CV data instead of ATSPMs to estimate AOG. It found that detector-based 
technique overestimated AOG by about 40% for periods with long queues or 
over-saturated conditions, suggesting that the CV-based technique is a better es-
timator under these conditions. However, no study was found to provide an 
in-depth comparison of SF estimations from controller- and CV-based tech-
niques. Therefore, the current study compares SF estimations from both tech-
niques, assesses the disagreement between the techniques, and identifies poten-
tial advantages of each data source. 

The objective of this paper is to develop a methodology to compare split fail-
ures identified from high-resolution controller event data and CV trajectory data 
on a cycle-by-cycle basis. This will provide an idea on the degree of agreement 
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between SF obtained from the two data sources and give agencies a preliminary 
indication of which source can provide more actionable results. Due to the rela-
tively low MPR of CV data [27] and the intrinsic limitations of detector-derived 
estimations [30], there is some expected disagreement in identifying which 
cycles experience a split failure. It is expected that the number of split failures 
identified from CV data will be less than those identified from high-resolution 
data, as the latter virtually counts with 100% penetration and has more lenient 
criteria to estimate split failures. However, CV data is expected to provide more 
actionable results since it is based on the complete experience of traversing ve-
hicles. This paper also explores two different methods of cycle aggregation and 
discusses the effect that they have on reducing split failure discrepancies. 

4. Split Failure Identification by Data Source 

A split failure at a signalized intersection occurs when a certain phase cannot 
serve its full demand within a cycle [12] [32]. Essentially, this happens when a 
vehicle must wait more than one full cycle length to cross the intersection. 

Traditionally, split failure events have been associated with cycles. A cycle 
split fails when a vehicle reaches the stop bar detector during that cycle after 
having waited in the queue longer than the previous cycle length. However, split 
failure events can also be associated with individual vehicles. In this case, ve-
hicles that have to stop during red at least twice before crossing the intersection 
are split failing vehicles. Therefore, a cycle can have more than one vehicle that 
experiences a split failure. In this paper, “split failure” will denote the occurrence 
of the event, whereas “SF” will refer to the performance measure given by the 
percentage of cycles that experience split failure. 

Figure 1 shows a split failure at an intersection movement. The black vehicle 
indicated with the red arrow is stopped on red at 15:50:04 (Figure 1(a)), then 
attempts to cross during green, but has to stop on red for a second time at 
15:51:17 (Figure 1(b)). Using the cycle definition, the cycle in which the vehicle 
reaches the stop bar detector split fails. Using the vehicle definition, this time 
interval has three vehicles that experience split failures, counting the black ve-
hicle and the two white vehicles behind it. This section discusses how split fail-
ures are estimated from controller- and CV-based techniques. 
 

  
(a)                                  (b) 

Figure 1. Split failure occurrence at an intersection movement. (a) Stopped vehicle wait-
ing for green time; (b) Stopped vehicle after green time. 
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4.1. High-Resolution Controller-Based SF Estimations 

ATSPMs are derived from high-resolution signal controller data logs of time-
stamped vehicle detector states (i.e., on or off) and signal outputs (e.g., green, 
yellow, or red) for a given movement at an intersection. These data logs are then 
moved to servers for storage and software is then used to aggregate and analyze 
the data to produce usable metrics [12]. 

Using these logs, GOR and ROR during the first five seconds of red (ROR5) 
can be calculated for each cycle at a signal movement by analyzing the amount 
of time that the detectors are occupied [18]. GOR calculation is shown in Equa-
tion (1), where Og (s) is the sum of occupancy time during green for a cycle and 
Tg (s) is the green time for that cycle. 

GOR g

g

O
T

=                             (1) 

ROR5 calculation is shown in Equation (2), where Or (s) is the sum of occu-
pancy time during the first five seconds of red. 

5ROR
5

rO
=                            (2) 

In this paper, a cycle split failure is identified from high-resolution controller 
event data when the green phase terminates by a max out or force-off, GOR is 
greater than or equal to 80%, and ROR5 is greater than or equal to 80%. These 
criteria are commonly used in most event-based ATSPM systems [18]. 

Figure 2 shows a graphical representation of GOR and ROR5 calculation. The 
detector state for a sample westbound-through (WBT) movement is shown in 
black and white, while the signal light phase is shown with green, yellow, and 
red. Two boxes are between the detector state and signal phase to show the per-
centage of time that the detector is occupied during green and the first five 
seconds of red. For this case, it is deemed that the cycle does not split fail as both 
GOR and ROR5 are below 80%. 
 

 

Figure 2. Graphical GOR and ROR5 calculation from signal detector and phase [18]. 
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4.2. CV Trajectory-Based SF Estimations 

May 2023 Indiana CV trajectory data, with an estimated penetration rate near 
5% [27], is used in this study. The data consists of individual passenger vehicle 
trajectory waypoints with a 3-s reporting interval and nominal 3-m spatial accu-
racy. Each waypoint has the following information: latitude, longitude, speed, 
heading, and an anonymous vehicle identifier. 

From the CV data set, waypoints for each unique vehicle can be stitched to 
reconstruct its trajectory [3]. Waypoint headings near an intersection can then 
be used to identify the movement executed by each vehicle [33]. For each move-
ment at a given intersection, a Purdue Probe Diagram (PPD) can be created, 
where each unique vehicle trajectory is plotted color-coded based on its number 
of stops on a time-space graph with the origin representing the far side of the 
intersection [3] [24]. 

Using a PPD, a split failure is visualized as a vehicle trajectory that stops at 
least twice [24]. Figure 3 shows three examples of individual CV trajectories on 
a PPD. Figure 3(a) shows a vehicle that arrives on green and does not stop, Fig-
ure 3(b) shows a vehicle that stops once, and Figure 3(c) shows a vehicle that 
experiences a split failure as it stops twice. In this paper, a cycle is determined as 
split failing from CV data if there is at least one CV trajectory with two or more 
stops that reaches the upstream end of the stop bar detector within the cycle 
bounds [24]. 

5. Study Location 

The signalized intersection used for this study is SR-32 and Union St (Figure 4) 
located in Westfield, IN, just north of Indianapolis. This signal is managed by 
the Indiana Department of Transportation (INDOT) and is a four-legged inter-
section with each approach having one through lane and one left-turn-only lane. 
The movement of interest is the WBT movement, for which there is a stop bar 
detector with a length of 51 feet. The time-of-day (TOD) period analyzed in this 
study is 8:00-9:00 AM for weekdays in May 2023. 
 

 

Figure 3. PPDs of vehicle trajectories with different number of stops. (a) No stops, AOG; 
(b) One stop; (c) Two stops, SF. 
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(a)                                 (b) 

 
(c) 

Figure 4. Location and configuration of study intersection (map data: OpenStreetMap, 
Google). (a) Indiana; (b) Indianapolis; (c) SR-32 and Union St. 
 

There are several reasons why SR-32 and Union St was chosen as the study 
location for the SF comparison. Most importantly, both high-resolution data and 
CV data were available for this intersection for the month of May 2023. Also, 
from previous analyses, it was determined that the WBT movement at this in-
tersection experienced intermittent split failures and had a moderately high 
number of CV trajectories (with 720 unique samples). Finally, the selected WBT 
movement for this intersection has just one dedicated lane and associated detec-
tor, which simplifies the high-resolution SF analysis algorithm and its compari-
son with CV-based SF estimations. 
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6. Methodology 

This section explains the methods used to compare SF estimations from high- 
resolution and CV data. CV data can provide the number of sampled vehicles 
that experience a split failure in a cycle. In contrast, high-resolution data can 
only offer a prediction of whether a cycle split fails based on the preset occupan-
cy thresholds (Equation (1) and Equation (2)). Therefore, the comparison needs 
to evaluate the percentage of cycles that are estimated to split fail using both data 
sources. 

6.1. High-Resolution and CV SF Estimation Agreement Categories 

To assess the level of agreement between SF estimations at the evaluated move-
ment, each signal cycle will be assigned to one of five categories depending on 
the high-resolution controller- and CV trajectory-based results. In the naming 
scheme for the categories, high-resolution has been abbreviated to “HR”, and 
true and false are denoted with “T” and “F” after “HR” or “CV” to indicate wheth-
er a split failure has been estimated by that data source. The five categories are: 
 High-resolution SF and CV SF (HRT-CVT): The cycle contains at least one 

CV trajectory and meets the split failure criteria for both techniques. This is 
an instance of agreement. 

 High-resolution No SF and CV No SF (HRF-CVF): The cycle contains at least 
one CV trajectory and does not meet the split failure criteria for either tech-
nique. This is an instance of agreement. 

 High-resolution SF and CV No SF (HRT-CVF): The cycle contains at least 
one CV trajectory and meets the split failure criteria for the high-resolution 
data but not for the CV data. This is an instance of disagreement. 

 High-resolution No SF and CV SF (HRF-CVT): The cycle contains at least 
one CV trajectory and meets the split failure criteria for the CV data but not 
for the high-resolution data. This is an instance of agreement. 

 No CV Trajectories (CVX): The cycle does not contain any CV trajectories. 
These cycles cannot be considered for comparison.  

The first four categories can be tabulated on an agreement matrix to show the 
SF estimation relationship between the two data sources. 

Figure 5 shows a comparison for seven cycles (c1 through c7) between 8:45-9:00 
AM on Friday May 5th, 2023 for the WBT movement at SR-32 and Union St. 
Figure 5(a) depicts a TOD PPD with all observed CV trajectories for this time 
interval. Callout i points to a vertical gray line representing a cycle boundary 
(start of green). Callout ii points to a horizontal dashed black line representing 
the approximate distance where the stop bar detector begins. Each trajectory is 
assigned to the cycle in which it crosses this dashed line. Additionally, the signal 
phase state (i.e., green, yellow, or red) is provided (callout iii). Figure 5(b) de-
picts a ROR5 vs. GOR graph for the same seven cycles. All green phase termina-
tions are caused by force-offs. It can be seen that split failure classifications are 
sensitive to small variations in the GOR threshold, as several cycles are clustered 
near the GOR = 80%, ROR5 = 100% point. 
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Table 1 shows the corresponding agreement matrix for the cycles analyzed in 
Figure 5. Two of the seven cycles do not contain any CV trajectories (CVX), 
leaving five cycles that contain at least one trajectory. Out of these five cycles, 
three are categorized as HRT-CVT, one cycle is categorized as HRF-CVF, one 
cycle is categorized as HRT-CVF, and none of these cycles are categorized as 
HRF-CVT. High-resolution data gives four split failing cycles (80% SF), while 
CV data gives three (60% SF). 

The HRT-CVF disagreement category is expected to occur frequently due to 
the low CV MPR. In the case that there is just one split failing vehicle in a cycle, 
it is likely that both GOR and ROR5 will be high and the cycle will be indicated 
to split fail by high-resolution data. However, the probability that this vehicle is a 
CV and that its trajectory will be observed is simply the MPR of 5%. According-
ly, it is expected that SF estimated from high-resolution data (HRT) will be sig-
nificantly greater than SF calculated from CV data (CVT). 

The HRF-CVT disagreement is less common but can occur due to a few fac-
tors. One factor is that the detector occupancy thresholds used, in this case 80%  
 

 

Figure 5. CV and high-resolution SF evaluation for 8:45-9:00 AM on Friday May 5th, 
2023. (a) CV-based TOD PPD; (b) Controller-based ROR5 vs. GOR. 
 
Table 1. CV and high-resolution SF agreement matrix for all cycles in 8:45-9:00 AM on 
Friday May 5th, 2023. 

 HRT HRF Total 

CVT 
3 (60%) 
c2, c4, c5 

0 (0%) 3 (60%) 

CVF 
1 (20%) 

c1 
1 (20%) 

c6 
2 (40%) 

Total 4 (80%) 1 (20%) 5 (100%) 

Note: 5 out of 7 cycles have at least 1 CV trajectory. 
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for both GOR and ROR5, may be too high for the given intersection. For in-
stance, the cycle could have operated just in over saturated conditions, such that 
there was just one split failing vehicle, which happened to be a CV, but either the 
GOR or ROR5 values were just below the selected threshold. Another factor is 
inadequate detector length to account for unusual traffic scenarios, especially red 
light running. Red light running can decrease the ROR5 value as there may be a 
gap in time until the first stopping vehicle behind red light running vehicles 
reaches the detector. For shorter detectors, this time gap will be greater, and the 
subsequent ROR5 values will be lower. 

6.2. Data Aggregation 

Adequate sampling is required to correctly represent the real state of what is be-
ing measured. This concept is based on the Nyquist-Shannon sampling theorem 
[34], which states that a sufficient sampling rate to reconstruct a function is at 
least two times its highest frequency. Even though this theorem is not directly 
applicable to the estimation of traffic signal performance from CV data, the 
concept that additional samples can more accurately represent on-the-ground 
conditions still applies. 

An approach likely to reduce discrepancies between SF estimations is to in-
crease the representativeness of CV data by aggregating trajectories from differ-
ent time periods. The effects that data aggregation has on SF results are eva-
luated by analyzing two different time periods: 8:00-9:00 AM for the four Fridays 
in May 2023, and 8:00-9:00 AM for May 1st through May 5th, 2023. The first pe-
riod provides 29 cycles for four days, which is a total of 116 cycles that can be 
considered. These cycles are aggregated by day-of-week (DOW) to obtain 29 ag-
gregated cycles for analysis, each containing information of the four corres-
ponding cycles from each Friday. The second period provides the first 28 cycles 
for five days, which is a total of 140 cycles that can be considered. These cycles 
are longitudinally aggregated by TOD such that every four continuous cycles are 
grouped together. This method provides 35 aggregated cycles for analysis. 

The SF criteria for the aggregated cycles are as follows: 
 High-resolution data: If any of the four cycles in an aggregated cycle group 

are indicated to split fail, the aggregated cycle is also categorized as split fail-
ing. 

 CV data: If any of the four cycles in an aggregated cycle group contains a tra-
jectory that stops at least twice, the aggregated cycle is identified as split fail-
ing. 

The two different aggregation methods, DOW and TOD, are used to consider 
both discontinuous and continuous time intervals. Both methods of aggregation 
in groups of four are done to see how either higher CV representativeness or 
larger time intervals impact the reliability of SF estimations. 

7. Results 

This section presents the resulting agreement matrices for both periods, the four 
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Fridays in May 2023 and May 1st through May 5th, 2023, for both individual 
cycles and aggregated cycles. Accompanying figures showing the aggregation by 
DOW and aggregation by TOD schemes are also included. For all four analysis 
scenarios, it is observed that SF estimations obtained from CV trajectory data are 
much lower than those obtained from high-resolution controller event data. 

7.1. Four Fridays in May 2023 

Individual Cycles 
Figure 6 compares CV trajectories with detector occupancy ratios for seven 

cycles roughly in the 8:45-9:00 AM period for each Friday in May 2023. Figure 
6(a) is a replica of Figure 5. For this time period, there is approximately one CV 
trajectory observed for each cycle. Table 2 shows the agreement matrix for the 
entire 8:00-9:00 AM period for the four Fridays without aggregation. 
 

 

  
(a)                               (b) 

  
(c)                               (d) 

Figure 6. SF evaluations for all cycles in 8:45-9:00 AM for four Fridays in May 2023. (a) 
May 5th, 2023; (b) May 12th, 2023; (c) May 19th, 2023; (d) May 26th, 2023. 
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Table 2. CV and high-resolution SF agreement matrix for all cycles in 8:00-9:00 AM for 
four Fridays in May 2023. 

 HRT HRF Total 

CVT 
13 

(20.0%) 
5 

(7.7%) 
18 

(27.7%) 

CVF 
24 

(36.9%) 
23 

(35.4%) 
47 

(72.3%) 

Total 
37 

(56.9%) 
28 

(43.1%) 
65 

(100%) 

Note: 65 out of 116 cycles have at least 1 CV trajectory. 
 

Cycles Aggregated by Day-of-Week 
Figure 7 shows all of the trajectories depicted in Figure 6 aggregated by 

DOW onto one PPD for the 8:45-9:00 AM period. Essentially, the first cycle in 
each subfigure in Figure 6 is combined as the first aggregate cycle (ac1) in Fig-
ure 7, and the same is done for the other cycles. For this time period, five of the 
seven aggregated cycles are identified as high-resolution split failures, but only 
four of them contain a split failing CV trajectory. Table 3 shows the agreement 
matrix for the entire 8:00-9:00 AM period for the aggregated cycles of all four 
Fridays. 

7.2. May 1st through May 5th, 2023 

Individual Cycles 
Table 4 shows the agreement matrix for the entire 8:00-9:00 AM period for 

May 1st through May 5th, 2023 without aggregation. The last cycle of each day is 
excluded for the eventual comparison with the aggregated cycles, which are 
groups of four cycles. 

Cycles Aggregated by Time-of-Day 
Figure 8 shows a PPD of all trajectories in the entire 8:00-9:00 AM period for 

Friday July 5th, with cycles aggregated by TOD, where each four adjacent cycles 
are grouped together. The aggregated cycle boundaries are shown by the solid 
black vertical lines, with the thin gray vertical lines representing each individual 
cycle boundary. For this day, all seven aggregated cycles are identified as high- 
resolution split failures, but only five of them contain a split failing CV trajecto-
ry. Table 5 shows the agreement matrix for the entire 8:00-9:00 AM period for 
all aggregated cycles in May 1st through May 5th. 

8. Effect of Cycle Aggregation 

Table 6 shows the effect of aggregation on the percentage of cycles in each cate-
gory for both periods considered. The column headings are color-coded such 
that green indicates agreement and red indicates disagreement between SF esti-
mations from both techniques. The second to last column is the percentage (P) 
of cycles that contain a split failing CV trajectory given that they are identified as 
split failing by high-resolution data (CVT|HRT). It is calculated as: 
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Figure 7. SF evaluation of cycles aggregated by DOW for 8:45-9:00 AM for four Fridays in May 2023. 
 

 

Figure 8. SF evaluation of cycles aggregated by TOD for 8:00-9:00 AM on Friday May 5th, 2023. 
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Table 3. CV and high-resolution SF agreement matrix for cycles aggregated by DOW in 
8:00-9:00 AM for four Fridays in May 2023. 

 HRT HRF Total 

CVT 
14 

(48.3%) 
1 

(3.4%) 
15 

(51.7%) 

CVF 
11 

(37.9%) 
3 

(10.3%) 
14 

(48.3%) 

Total 
25 

(86.2%) 
4 

(13.8%) 
29 

(100%) 

Note: 29 out of 29 aggregated cycles have at least 1 CV trajectory. 
 
Table 4. CV and high-resolution SF agreement matrix for all cycles in 8:00-9:00 AM for 
May 1st through May 5th, 2023. 

 HRT HRF Total 

CVT 
14 

(14.0%) 
1 

(1.0%) 
15 

(15.0%) 

CVF 
41 

(41.0%) 
44 

(44.0%) 
85 

(85.0%) 

Total 
55 

(55.0%) 
45 

(45.0%) 
100 

(100%) 

Note: 100 out of 140 cycles have at least 1 CV trajectory. 
 
Table 5. CV and high-resolution SF agreement matrix for cycles aggregated by TOD in 
8:00-9:00 AM for May 1st through May 5th, 2023. 

 SF No SF Total 

SF 
11 

(31.4%) 
0 

(0.0%) 
11 

(31.4%) 

No SF 
20 

(57.1%) 
4 

(11.4%) 
24 

(68.6%) 

Total 
31 

(88.6%) 
4 

(11.4%) 
35 

(100%) 

Note: 35 out of 35 aggregated cycles have at least 1 CV trajectory. 
 
Table 6. CV and high-resolution SF agreement by category. 

Time Period 
Cycle Analysis 

Approach 
PHRT-CVT PHRF-CVF PHRT-CVF PHRF-CVT PCVT|HRT PHRT|CVT 

Four Fridays 
in May 

Individual 20.0% 35.4% 36.9% 7.7% 35.1% 72.2% 

Aggregated 
by DOW 

48.3% 10.3% 37.9% 3.5% 56.0% 93.3% 

May 1st-5th 

Individual 14.0% 44.0% 41.0% 1.0% 25.5% 93.3% 

Aggregated 
by TOD 

31.4% 11.4% 57.0% 0.0% 35.5% 100% 

https://doi.org/10.4236/jtts.2023.134032


S. Gayen et al. 
 

 

DOI: 10.4236/jtts.2023.134032 703 Journal of Transportation Technologies 
 

HRT-CVT
CVT|HRT

HRT-CVT HRT-CVF

PP
P P

=
+

                   (3) 

The last column is the percentage of cycles that are identified as split failing 
by high-resolution data given that they contain a split failing CV trajectory 
(HRT|CVT). It is calculated as: 

HRT-CVT
HRT|CVT

HRT-CVT HRF-CVT

PP
P P

=
+

                   (4) 

Low to moderate PCVT|HRT values confirm the expectation that the CV-based 
approach often misses split failures obtained from high-resolution data. This is 
primarily due to the low CV MPR and the corresponding low probability of 
sampling a split failing vehicle. However, the higher PHRT|CVT suggest that if a 
split failure is identified from CV data, it is likely to also be identified from 
high-resolution data, since a vehicle that stops at least twice before crossing will 
likely indicate congestion and produce high detector occupancy ratios. For the 
four Fridays in May, aggregation by DOW increases PCVT|HRT from 35.1% to 
56.0% and PHRT|CVT from 72.2% to 93.3%. For May 1st through May 5th, aggrega-
tion by TOD increases PCVT|HRT from 25.5% to 35.5% and PHRT|CVT from 93.3% to 
100%. The observed increase in percentage of HRT-CVT cycles, PCVT|HRT, and 
PHRT|CVT, and the observed decrease in percentage of HRF-CVT cycles, are posi-
tive results of cycle aggregation. 

The observed decrease in percentage of HRF-CVF cycles and the observed in-
crease in percentage of HRT-CVF cycles are unexpected results. This is likely 
because of the high-resolution aggregation criteria that only one out of four 
cycles in a group must be identified to split fail in order for the aggregated cycle 
to be identified as split failing. This requirement was used to avoid increasing 
the instances of HRF-CVT disagreement, which would occur if more than one 
out of four cycles had to be identified to split fail. However, in using this re-
quirement, the chance that an HRF cycle would be grouped into an aggregated 
cycle defined as HRT is much higher than the chance that a CVF cycle would be 
grouped into an aggregated cycle defined as CVT. This led to the decreased per-
centage of HRF-CVF cycles and increased percentage of HRT-CVF cycles. 

The results displayed in Table 6 offer an indication of SF estimation agree-
ment category percentages between high-resolution and CV data for a single in-
tersection movement. Future research is necessary to examine whether these 
percentages are similar over a diverse set of intersections with varying demand 
and congestion levels. Furthermore, the SF values obtained from both data 
sources can be assessed to see if there is significant correlation. 

9. Conclusions 

This study compared SF estimations from high-resolution controller event data 
and CV trajectory data at an intersection near Indianapolis, Indiana. Control-
ler-based SF estimations rely on preset thresholds for detector occupancy ratios 
and have intrinsic limitations that depend on intersection and detector configu-
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ration. CV-based SF estimations instead use vehicle trajectories to count the ex-
act number of times vehicles stop during their approach to an intersection. 

Two time periods were analyzed from 8:00 to 9:00 AM in May 2023: the four 
Fridays in the month and the five-day span of May 1st through May 5th. For each 
period, the effect of cycle aggregation on SF agreement between the two methods 
was analyzed. The results of this analysis led to the following key findings: 
 When a cycle split failure is identified from CV data, it is usually also de-

tected with high-resolution data (PHRT|CVT greater than or equal to 72.2% for 
all four analysis scenarios). 

 When a cycle split failure is identified from high-resolution data, it is not al-
ways detected with CV data (PCVT|HRT between 25.5% and 56.0% for all four 
analysis scenarios). This is a frequent discrepancy due to low CV MPR. 

 CV data rarely indicates a cycle split failure when high-resolution data does 
not (PHRF-CVT less than 7.7% for all four analysis scenarios). Generally, this is 
due to GOR and ROR5 thresholds not well-calibrated for variations in detec-
tor length. 

 Data aggregation by cycle improves the agreement percentage of split failures 
identified with one technique given that the event is identified with the other 
technique (PCVT|HRT improved from 35.1% to 56.0% and PHRT|CVT improved 
from 72.2% to 93.3% with aggregation by DOW, and PCVT|HRT improved from 
25.5% to 35.5% and PHRT|CVT improved from 93.3% to 100% with aggregation 
by TOD). 

The CV-based method provides conservative estimations as it usually unde-
restimates SF, but due to its direct use of vehicle trajectories, results are more 
likely to represent actual split failure events. From an agency standpoint, al-
though the CV MPR is currently too low for cycle-by-cycle analysis, SF estima-
tions derived from aggregated CV data can provide an important screening tool 
for identifying signals with congestion challenges. It is therefore recommended 
that aggregated CV data be used to estimate SF as it provides actionable results 
without the limitations of intersection and detector configuration. As the CV 
MPR continues to increase, the accuracy of CV-based cycle SF estimation will 
also increase. 
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