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Abstract 
This study investigates relationships between congestion and travel time per-
formance metrics and crashes on road segments. The study focuses on work 
zone routes in Iowa, utilizing 2021 commercially-available probe vehicle data 
and crash data. Travel time performance metrics were derived from the probe 
vehicle data, and crash counts were obtained from the crash data. Additional 
variables included road characteristics (traffic volume, road type, segment 
length) and a categorical variable for the presence of a work zone. A mixed 
effect linear regression model was employed to identify relationships between 
road segment crash counts and the selected performance metrics. This was 
accomplished for two sets of models that include congestion performance 
measures at different defining threshold values, along with travel time per-
formance measures. The study results indicate that the congestion indicators, 
certain travel time performance measures, and traffic counts were statistically 
significant and positively correlated with crash counts. Indicator variables for 
rural interstate locations and non-active work zones have a stronger influence 
on crash count than those for municipal interstate locations and active work 
zones. These findings can inform decision-makers on work zone safety strat-
egies and crash mitigation planning, especially in high traffic volume areas 
prone to congestion and queues. 
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1. Introduction 

There is considerable literature on the relationship between crashes and conges-
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tion but relatively little on the influence of probe data-derived performance me-
trics on road segment crashes. A few prior studies have sought to explore such 
relationships. Dimitrijevic et al. developed multiple models that employed per-
formance metrics to access short-term crash risks on highway segments using 
reactive data (driver and vehicle age) and proactive data (speed, volume to ca-
pacity ratio, etc.) [1]. The results show the integration of reactive and perfor-
mance metrics related data resulted in better prediction of crashes. 

Several previous studies have shown that the presence of work zones influ-
ences crash frequency [2] [3] [4]. Work zone environments pose a danger to 
drivers and account for approximately 700 fatalities, 24,000 injury crashes, and 
52,000 non-injury crashes annually in the United States [2]. In 2020, work zones 
accounted for approximately 102,000 crashes and 857 fatalities in the United 
States [5]. Work zones tend to have varying speeds, and differences in speed 
have been shown to influence crashes, especially rear-end crashes in work zone 
locations [6]. Though less severe, higher congestion levels are associated with 
more crashes [7]. 

To date, limited studies have examined the influence of travel performance 
metrics on crash frequency using probe data and statistical methods. The present 
study seeks to do so at the road segment level. Several performance measures are 
defined in the present study that quantifies the amount of congestion occurring 
on the segment as well as travel time characteristics. Additionally, few studies 
have also included work zone status integrated with probe data performance 
metrics. The present study also includes this variable to determine how conges-
tion and travel time characteristics of segments, as revealed by probe data 
co-influence the safety performance along with work zone activity. The study 
gives insight into how congestion and queueing conditions influence road seg-
ment crashes in different road environment conditions assisting transportation 
safety engineers in enforcing strategies to reduce road segment crashes. There-
fore, the study aims to evaluate performance metrics in work zone and non-work 
zone environments and how such metrics influence road segment crashes.  

2. Literature Review 

In recent years, probe data has been used to analyze performance metrics on 
roadways [8] [9]. Such performance measures are able to provide detailed in-
formation about how roadways are operating. Some studies have employed traf-
fic flow data to analyze crashes [1] [10] [11].  

Mekker et al. [12] employed probe data to characterize crash rates on inter-
state segments by classifying crashes as related to queued or free-flowing condi-
tions. Three years of probe vehicle data and crash data were used. The study re-
vealed that more crashes occur on congested interstate segments than on un-
congested ones. Also, commercial vehicles accounted for over 87% of fatal crashes 
during congestion and 39% in free flow conditions. 

Probe data has also been used to assess delays resulting from work zone [13] 
[14]. Performance measures quantifying congestion, queueing, and travel time 
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reliability have been widely used by agencies to monitor mobility performance. 
However, sparse literature exists where these metrics have been assessed in rela-
tion to crash occurrences in work zones. A recent study utilized probe data to 
conclude that historical speed variation is essential in predicting work zone mo-
bility [15]. Although some research has been conducted on the impact of work 
zone presence on crashes, most prior studies were not examined on the road 
segment level, as in the present study. 

Other studies have utilized multiple data sources to access work zone safety. 
Speed data has been employed to examine speed limit compliance in work zones 
using a Tobit regression model. Study findings concluded a higher probability of 
speeding in the presence of other speeding vehicles and when traffic volumes are 
high [16]. Tobit model has also been employed to examine crashes at the inter-
section level [17]. Ozturk et al. [4] examined relationships between work zones 
and highway safety. Preliminary findings indicated a 24.4 percent increase in 
crash rate under the work zone condition. Negative binomial regression models 
employed in the study showed that work zones significantly increase the risk of 
crashes on roads. Another study utilized meta-analysis and meta-regression mod-
els to explore the influence of work zones on safety performance. Study findings 
revealed work zone length significantly affects crash count, but the work zone 
duration does not. Both work zone duration and length have a positive influence 
on crash count [3]. Additionally, another study, although not on work zones, 
integrated real time traffic data from loop detectors: average flow per lane, aver-
age occupancy, etc., and weather data to understand the severity and probability 
of crashes in urban arterials [11]. 

Researchers have examined the influence of work zone presence on crash 
types. Using negative binomial models, Khattak et al. [2] analyzed the effects of 
work zone presence on injury and non-injury crashes. Data for the study in-
cluded crash, road inventory, and work zone activity data. The results indicated 
that the work zone crash rate was 21.5% higher than the preceding non-work 
zone period for freeway segments. Crash frequency increased with the work 
zone duration, segment length, and AADT. Work zone duration significantly 
increased injury and non-injury crash frequency. Aside from the influence of 
work zones on crash types, crash severity and collision type have also been in-
vestigated. An Ohio study examined fatal and injury crashes in interstate work 
zones using spatial analysis over three years. The results showed significant dif-
ferences in fatal and injury crash proportions and rear-end crashes at various 
work zone locations. The study concluded that work zone activity areas were 
danger prone, and varying speeds contributed to rear-end crash occurrences [6]. 
Another study investigated fatal crashes in work zone and non-work zone loca-
tions in Georgia. The authors concluded that work zone fatal crashes mostly in-
volved more than one vehicle and are rarely induced by vertical and horizontal 
alignment compared to non-work zone crashes. The results indicated that work 
zones influence the collision type of fatal crashes [18]. A Missouri study em-
ployed statistical data analysis to identify factors influencing work zone crash 
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severity. Several factors were examined, including road conditions, weather, light 
condition, traffic conditions, segment geometry, and type of crash, among oth-
ers. A multinomial logistic regression model was employed to identify signifi-
cant factors and compare different crash severities: property damage, minor in-
juries, and fatal injuries. The results indicated that the majority of the crashes 
were property damage crashes and rear end collision type crashes [19]. 

3. Data and Methods 

This study considered road segments where work zones were present (active) in 
some months of the year 2021. Active work zones represent road segments with 
some roadwork executed, while non-active work zones are those with no road-
work. This study examined 201 road segments with active work zones. The pro-
prietary road segmentation scheme used by the vendor was employed for this 
study. Road segments in this scheme ranged between 0.068 - 0.971 miles. Infor-
mation on work zone duration was also obtained from the Iowa Department of 
Transportation (DOT). Table 1 shows the time periods when work zones were 
active on the selected routes. 

Crash data were obtained from the Iowa DOT for the entire year of 2021. The 
crash data included crash key, date and time, crash severity, latitude, longitude, 
Route ID, and nearest milepost. A linear referencing scheme data containing in-
formation on road attributes such as length, number of lanes, etc., was also ga-
thered from the Iowa DOT. Probe vehicle data was obtained from the vendor for 
all work zones listed in Table 1. The vehicle speeds were of interest from this 
dataset. This data consists of 1-minute average speeds for the segments pre-
viously mentioned. Along with the average speed, a “confidence” score is also 
included, which indicates whether the speed is based on real traffic observations 
or is inferred from historical data (because few probes are available). A confi-
dence score of 30 which is the highest confidence score INRIX reports, was em-
ployed for this study. The score is the measure of confidence for the speed esti-
mated for the segment. A score of 30 is based on real time data, unlike other  
 
Table 1. 2021 Work zone information. 

Work zone name General Location Start Date End Date 

Group Ick I-80, 0.5 mi east of Iowa Route 224 9/1/2021 11/4/2021 

Group Ibq I-80, 2.5 mi east of Iowa Route 224 5/1/2021 11/4/2021 

Group 1cm I-80, 1 mi west of Iowa Route 146 4/5/2021 8/31/2021 

Group 1cn I-80, 2.5 mi west of Iowa Route 117 4/5/2021 10/14/2021 

Group 1co I-35, bridges over US 30 4/5/2021 7/2/2021 

Group 3q I-29, 1.4 mi north of Iowa Route 127 4/5/2021 8/19/2021 

Group 4ce I-80, near US 6/169 interchange 6/21/2021 12/8/2021 

Group 5an I-35, 3.8 mi north of Iowa Route 92 4/1/2021 12/31/2021 

Group 5ao I-80, near Exit 211 4/5/2021 8/19/2021 
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scores: 10 or 20 based on historical or a combination of expected and real time 
data. The present study includes only observations based on real data. The speed 
data was used to calculate average speed, free flow travel time, actual travel time, 
speed deficit, travel time index, congestion mile hours, and queue mile hours, as 
described in the next section. The next section also details the methodology for 
the study. 

Definition of Performance Measures 

Travel Time Index is one measure for quantifying the congestion level on a road 
network. It is defined as the ratio of the actual travel time to the travel time un-
der free-flow conditions on the same road segment: 

Actual Travel TimeTTI
Free Flow Travel Time

=  

The free-flow travel time is often regarded as the baseline or “ideal” scenario, 
with no traffic-induced delays. The TTI provides a relative measure of the addi-
tional time needed to complete a journey during congested conditions compared 
to free-flow situations. The actual travel time was estimated for each road seg-
ment using the probe data average speed combined with the road segment 
length from Iowa DOT’s linear referencing scheme. The free flow travel time 
was calculated using the probe date average speed and the posted speed limit of 
the road segment. Subsequently, the travel time index was obtained by dividing 
the actual travel time over the free flow travel time.  

We define another performance measure, speed deficit, as the difference be-
tween the free-flow speed and the actual speed for a specified location or during 
a specific time period. This definition is slightly different than what was used in 
some previous mobility reports [20], which used a 45 mph reference speed ra-
ther than the free flow speed. Speed deficit quantifies the reductions in speed 
occurring on the link. A large speed deficit value can result from shorter periods 
of significant speed reductions or more extended periods with more moderate 
speed reductions. Overall, it tends to reflect the overall separation between ideal 
flow and actual flow. Figure 1 shows an example heat map view of speed deficit 
for eight days for 14 segments in a work zone. The chart shows that the greatest 
amounts of congestion occurred on days 24, 27, and 28 in the month of Septem-
ber and were mostly limited to the first 8 hours of the day. The variation from 
day to day could be caused by varying work zone activities, fluctuating traffic 
demand, or a combination of these and other factors. 

This paper uses Congestion Mile Hours (CMH) and Queue Mile Hours (QMH) 
to quantify congestion at different degrees of severity. Some previous mobility 
reports used CMH to total the amount of congestion along different routes for 
comparison purposes [20]. To calculate CMH, the number of 1-minute observa-
tions where speed is less than or equal to 45 mph are tabulated, divided by 60 to 
convert into hours, and then multiplied by the segment length to convert into 
mile-hours. QMH is the product of the duration of the queue in hours and the  
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Figure 1. Speed deficit for a work zone for an 8-day period. 
 
length of queue in miles. We set the threshold value of speed to 15 mph because 
it indicates a critical breakdown with traffic flow. Whereas CMH includes both 
moderate and severe congestion, QMH is intended to include only the most se-
vere congestion, where traffic is experiencing stop-and-go conditions. CMH and 
QMH are useful performance measures for assessing road performance, identi-
fying locations needing improvement, and evaluating strategies for congestion 
management. 

Figure 2 displays example calculations of the number of CMH and QMH for 
an example work zone across the year 2021 for two directions of travel. As the 
chart shows, the number of CMH is greater than QMH (since QMH has a lower 
threshold speed), and there is considerable fluctuation in both performance 
measures over the year. For this work zone, the most severe congestion seems to 
occur around weeks 37 - 43 in the westbound direction. 

The probe data were merged to the linear referencing scheme on the segment 
ID, so we obtained information on the road characteristics, such as segment 
length, traffic volume, Route ID, from measure (beginning milepost) and to 
measure (ending milepost). To obtain the count of segment crashes, we gathered 
road asset management crash data from IowaDOT, which had the following in-
formation: crash key, Route ID, milepost, and datetime. This data was merged 
with the crash key from the crash data, so we obtained a new crash dataset that 
had the crash key, Route ID, milepost and datetime, x coordinate, y coordinate, 
and crash severity. Since we had the milepost from the new crash dataset, we 
wrote a script to retrieve the count of crash if it falls within the from measure 
and to measure of a road segment. 
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Figure 2. CMH and QMH for a work zone for the year 2021. 
 

The descriptive statistics of the variables are provided in Table 2. Table 2 
shows that the average QMH is 10% higher for work zone months than for 
non-work zone months. However, there is a higher average CMH for non-work 
zone months than for work zone months. The average crash count in non-work 
zone months is much higher than in work zone months by a percentage of about 
26%. The average travel time index has a similar value of about 1.0 for work 
zone and non-work zone months. 

The variables were tested for multicollinearity. A high degree of correlation 
between two or more predictor variables makes it unlikely that the individual ef-
fects can be separated, resulting in unreliable estimates of regression coefficients. 
The correlation matrix is shown in Figure 3. It provides pairwise correlation 
coefficients for all the predictor variables, with values ranging from −1 to 1, 
which signifies the degree and direction of the linear relationship between two 
predictors. A coefficient close to 1 represents a strong positive linear relation-
ship, indicating that as one predictor increases, the other is also likely to in-
crease. Conversely, a coefficient close to −1 indicates a strong negative linear re-
lationship, meaning as one predictor increases, the other tends to decrease. A 
coefficient near 0 suggests little to no linear correlation between the predictors. 
Based on the results of the correlation matrix analysis, we eliminated TTI and 
average speed from our modeling process. TTI had a strong positive correlation 
with speed deficit and a strong negative correlation with average speed. Average 
speed had a strong negative correlation with speed deficit. 
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Table 2. Descriptive statistics of variables (Segment level). 

Analysis Periods Variable Mean 
Standard 
deviation 

Minimum Maximum 

All months 

Crash count 1.544 1.899 0 11 

CMH 11.714 11.819 1.026 76.508 

QMH 1.332 2.576 0 16.538 

AADT 28,677 6740 1670 42,700 

TTI 1.005 0.021 0.979 1.189 

Speed deficit −0.043 1.425 −1.966 11.034 

Work zone 
months only 

Crash count 0.6542 1.1720 0 11 

CMH 4.349 7.0149 0.0107 50.499 

QMH 1.295 2.241 0.0105 16.134 

AADT 28,815 6514 14,600 42,700 

TTI 1.005 0.0316 0.9743 1.208 

Speed deficit −0.146 1.764 −1.966 11.034 

Non-work zone 
months only 

Crash count 0.879 1.384 0 10 

CMH 7.279 7.254 0.602 55.793 

QMH 1.159 2.713 0.008 16.134 

AADT 28,815 6514 14,600 42,700 

TTI 1.006 0.0169 0.989 1.185 

Speed deficit 0.060 0.969 −1.204 10.232 

 
A quantile-quantile plot with the variables chosen is indicated in Figure 4. A 

mixed effect linear model was suitable for analysis based on the approximate li-
nearity of the data, as shown in Figure 4. Also, the road segment length and 
curve differ, although most of the roads are relatively straight. The mixed effect 
linear model is suitable to account for this randomness in road characteristics.  

We considered two statistical models since CMH and QMH are slightly cor-
related, having a correlation coefficient of 0.61 as indicated by Figure 1. The two 
models included different congestion metrics as independent variables: 
 CMH, AADT, speed deficit 
 QMH, AADT, speed deficit 

Road geometry characteristics such as traffic volume, number of lanes and 
road types were also considered for inclusion in the models. The number of 
lanes was eliminated since all the roads had two lanes in each direction of travel, 
hence did not present any variance that would be useful in the analysis. Finally, a 
categorical variable for work zone status was created from the time periods in 
which the work zones were active. 
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Figure 3. Correlation matrix of travel time performance metrics. 
 

 

Figure 4. Quantile-quantile plot of predictor variables. 

4. Results 
4.1. Visualizations of Congestion Mile Hour (CMH) and Queue Mile 

Hour (QMH) 

Figure 5 shows CMH and QMH along with AADT for work zone months, and 
Figure 6 shows the same for non-work zone months. The travel time index is  
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Figure 5. Travel time performance metrics for work zone months. 
 

 

Figure 6. Travel time performance metrics non-work zone months. 
 
overlaid on the CMH bar chart to allow comparison. The work zone names and 
travel directions are on the horizontal axes, and the vertical axes are AADT, 
CMH, and QMH. In Figure 5, work zone Group 1ck westbound experienced the 
largest amount of CMH and QMH. This work zone also has the highest traffic 
volume. This suggests, unsurprisingly, that higher traffic volumes correlate with 
increased CMH and QMH congestion.  

Figure 7 visualizes the safety performance of the work zones examined in this 
study as a line chart where the work zones are sorted by the number of crashes  
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Figure 7. Crash count line chart for work zone and non-work zone months. 
 
occurring in work zone months. The monotonically decreasing orange line 
shows this sorted value, while the blue line shows the number of crashes occur-
ring in non-work zone months. The two lines do not share the same trend, de-
monstrating that non-work zone crash performance relative to other segments 
does not necessarily indicate which segments will perform better or worse when 
a work zone is in place. Variation in the nature of the road work (e.g., whether a 
lane needs to be closed or not) likely drives these differences.  

4.2. Model Results and Discussion 

The research utilized a mixed-effects linear model due to the linear nature of the 
data combined with the random variability inherent in the attributes of the road 
segments. 

The mixed effect linear model results for the CMH and QMH models are 
shown in Table 3 and Table 4, respectively. Both models were trained on 480 
observations grouped by 201 unique identifiers (road segments). The minimum 
group size is 2, and the maximum is 4, with an average group size of 2.4. 

For the CMH model, traffic volume, speed deficit, and CMH are statistically 
significant variables positively correlated with the crash count. Although not sta-
tistically significant, the segment length is more positively correlated with crash 
count than the other variables considered, which are also positively correlated. 
For every one-unit increase in speed deficit, the crash count increases by an es-
timated 0.108 units. For every one-unit increase in CMH, traffic volume, and 
segment length, the approximate increase in crash count is 0.059, 0.534, and 
0.667 units, respectively. 
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Table 3. Mixed linear model regression results (CMH model). 

Model MixedLM  Dependent Variable: Crash count 

No. observations 480  Method: REML 

No. groups 201  Scale 1.103 

Min. group size 2  Log-Likelihood −750.048 

Max. group size 4  Converged Yes 

Mean group size 2.4      

 Coef. Std. Err z P > |z| [0.025 0.975] 

Intercept −5.722 2.443 −2.342 0.019 −10.511 −0.933 

C (Road type) (T. Rural intestate) 0.295 0.341 0.865 0.387 −0.373 0.963 

C (WZ status) (T. Non-active) 0.024 0.099 0.245 0.807 −0.170 0.219 

CMH 0.059 0.009 6.397 0.000 0.041 0.077 

Speed deficit 0.108 0.043 2.522 0.012 0.024 0.192 

Segment length 0.667 0.424 1.563 0.116 −0.164 1.498 

Log (Aadt) 0.534 0.228 2.346 0.019 0.088 0.981 

Group Var 0.221 0.072     

 
Table 4. Mixed linear model regression results (QMH model). 

Model MixedLM  Dependent Variable: Crash count 

No. observations 480  Method: REML 

No. groups 201  Scale 1.127 

Min. group size 2  Log-Likelihood −766.263 

Max. group size 4  Converged Yes 

Mean group size 2.4      

 Coef. Std. Err z P > |z| [0.025 0.975] 

Intercept −9.307 2.541 −3.662 0.000 −14.288 −4.327 

C (Road type) (T. Rural intestate) 0.492 0.363 1.355 0.175 −0.220 1.204 

C (WZ status) (T. Non-active) 0.202 0.098 2.062 0.039 0.010 0.395 

QMH 0.057 0.031 1.860 0.063 −0.003 0.117 

Speed deficit 0.217 0.041 5.297 0.000 0.137 0.298 

Segment length 1.313 0.443 2.966 0.003 0.445 2.181 

Log (Aadt) 0.850 0.238 3.573 0.000 0.384 1.316 

Group Var 0.321 0.085     
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For the QMH model, the road type coefficient for rural interstate is 0.492, im-
plying that when a segment is a rural interstate (compared to a municipal inter-
state), the crash count is expected to increase by 0.492 units, holding all expla-
natory variables constant. It’s an absolute increase in the speed difference, not a 
relative change. The P-value (0.175) suggests this result isn’t statistically signifi-
cant at the 5% level. The coefficient for non-active work zone status is 0.202; this 
means the crash count increases by 0.202 compared to when it’s active when all 
the independent variables remain the same.  

The results of both models show that all the included variables have positive 
correlations with crash counts. Speed deficit, road segment length, and traffic 
volume are positively correlated with crash count with coefficient values of 
0.217, 1.313, and 0.850, respectively. We observe that the most positively corre-
lated variable for CMH was segment length, while that of the QMH model was 
traffic volume. We also observe that the speed deficit coefficient is higher in the 
QMH than in the CMH model. We attribute this to the fact that the travel time 
is much higher in what we have defined as queued conditions (speed > 15 mph) 
than in congested but not queued conditions (speed > 45 mph but <15 mph). 

Both models indicate that there are more crashes in non-work zone months 
than in work zone months. This may be because, during work zone conditions, 
there are usually traffic control devices on the road to warn drivers of potential 
upcoming congestion, whereas, during non-work zone conditions, there may be 
little to no warning. In addition, non-work zone months had a larger positive 
coefficient in the QMH model when compared to the CMH model. This suggests 
that queued conditions may experience few crashes in work zone months be-
cause, when QMHs are accrued, the speed reductions have become so severe that 
the queuing is likely to have cascaded backward to other segments outside the 
defined limits of the work zone limits. Crashes are less likely to occur when the 
speeds are very low. 

In contrast, more moderately congested conditions (with high CMH) are 
more likely to indicate the back of a queue, which is a much more hazardous 
condition with high-speed traffic approaching slow traffic. This finding agrees 
with a prior study which concluded that congested conditions were associated 
with more crashes than uncongested conditions [12]. Another study on ex-
pressways in Japan reported that congested conditions were associated with 70% 
of work zone crashes [21]. An additional study found that high variability in 
speeds was associated with more crashes [22]. It is likely that there is greater 
speed variation in a congested state than in a queued state, where most vehicles 
are stopped or traveling at low speeds. Our finding that traffic volume positively 
influences crashes concurs with another study that employed big data to ex-
amine safety performance [23] but contradicts Guo et al. [24], who did not find 
such a relationship. 

Lastly, Table 3 and Table 4 show that the absence of a work zone (i.e., when 
the “non-work zone” indicator = 1) is associated with a higher crash count. This 
contrasts with previous observations that work zone duration significantly in-
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creased injury and non-injury crash frequency [2]. 
The variance inflation factor (VIF) for the variables was also computed. VIF is 

a measure used in regression analysis to indicate the extent of multicollinearity 
within the explanatory variables. The general rule of thumb is that a VIF larger 
than 5 or 10 indicates a problematic amount of collinearity. VIF values for the 
CMH, QMH, speed deficit, segment length, and AADT were 2.15, 1.68, 1.30, 
1.17, and 1.12, respectively. Since our VIF values are less than 5, we can confirm 
the acceptability of the mixed effect linear model for the analysis. The model in-
cluded both fixed and random effects, accounting for variability within road 
segments. Table 3 and Table 4 indicate the group variance of the random inter-
cept, i.e., segments to be 0.221 and 0.321 for the CMH and QMH models, re-
spectively.  

5. Conclusions 

This study used a mixed effect linear model to investigate the relationship be-
tween probe data-derived performance measures (CMH, QMH, and speed defi-
cit) on crash counts at the road segment level. Road characteristics such as traffic 
volume and road type were also included in the modeling. The mixed effect li-
near models enabled us to factor in the differences in the road segment geome-
try. The analysis also factored in the periods for which work zones were active 
versus when they were not by including a work zone status variable. Two differ-
ent model sets were developed for the analysis periods to eliminate multicolli-
nearity. One model set used CMH, and the other used QMH.  

The results indicate that CMH, QMH, speed deficit, segment length, and traf-
fic volume correlated positively with crash count for the work zones examined in 
this study. Speed deficit, segment length, and traffic volume are more positively 
correlated with segment crashes in the QMH model than in the CMH model for 
non-active work zones and rural interstates. 

A few interesting findings were also discussed, which help reveal the nature of 
work zone and non-work zone crashes. Non-active work zones are more statis-
tically significant in the QMH model than the CMH model, implying for work 
zone conditions, CMH might be more significant than QMH. This may reflect 
the greater likelihood for locations with intermediate speeds (between 15 and 45 
mph) to experience crashes since this is where the back of the queue is likely to 
be, whereas locations with very low speeds (under 15 mph) are less likely to ex-
perience crashes. Non-active work zones in the QMH model were more posi-
tively correlated with segment crashes than in the CMH model. This finding 
may reflect the effect of having traffic control devices during work zone condi-
tions that may give drivers some awareness of the potential for crashes at a 
downstream location, while such devices are not present during non-work zone 
conditions. 

The findings of this study can help provide transportation engineers with in-
sights into correlations between the operational performance of a road segment 
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and its impact on safety performance. The methods described here could be used 
to monitor performance in real time. This would enable more effective deci-
sion-making processes in the area of work zone planning and prioritization of 
road segments for countermeasures to improve safety. In particular, the differing 
results for the CMH and QMH models suggest that the locations with the most 
severe congestion (highest number of QMHs) may have less of a need for such 
countermeasures than those experiencing more CMHs but fewer QMHs. That is, 
the lower speeds associated with more severe congestion may itself tend to miti-
gate crashes within the work zone. In such conditions, however, it is important 
to provide drivers approaching but not yet within the work zone that they are 
approaching slow or stopped traffic. 

One limitation of the study was weather data was not considered due to the 
manner in which the data was processed and aggregated. Also, the study was li-
mited to one year of both probe and crash data. In future research, weather va-
riables could be included in the models, additional years of data could be incor-
porated, and work zones on additional facility types could be used to expand on 
the initial models presented here. A time-of-day analysis could be factored into 
the study as well. 
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