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Abstract 
Historical roadway safety analyses have used labor and time-intensive crash 
data collection procedures. However, crash reporting is often delayed and 
crash locations are reported with varying levels of spatial accuracy and detail. 
Recent advances in connected vehicle (CV) data provide an opportunity for 
stakeholders to proactively identify areas of safety concerns in near-real time 
with high spatial precision. Public and private sector stakeholders including 
automotive original equipment manufacturers (OEM) and insurance provid-
ers may independently define acceleration thresholds for reporting unsafe 
driver behavior. Although some OEMs have provided fixed threshold hard- 
braking event data for a number of years, this varies by OEM and there is no 
published literature on the best thresholds to use for identifying emerging 
safety issues. This research proposes a methodology to estimate deceleration 
events from raw CV trajectory data at varying thresholds that can be scaled to 
any CV. The estimated deceleration events and crash incident records around 
629 interstate exits in Indiana were analyzed for a three-month period from 
March 1-May 31, 2023. Nearly 20 million estimated deceleration events and 
4800 crash records were spatially joined to a 2-mile search radius around each 
exit ramp. Results showed that deceleration events between −0.5 g and −0.4 g 
had the highest correlation with an R2 of 0.69. This study also identifies the 
top 20 interstate exit locations with highest deceleration events. The frame-
work presented in this study enables agencies and transportation profession-
als to perform safety evaluations on raw trajectory data without the need to 
integrate external data sources. 
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1. Introduction 

An important goal for most states’ highway safety improvement programs is the 
reduction of serious injuries and fatalities from traffic incidents, bolstered in 
part by continued funding apportioned by the Fixing America’s Surface Trans-
portation Act (FAST). In the year 2020, the Federal Highway Administration’s 
(FHWA) Roadway Safety Data Dashboards reported approximately 4908 of the 
38,824 fatalities nationwide occurred on Interstates [1]. This represents approx-
imately 13% of roadway fatalities. The State Highway Safety Report for the state 
of Indiana alone observed 897 and 932 fatalities for the years 2020 and 2021 re-
spectively, with 11.25% occurring on Interstate routes in 2020 [1] [2].  

Traditional roadway safety analyses conducted by stakeholders at the national, 
state and local level have relied on crash incident histories which often take 
weeks, months or years at a time to collect. Additionally, crash data reporting is 
often associated with geolocation uncertainties and inconsistencies depending 
on the responding agency, the severity of the crash, the functional class of the 
roadway and resulting traffic queues in addition to reporting delays. This makes 
it challenging to identify emerging safety issues in areas with high growth in 
traffic as well as short term work zones. Emerging advances in the availability of 
connected vehicle (CV) event and trajectory data have shown promise in near 
real-time analysis of driver behavior for conducting proactive road safety as-
sessments. The insurance industry has been quick to adopt the use of CV data 
for rating drivers [3] [4] [5], but transportation agencies have only just begun to 
use this data [6] [7] [8] [9]. 

2. Historical Crash Data 

Crash incidents have historically suffered from underreporting issues [10] 
[11], especially for events of lower severity, and delayed reporting often due to 
changing injury severities. A 2013 study on Indiana’s crash datasets observed a 
typical time frame of 2 - 3 days for crash records to appear in a centralized repo-
sitory from the time of occurrence, and recommended continuous quality con-
trol for crash datasets to ensure standardized data collection procedures for ef-
fective use in monitoring road safety [12]. A 2019 study into the quality of crash 
data for use in road safety research identified multiple potential issues and limi-
tations in crash data collection techniques with the location, severity and time of 
a crash being the attributes most often erroneously reported [13]. These under-
lying issues may often tend to impact any potential crash-based road safety 
analysis by biasing the results and incorrectly estimating the impacts of safety 
countermeasures [14] [15]. This has led to researchers having to anticipate for 
underreporting in crash-frequency based analysis to account for these biases 
[16]. 

In order to ensure consistency and standardization in crash reporting, the 
Model Minimum Uniform Crash Criteria (MMUCC) guideline was developed in 
1998 by the National Highway Traffic Safety Administration (NHTSA) and has 
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been periodically updated to provide a framework to responding agencies on 
what crash data variables to document. Studies have since looked at the level of 
MMUCC compliance across multiple states [17] [18] [19]. However, the inhe-
rent manual component of crash data collection and issues with underreporting, 
inconsistency and delayed reporting severely limit the ability of stakeholders to 
effectively use this data for tactical real-time decision making until higher levels 
of MMUCC compliance are achieved nationwide. 

3. Emerging Connected Vehicle Event Data Opportunities 

Emerging CV event data have shown valuable potential in reducing the data col-
lection time period for roadway safety analysis by providing driver event data 
including hard-braking and hard-acceleration in near real-time at a widely 
available geographic footprint without the need for any intelligent transportation 
system infrastructure. This data has already been used to show strong correla-
tions with crash incidents in interstate construction work zones [7], evaluating 
intersection safety [6], evaluating safety performance of low volume rural high-
ways [20], predicting real-time crash potential [21], identifying roadway hazards 
[22], evaluating the safety of rolling slowdowns compared to road closures [23], 
as well as evaluating the effectiveness of work zone safety equipment such as 
queue warning trucks [24] to name a few. These event data are widely available 
and can be scalably used for systematic and consistent local, state, multi-state or 
even national level safety analyses. 

4. Limitations of CV Event Data and Need for Transparent  
Thresholds 

However, such event datasets often have pre-defined deceleration thresholds as-
signed by the Original Equipment Manufacturer (OEM) with limited transpa-
rency on exact threshold values associated with a hard-braking event. This 
presents challenges of integrating data from multiple CV OEMs. Furthermore, a 
hard-braking threshold that shows strong correlations with crash incidents for 
one location or one functional class of roadway may not present similar results 
in another location for a different class of roadway due to varying driver beha-
vior, differing speed limits and changing road geometry and configuration in 
each case. Such datasets, while effective in conveying aggregated safety perfor-
mance insights, do not provide visibility on deceleration thresholds and may 
potentially be masking or underrepresenting the impacts of severe deceleration 
events due to broad thresholds.  

Thus, access to near real-time CV trajectory data with individual vehicle way-
points at 60-second latencies will present practitioners, researchers and stakehold-
ers with an opportunity to define their own acceleration or deceleration thre-
sholds for generating system level safety performance metrics that include a di-
verse set of data from multiple OEMs. While previous studies have focused on 
localized analysis of safety upstream, downstream or within construction work 
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zones or at selected corridors of signalized intersections, this study aims to 
present a systemwide analysis of estimated deceleration events computed using 
CV trajectory data for conducting road safety assessments. 

5. Objectives and Scope 

The scope of this study is to evaluate the correlation between various thresholds 
of estimated deceleration events and crash incident counts recorded around exit 
ramps on Indiana’s Interstate System. The objectives of this study are: 

1) To evaluate the correlation between various deceleration thresholds and 
crash incidents around Indiana Interstate exit ramps and provide a recommen-
dation on what threshold should be used on interstates. 

2) To demonstrate how this data can be used to identify exit ramp locations 
around the state showing the highest deceleration events per mile values as a 
framework for filtering locations for safety assessments. 

These techniques can be scaled to other highway use cases such as merge areas, 
signalized intersections, toll booths and border crossings. 

6. Study Location 

The study identified 629 unique exit locations on Indiana’s Interstate System for 
this analysis. For each exit location, the mile marker at which the exit ramp de-
parts from the mainline interstate was recorded. This mile marker was then used 
as the center point for various search radii (0.5 miles, 1 mile and 2 miles) ex-
tending both upstream and downstream for aggregating crash incident counts as 
well as estimated deceleration event counts for analysis. Figure 1 shows an over-
view of these exit ramp locations in a statewide context showing near ubiquitous 
coverage along the entire Interstate system. A significant concentration of exits 
is seen near the metropolitan areas of Gary (callout i), Indianapolis (callout ii), 
Louisville (callout iii), Evansville (callout iv) and Fort Wayne (callout v) as a re-
sult of the need to service the high population density and corresponding vehicle 
volumes in the area. 

7. Data Description 
7.1. Estimated and OEM Provided CV Deceleration Events 

CV trajectory data were provided by a third-party commercial data aggregator. 
Each CV trajectory consists of waypoints available at 1 - 3 second frequency with 
a 3-meter geolocation accuracy. Each waypoint also had an associated anony-
mized trajectory identifier, geolocation, timestamp, heading and speed attribute. 
This dataset represents an average penetration of about 4% on interstates in In-
diana [25] [26]. These attributes were used to compute acceleration or decelera-
tion between consecutive CV waypoints for all such events with an absolute ac-
celeration value greater than or equal to 0.1 g (0.98 m/s2). In the interest of con-
sistency, only pairs of waypoints 3-seconds apart were utilized to compute esti-
mated deceleration to avoid any bias caused by waypoint reporting frequency.  
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Figure 1. 629 exit ramp locations on Indiana interstates. 
 
Prior research using three-axis smart phone accelerometer data has suggested 
that on average an absolute g-force of less than 0.1 g is experienced by drivers 
when changing lanes [27]. Assuming that a driver would at least experience this 
g-force value on unsafe braking, a maximum deceleration threshold of −0.1 g 
was considered when filtering estimated deceleration events for analysis. Each 
such estimated deceleration event was then spatially joined and linear referenced 
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to Indiana’s interstate route network using common geographic information 
system (GIS) techniques [28] [29] to reference data to the interstate route, direc-
tion of travel and mile marker location. For comparison, CV hard-braking event 
data provided directly by the same third-party commercial data provider have 
also been included in the analysis. These events are henceforth referred to as CV 
Events to distinguish them clearly from estimated deceleration events. 

Table 1 represents a summary count of estimated deceleration events found 
along the study location categorized by the search radius as well as the range of 
deceleration in equal sized intervals of 0.1 g with a final interval accounting for 
all events with deceleration lower than −0.5 g. The widest search radius of 2 
miles both upstream and downstream of all exit ramps quite expectedly captures 
the highest number of estimated deceleration events. For comparison, CV Event 
counts captured within each search radius are also shown. 

7.2. Crash Dataset 

Table 2 correspondingly shows a count of the total number of crash incidents, 
generated as a curated selection of interstate crashes from Indiana’s centralized 
crash repository, detected within a 0.5, 1 and 2 mile search radius of the study  
 
Table 1. Estimated deceleration event counts categorized by deceleration range and search 
radius around interstate exit ramps (March 1-May 31, 2023). 

Deceleration 
Number of deceleration events by search radius 

±0.5 mile ±1 mile ±2 mile 

(−∞, −0.5 g) 1,578  2,259 2,831 

[−0.5 g, −0.4 g) 9,707 13,204 15,744 

[−0.4 g, −0.3 g) 89,634 120,129 141,143 

[−0.3 g, −0.2 g) 992,348 1,281,204 1,470,332 

[−0.2 g, −0.1 g) 11,199,328 14,399,718 16,461,699 

CV Events 439,159 598,554 699,171 

 
Table 2. Crash counts categorized by search radius around interstate exit ramps and date 
range. 

Date Range 
Number of crashes by search radius 

±0.5 mile ±1 mile ±2 mile 

01/01/19-05/31/23 33,636 49,179 61,041 

01/01/20-05/31/23 24,488 35,644 44,225 

01/01/21-05/31/23 18,797 27,274 33,799 

01/01/22-05/31/23 11,936 17,244 21,264 

01/01/23-05/31/23 3,444 5,060 6,122 

03/01/23-05/31/23 2,244 3,325 4,033 
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location. The crash counts are also categorized by six different time periods be-
ginning January 1, 2019 and ending with the final analysis period of March 
1-May 31, 2023. 

For a geographical context on crash frequency, Table 3 shows crash counts 
aggregated by the interstate route they were recorded on for the period of March 
1-May 31, 2023. I-465, a major beltway around the city of Indianapolis in central 
Indiana observing heavy daily commuter traffic shows the highest number of 
crashes. 

8. Statistical Analysis of Crash and CV Data 

Using these estimated deceleration events and crash incident counts defined in 
Table 1 and Table 2, simple linear regression analysis was conducted to evaluate 
the correlation between each set of datapoints for the 629 locations in the study 
area. The coefficient of determination (R2) for each such comparison is reported 
in the tables that follow as a measure of how close the correlation aligns to the 
fitted line. 

Tables 4-6 show the coefficient of determination or goodness-of-fit measure 
exhibited by linear regression models relating estimated deceleration events with 
crash incidents in search radii varying from 0.5, 1 and 2 miles around the study 
location respectively. In case of a 1 or 2 mile search radius, the highest correla-
tion is exhibited by estimated deceleration events greater than or equal to −0.5 g 
and lower than −0.4 g. Crash locations are often reported with considerable in-
accuracies. GPS units, offset from nearest junction or intersection, mile marker 
location and address are some of the various location reporting methods used 
which may cause significant errors [13]. This may point to the potential low 
correlation levels observed when using a search radius of 0.5 miles as errors in 
reported crash locations may exceed the 0.5 mile search radius, while the esti-
mated deceleration events are accurate to within a 3-meter radius. 
 
Table 3. Crashes categorized by interstate route for a 2-mile search radius around inter-
state exit ramps (March 1-May 31, 2023). 

Interstate Route Number of crashes 

I-265 55 

I-465 1,014 

I-469 68 

I-64 111 

I-65 998 

I-69 506 

I-70 434 

I-74 123 

I-90 133 

I-94 591 
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Table 4. Estimated deceleration events (March 1-May 31, 2023) and crash correlations 
for a 0.5-mile search radius around interstate exit ramps. 

Crash Date Range 

Deceleration Range/R2 

(−∞, 
−0.5 g) 

[−0.5 g, 
−0.4 g) 

[−0.4 g, 
−0.3 g) 

[−0.3 g, 
−0.2 g) 

[−0.2 g, 
−0.1 g) 

01/01/19-05/31/23 0.47 0.55 0.54 0.46 0.58 

01/01/20-05/31/23 0.47 0.53 0.53 0.45 0.57 

01/01/21-05/31/23 0.49 0.55 0.54 0.45 0.57 

01/01/22-05/31/23 0.49 0.56 0.55 0.46 0.57 

01/01/23-05/31/23 0.52 0.56 0.53 0.44 0.53 

03/01/23-05/31/23 0.54 0.55 0.52 0.42 0.50 

 
Table 5. Estimated deceleration events (March 1-May 31, 2023) and crash correlations 
for a 1-mile search radius around interstate exit ramps. 

Crash Date Range 

Deceleration Range/R2 

(−∞, 
−0.5 g) 

[−0.5 g, 
−0.4 g) 

[−0.4 g, 
−0.3 g) 

[−0.3 g, 
−0.2 g) 

[−0.2 g, 
−0.1 g) 

01/01/19-05/31/23 0.53 0.63 0.63 0.56 0.67 

01/01/20-05/31/23 0.53 0.62 0.62 0.55 0.67 

01/01/21-05/31/23 0.54 0.64 0.63 0.57 0.67 

01/01/22-05/31/23 0.56 0.67 0.66 0.59 0.68 

01/01/23-05/31/23 0.59 0.66 0.63 0.54 0.62 

03/01/23-05/31/23 0.62 0.69 0.65 0.55 0.62 

 
Table 6. Estimated deceleration events (March 1-May 31, 2023) and crash correlations 
for a 2-mile search radius around interstate exit ramps. 

Crash Date Range 

Deceleration Range/R2 

(−∞, 
−0.5 g) 

[−0.5 g, 
−0.4 g) 

[−0.4 g, 
−0.3 g) 

[−0.3 g, 
−0.2 g) 

[−0.2 g, 
−0.1 g) 

01/01/19-05/31/23 0.55 0.64 0.63 0.56 0.65 

01/01/20-05/31/23 0.55 0.63 0.61 0.55 0.65 

01/01/21-05/31/23 0.56 0.65 0.63 0.56 0.66 

01/01/22-05/31/23 0.57 0.67 0.65 0.59 0.68 

01/01/23-05/31/23 0.60 0.70 0.65 0.56 0.63 

03/01/23-05/31/23 0.61 0.69 0.63 0.54 0.60 

 
In each case with a wide enough search radius (Table 5 and Table 6), the 

highest or near highest coefficient of determination is observed when the crash 
date range aligns exactly with the estimated deceleration event date range of 
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March 1-May 31, 2023. This potentially points to how estimated deceleration 
events could be easily leveraged as near real-time indicators as well as historical 
indicators of safety performance without having to wait for a crash history to 
develop over a period of time. 

9. Recommended Deceleration Rate Thresholds 

Table 7 shows a summary comparison of the coefficient of determination be-
tween estimated deceleration events and crash incidents for the study period of 
March 1-May 31, 2023. In each choice of search radius, the highest correlation 
observed between deceleration events and crash counts were for those estimated 
deceleration events in the range of −0.5 g to −0.4 g. CV Events on the other hand 
display very similar correlation statistics. Based upon this close agreement be-
tween estimated deceleration and OEM provided events, we believe agencies are 
best served by calculating deceleration from trajectory data in a systematic 
manner across all OEMs and establishing their own threshold for the type of fa-
cility being analyzed. This provides tremendous flexibility to look at different fa-
cilities such as freeways, interchanges, merge areas, traffic signals, roundabouts, 
driveways, trails, toll booths and border crossings. Not only does this provide 
transparency to the agency, but also ensures the data set is not biased by the type 
of driver that may drive a particular type of vehicle.  

Figure 2 shows a scatter plot of the crashes per mile recorded at the 629 exits 
in the study area compared with the estimated deceleration events per mile at 
the same locations on the horizontal axis for a 2 mile search radius and decelera-
tion events in the range of −0.5 g to −0.4 g. The correlation shows a fairly high 
coefficient of determination value of 0.69 for the limited study period. The 20 
locations with the highest deceleration events per mile values have been hig-
hlighted in red. As crash incident counts only for the state of Indiana were uti-
lized, any search radius extending beyond the state border was limited to the 
state’s last mile marker. This resulted in the need for normalizing deceleration 
events and crash incidents counts per mile for each of the study locations to en-
sure systematic assessment. Hence a per mile value is used in Figure 2 even 
though a consistent search radius upstream and downstream was used for the 
entire study location. 
 
Table 7. Estimated deceleration events and crash correlations for varying search radii 
around interstate exit ramps (March 1-May 31, 2023). 

Search 
Radius 

Deceleration Range/R2 
CV 

Events (−∞, 
−0.5 g) 

[−0.5 g, 
−0.4 g) 

[−0.4 g, 
−0.3 g) 

[−0.3 g, 
−0.2 g) 

[−0.2 g, 
−0.1 g) 

±0.5 mile 0.54 0.55 0.52 0.42 0.50 0.59 

±1 mile 0.62 0.69 0.65 0.55 0.62 0.71 

±2 mile 0.61 0.69 0.63 0.54 0.60 0.69 
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A tabular summary of these 20 locations ranked by the highest deceleration 
events per mile values is shown by Table 8. The exit ramp location at I-94 W 
MM 10.2 shows the highest deceleration events per mile value for the analysis 
period of March 1-May 31, 2023. For each location, the search area upstream 
and downstream is shown by their respective columns to demonstrate the near 
4-mile coverage used for capturing deceleration event and crash counts. 

Figure 3 shows a spatial representation of these 20 ramp locations (Table 8) 
with the highest deceleration events per mile values across the state of Indiana. 
The “Route” column denotes the interstate route as well as direction of travel for 
each such location (E/W representing East/West, N/S representing North/South 
and IL/OL representing Inner Loop/Outer Loop respectively). A number of 
these locations were found to be on I-465 (callout i), the beltway around the city 
of Indianapolis with 4 - 5 lanes in each direction that has heavy weekday com-
muter traffic as well as substantial commercial vehicles. Similar trends are seen  
 
Table 8. 20 Interstate Exit Ramp Locations with highest estimated deceleration events per 
mile values for deceleration in the range of [−0.5 g, −0.4 g) (March 1-May 31, 2023). 

Route 
Search Radius 

Start MM 
Exit 

Ramp MM 
Search Radius 

End MM 
Deceleration 

Events Per Mile 

I-94 W 8.2 10.2 12.2 80.5 

I-465 IL 34.2 36.2 38.2 80.3 

I-94 W 4.7 6.7 8.7 79.0 

I-465 OL 35.3 37.3 39.3 74.5 

I-465 IL 2.0 4.0 6.0 62.0 

I-90 W 0.0 0.6 2.6 61.9 

I-69 S 199.4 201.4 203.4 61.8 

I-94 E 4.0 6.0 8.0 61.8 

I-465 OL 39.8 41.8 43.8 58.8 

I-465 IL 24.1 26.1 28.1 58.3 

I-69 S 202.3 204.3 206.3 57.3 

I-465 OL 25.1 27.1 29.1 54.5 

I-94 W 7.2 9.2 11.2 54.5 

I-94 W 10.6 12.6 14.6 53.5 

I-465 OL 29.3 31.3 33.3 52.0 

I-465 IL 22.3 24.3 26.3 48.0 

I-469 N 28.4 30.4 30.4 48.0 

I-69 S 201.2 203.2 205.2 47.8 

I-70 W 78.4 80.4 82.4 47.8 

I-70 E 78.5 80.5 82.5 47.5 
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Figure 2. Scatter plot showing crashes per mile versus estimated deceleration events per 
mile in a 2-mile radius around Indiana’s interstate exit ramps for deceleration in the 
range of [−0.5 g, −0.4 g) (March 1-May 31, 2023). 
 

 

Figure 3. 20 Interstate exit ramp locations with highest estimated deceleration events per 
mile values for deceleration in the range of [−0.5 g, −0.4 g) (March 1-May 31, 2023). 
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in the high number of locations observed on I-94 (callout ii), a heavily used 
route for commutes into or out of the Chicago metropolitan area. The I-469 N 
location (callout iii) highlighted by the analysis is another example of a commu-
ter beltway around the city of Fort Wayne which sees heavy traffic for vehicles 
looking to either join or exit from the primary north-south interstate I-69 (cal-
lout iv). 

The techniques and analysis presented thus demonstrate the applicability of 
CV trajectory data and estimated deceleration events to conduct systemwide as-
sessment of safety performance near interstate exits and how well these assess-
ments correlate to historical crash trends. 

10. Conclusions 

This study analyzed nearly 20 million estimated CV deceleration events and 
more than 4800 crashes near 629 exits along Indiana’s Interstate system to 
present the relationship between estimated CV deceleration events and crashes 
for a three-month period from March 1-May 31, 2023. Results showed that: 

1) The highest coefficient of determination among these datasets was 0.69 for 
deceleration events in the range of −0.5 g to −0.4 g. Since these values can be 
computed in real time, this provides the opportunity for not only long-term 
safety studies, but real time monitoring of trends, particularly in construction 
zones.  

2) Based upon this close agreement between estimated acceleration and OEM 
provided events, we believe agencies are best served by calculating deceleration 
from trajectory data in a systematic manner across all OEMs and establishing 
their own threshold for the type of facility being analyzed (freeways, signals, 
roundabouts, driveways, trails, toll booths or border crossings).  

The methodologies shown enable practitioners and state agencies to utilize a 
single CV trajectory dataset to conduct both mobility and safety evaluations on 
their road network without the need for integrating any external data sources. 
Access to estimated deceleration values from raw CV data additionally presents 
stakeholders with valuable insights into the true quantified severity of these 
braking events and enables comparative assessments across locations and allows 
for safety improvement solutions tailored to the driving profile at a location ra-
ther than based on a universal non-transparent threshold. Additionally, the ana-
lyzed dataset and associated methodologies are highly scalable at the local, state, 
multi-state or even national level due to the consistency and widespread availa-
bility of the data as well as users of this data not being hamstrung by underre-
porting, inconsistency or delayed reporting issues. 

Future research in this domain will look at incorporating estimated accelera-
tion across a much broader set of transportation facilities including rural free-
way sections, merge areas, traffic signals, roundabouts, driveways, trails, toll 
booths and border crossings. Additional evaluations and modeling of combined 
correlations between acceleration events, deceleration events and crashes may 
reveal insights into driver behavior at short merge and exit ramps. 
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