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Abstract 
Rural intersections account for around 30% of crashes in rural areas and 6% 
of all fatal crashes, representing a significant but poorly understood safety 
problem. Crashes at rural intersections are also problematic since high 
speeds on intersection approaches are present which can exacerbate the 
impact of a crash. Additionally, rural areas are often underserved with EMS 
services which can further contribute to negative crash outcomes. This paper 
describes an analysis of driver stopping behavior at rural T-intersections us-
ing the SHRP 2 Naturalistic Driving Study data. Type of stop was used as 
a safety surrogate measure using full/rolling stops compared to non-stops. 
Time series traces were obtained for 157 drivers at 87 unique intersections 
resulting in 1277 samples at the stop controlled approach for T-intersections. 
Roadway (i.e. number of lanes, presence of skew, speed limit, presence of stop 
bar or other traffic control devices), driver (age, gender, speeding), and envi-
ronmental characteristics (time of day, presence of rain) were reduced and 
included as independent variables. Results of a logistic regression model in-
dicated drivers were less likely to stop during the nighttime. However pres-
ence of intersection lighting increased the likelihood of full/rolling stops. 
Presence of intersection skew was shown to negatively impact stopping be-
havior. Additionally drivers who were traveling over the posted speed limit 
upstream of the intersection approach were less likely to stop at the approach 
stop sign. 
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1. Introduction 
1.1. Background 

Rural intersections account for 30% of crashes in rural areas and 6% of all fatal 
crashes, representing a significant but poorly understood safety problem. Crash-
es at rural intersections are particularly problematic when high speeds on inter-
section approaches are present. Additionally, motor vehicle crash injury rates are 
higher in rural versus urban areas due in part to increased emergency medical 
service (EMS) times, reliance on volunteer EMS personnel, and increased trans-
port time to definitive care [1]. EMS response times in rural areas are 1.6 to 2 
times longer than in urban areas [2] [3], and fatal injury crash rates are two 
times higher in rural than in urban areas [1] [4].  

Inappropriate gap selection has been found to be a major contributing cause 
of crashes at rural intersections. In a study conducted in 2003 [5] [6], inappro-
priate gap selection accounted for 56% of all right-angle crashes at rural Minne-
sota through-stop intersections. Right-angle collisions, the result of drivers se-
lecting a gap that is too small or failing to observe traffic control, account for 
between 36% to 50% of crashes at intersections on high-speed divided highways, 
while such collisions account for only 28% of crashes at intersections on other 
types of roads [7]. 

Drivers failing to stop on the minor approach have been found to account for 
25% of right angle crashes [6]. Retting et al. [8] found that crashes where drivers 
failed to stop at stop signs were more likely to result in injuries than crashes 
where drivers stopped. Characteristics correlated to failure to yield right of way 
include age [9] [10], speeding, vision obstruction, and inattention/distraction 
[11]. 

Roadway characteristics also play a significant role in intersection crashes. In-
tersections located on or near horizontal and vertical curves tend to have higher 
crash rates than intersections on tangent segments [12] [13] [14] [15]. Barua et 
al. [16] evaluated crashes at rural undivided intersections in Alberta, Canada, 
and found that crash risk is higher during the fall than the winter (possibly due 
to harvesting), at nighttime, at offset intersections, at T-intersections, and on 
horizontal or sag curves. Leckrone et al. [17] evaluated minor approach stop- 
controlled intersections in Indiana and found that the presence of acceleration 
lanes for both left and right turns, median width, and a nearly perpendicular in-
tersection angle resulted in a lower likelihood of a severe crash. Additionally, 
they found that the crash risk was lower at T-intersections than at intersections 
with four approaches.  

1.2. Objective 

The Second Strategic Highway Research Program (SHRP2) conducted a large- 
scale naturalistic driving study (NDS) using instrumented vehicles, which pro-
vides a significant amount of on-road driving data for a range of drivers. The 
present study utilized data from the SHRP2 NDS as well as the SHRP2 Roadway 
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Information Database (RID) to observe driver behavior at rural intersections 
firsthand using video, kinematic vehicle and driver, and roadway data to deter-
mine how roadway, driver, environmental, and vehicle factors interact to affect 
driver safety at rural intersections. The overarching objective of this study was to 
better understand how drivers react at rural intersections. This paper summarizes 
results of analyses to assess stopping behavior at T-intersections (3-approaches). 
Type of stop was used as a surrogate for intersection safety. It was assumed a 
full/rolling stop was less likely to result in a conflict or crash than a non-stop. 
The purpose of the analysis was to better understand driver behavior at rural in-
tersections so that agencies can better address intersection crashes.  

2. Description of Data 

The second Strategic Highway Research Program (SHRP2) Naturalistic Driving 
Study (NDS) data is the largest dataset of its kind. The participating states were 
Florida, Indiana, New York, North Carolina, Pennsylvania and Washington (six 
US states). The vehicles of naïve drivers were equipped with a Data Acquisition 
System which included various sensors which extracted kinematic vehicle data 
such as speed, acceleration, GPS data, and radar. Four cameras were positioned 
to collect video from the forward roadway, rear roadway, driver face, and over 
the driver’s shoulder. Over the three years of the study approximately 3400 par-
ticipants drove 5 million trips logging over 30 million data miles.  

The SHRP2 Roadway Information Database (RID) was collected simulta-
neously with the NDS. Mobile data collection was conducted on over 12,500 
center line mile across the six NDS states. Existing roadways and supplemental 
data were also acquired from public and private sources. These data came from 
several sources including the NDS states’ Department of Transportation (DOT), 
Highway Performance Monitoring System (HPMS), covering most roadways for 
each study state.  

Data Reduction 

A set of rural intersections within the six States covered by the SHRP2 NDS 
(Florida, Indiana, New York, North Carolina, Pennsylvania, and Washington) 
was identified using the RID and other sources such as Google Earth. These in-
tersections were selected to represent a cross-section of geometric features (e.g., 
skew angle) and intersection countermeasures (e.g., overhead beacons or on- 
pavement signing) for all-way stop, two-way stop-controlled, and T-intersections.  

Ultimately, 87 minor stop controlled T-intersections were utilized in the mode. 
Time series traces, forward roadway video, and static driver characteristics (e.g., 
age, gender) were requested and provided by the subcontractor that archives the 
SHRP2 NDS data. These data were reduced, and 1277 time series traces reflect-
ing a range of driver ages and genders were viable and were utilized in the analy-
sis. Time series traces provide kinematic vehicle data, such as speed, accelera-
tion, and global positioning system (GPS) location, at 0.1-second intervals and 
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represent one driver trip through one intersection.  
Roadway characteristics (such as skew angle, number of approaches, and type 

of countermeasure) were extracted from the RID or Google Street View and 
were confirmed for each time series trace using the forward roadway video. En-
vironmental characteristics (such as time of day and ambient conditions) and 
the presence of opposing vehicles were also reduced from the forward roadway 
video. 

Roadway features, such as the location of a stop sign or advance warning sign, 
were identified and mapped to vehicle position within each of the time series 
traces. As a result, the distance of the vehicle from a particular characteristic, 
such as an upstream advance warning sign, could be determined. Data were re-
duced along the corresponding approach from the location of the stop sign to 
600 meters upstream and approximately 5 meters downstream. The maximum 
speed within that distance was identified, along with whether the driver was 2.24 
or 4.47 m/s (5 or 10 mph) over the posted speed limit at any point within the 600 
meters. An example of intersection characteristics present is shown in Table 1. 

Additionally, the stopping behavior was coded by determining minimum speed 
within 5 meters upstream or downstream of the stop location. Type of stop was 
then coded using the following criteria: 
 Full stop: speed was reduced to approximately zero. 
 Rolling: vehicle speed was greater than zero but less than approximately 

2.24 m/s (5 mph). 
 Non-stop: vehicle speed was greater than approximately 2.24 m/s (5 mph).  

3. Methodology 
3.1. Variables Utilized 

The dependent variable was type of stop. Initially, models were developed using 
full, rolling, and no-stop as separate dependent variables. The models for full 
and rolling stops were similar and the number of full stops was small. As a result, 
full stop and rolling were combined (n = 821) and compared against no-stops (n  
 
Table 1. Description of intersection characteristics. 

Characteristic Count 

Skew 36 

Intersection lighting 21 

Bacons 6 

Limited sight distance 28 

Advance intersection warning sign 57 

Double stop signs 15 

Stop bar 14 

Turn lane 4 

Lane width < 10 feet 22 
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= 456). The model included 1277 time series traces at T-intersections. This 
represented 157 unique drivers at 87 unique intersections. Data were reduced 
only for the stop-controlled approach. A unique Intersection ID was assigned to 
each intersection and used as a random effects variable in the model to account 
for repeated samples at the same intersection. Similarly, a unique Driver ID was 
assigned to each driver and used as a random effects variable. The corresponding 
State was also assigned a unique State ID and also included as a random effect. 
Metrics for independent variables are provided in Table 2. Categorical independent 
variables are shown in Table S1 which is provided as Supplementary Material. 

3.2. Approach 

Ordered logit models [18], also known as proportional odds models, were in-
itially developed to assess the effect of driver, environmental, and roadway fac-
tors on the three types of stopping behavior. Listed in order from safest to least 
safe, the type of stop include full, rolling, and no stop. The types were assumed 
to be of a discrete, ordinal nature classified on a three-point scale ranging from 
full stop to no stop. Consequently, these data are well suited for analysis using 
proportional odds or ordered logit model. This model can be derived by defining 
a latent variable z, which can be specified as a linear function for each observa-
tion such that 

z Xβ ε= +                             (1) 

where, X is the vector of variables determining the discrete ordering, β is the 
vector of estimable parameters, and ε is a random disturbance term. With the 
use of this equation, the observed safety level outcome y for each driver is de-
fined as 

y = 1 if z ≤ μ_0 

y = 2 if μ0 < z ≤ μ1 

y = 3 if μ1 < z ≤ μ2 

y = … 

y = 1 if z ≥ μI−1 

 
Table 2. Independent variables with all traces. 

Variable Description Min. Max. Mean Std. Deviation 

MinSpeed minimum speed within 5 m of stop bar (m/s) 0 11.65 1.80 1.73 

Angle skew angle between incoming and departure approach 55.46 161.00 101.89 18.90 

MajorLane major approach lanes 2 4 2.12 0.45 

LaneWidth average lane width (m) 2.44 3.66 3.14 0.27 

SpeedLimit speed limit (m/s) of minor approach 11.18 24.59 18.88 3.03 

MaxSpeed 
maximum speed (in m/s) within the 600 meters upstream 
of the intersection 

10.44 32.50 22.44 3.51 

YrsDriving number of years the driver has been driving 0 67 33.78 19.03 

Age Driver age 17 89 51.32 19.17 
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where, the estimable threshold parameters μ define y, which corresponds to in-
teger ordering, and I is the highest integer-ordered response. The variable μ 
represents parameters that are jointly estimated using the model parameters β. If 
the error term is assumed to be distributed as standard normal across observa-
tions, an ordered probit model results. Setting the lower threshold μ0 equal to 
zero results in the outcome probabilities 

( ) ( ) ( )1i iP y i X Xµ β µ β+= = Φ − −Φ −              (2) 

where, μi and μi+1 represent the upper and lower thresholds for response category 
i, and Φ(.) is the standard normal cumulative function. Estimation was done us-
ing standard maximum likelihood methods. Each variable was first examined 
individually and then simultaneously with other variables until the models pro-
viding the best balance of model fit and explanatory power were identified. AIC 
was utilized to assess model fit, and the “anova()” function in R was used to as-
sess the significance of additional variables.  

The “clmm()” function in the “ordinal” package of R was used to fit the mod-
els. The dependent variable was type of stop, with full stop < rolling stop < no 
stop. The variables for relevant interactions (e.g., overhead flashing beacons at 
night) were evaluated to determine whether they needed to be included in the 
model. Once the best fit models were found, the model assumptions were tested. 
It was found that the proportional odds ratio assumption was violated in both 
models, and therefore an ordinal model was not appropriate.  

The data were then visualized through Andrews curves using the “andrews()” 
function in the “andrews” package of R to determine if one type of stop differed 
greatly from the others. It was found that the no-stop data differed from the data 
for the other two stop types. Therefore, it was determined that the data could be 
modeled with the dependent variable collapsed to two levels, full/rolling stop or 
no-stop, which greatly simplified the analysis. 

Logistic regression was used to model binary responses (in this case, no stop 
versus full/rolling stop). Mixed effects models have two components, fixed and 
random. The fixed effects are included to explain the relationship between the 
dependent variable (in this case, stopping behavior) and a set of independent va-
riables. The random effects are included to control for the dependency among a 
group of observations within the same group or cluster. In this intersection 
analysis, approach ID and driver ID are the random effects.  

Note that the full stop and rolling stop classes could have been separated, re-
sulting in three possible stopping behavior classes: no stop, rolling stop, and full 
stop. Two popular models for problems with multiple classes (unlike logistic re-
gression models, which are used for problems with two classes) are multinomial 
regression and ordered logit regression. Both models were fit. While the former 
yielded results similar to those of the logistic regression model, logistic regres-
sion was chosen because it is more parsimonious. Meanwhile, order logistic re-
gression relies heavily on an assumption of proportional odds, which was not 
met.  
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Logistic mixed effects regression was then used to model the probability 
(odds) of a driver making no stop at a rural intersection, indexed by i in the 
random variables αi and yi, which follows a Bernoulli distribution for the proba-
bility of no stop, pi. 

( )( ) 0 1 1log 1i i n n i ip p B x xβ β α γ− = + + + + +         (3) 

( )2~ 0,i dNormalα σ  

( )2~ 0,i cNormalγ σ  

One of the benefits of the logistic regression model is that the output of the 
model is easily interpreted odds ratios. Odds ratios are the probability that an 
event happens in relation to the probability that it does not happen.  

The odds ratios were obtained by exponentiation of the ordered logit coeffi-
cients. An ordered logit model estimates a single equation (regression coeffi-
cients) over the values of the dependent variable. There is a direct relationship 
between the coefficients produced by a logit model and the odds ratios produced 
by a logistic model.  

A logit function is defined as the log base e (log) of the odds: 

( ) ( ) ( )logit log odds logp p q= =                  (4) 

The range is negative infinity to positive infinity. In regression, it is easiest to 
model unbounded outcomes. Logistic regression is, in reality, an ordinary re-
gression using the logit function as the response variable. The logit transforma-
tion allows for a linear relationship between the response variable and the coeffi-
cients, as follows: 

( )logit p a bX= +                        (5) 

or 

log p a bX
q

 
= + 

 
.                       (6) 

Equation (6) can be expressed as an odds ratio by eliminating the log. This is 
done by taking e to the power for both sides of the equation using e^(log(p/q)) = 
e(a+bX) or p/q = e(a+bX). 

The logistic regression model with mixed effects was adjusted in R. The analy-
sis was conducted via a Bayesian implementation using the package “brms” for 
fitting, plotting, and summarizing the models. The priors for the parameters 
were non-informative, the convergence of the chains were assessed using trace 
plots and R values, and the model fit was assessed using posterior predictive 
checks. 

4. Results 

A binomial mixed effects logistic regression model was developed with the de-
pendent variable having possible values of full/rolling stop or no-stop. This was 
done using the “brm()” function of the “brms” package in R. Relevant interac-
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tions (e.g., overhead flashing beacons at night) were tested to determine whether 
they needed to be included in the model. 

The final model was developed using the top fifteen most important variables 
as determined by a random forest analysis. A random forest analysis is a ma-
chine learning regression technique that considers complex relationships be-
tween the dependent and the independent variables. It does not provide insights 
about the mechanism of the model, and for this reason a random forest was not 
used as the final model. Random forests can, however, provide a ranking of the 
most important variables. The random forests were fitted using the package 
“randomForest” in R. 

The best fit model is shown in Table 3. Since the model’s implementation is 
Bayesian, the table does not present p-values but rather 90% credible intervals, 
which indicate that the corresponding parameter lies within that interval with a 
probability of 90%. If zero is included within the credible interval, it means that 
zero is a likely value for the parameter (i.e., that variable might not be signifi-
cant).  

The model shows the likelihood of not stopping. Positive values indicate an 
increase in not stopping. Drivers who were traveling over the posted speed limit 
(speeding) were 2.23 times more likely to not stop than drivers traveling at or 
below the speed limit. Values less than zero indicate they are less likely to not  
 

Table 3. Independent variables for final model for stopping behavior at two-way stop-controlled intersections with all traces. 

Variable Estimate Est. Error l-90% CI u-90% CI Odds Ratio 

Intercept −4.017 1.060 −5.824 −2.340 0.018 

Major approach vehicle −2.100 0.218 −2.462 −1.749 0.122 

Lighting −0.843 0.478 −1.649 −0.071 0.430 

TOD = Day (baseline = dawn/dusk) −0.906 0.5201 −1.774 −0.048 0.404 

TOD = Night (baseline = dawn/dusk) −0.470 0.546 −1.368 0.419 0.625 

Speeding 0.804 0.338 0.257 1.353 2.235 

*Skewed = Left (baseline = no) 1.208 0.725 0.016 2.403 NA 

*Skewed = Right (baseline = no) 0.736 0.965 −0.870 2.281 NA 

*Right movement (baseline = left) 4.675 0.970 3.172 6.372 NA 

*Advanced Warning 2.914 0.877 1.560 4.451 NA 

Skew − Movement = Left − Right 
(baseline = no − left) 

−2.480 1.118 −4.317 −0.659 NA 

Skew − Movement = Right − Right 
(baseline = no − left) 

−0.529 1.006 −2.190 1.089 NA 

*Right movement − Advanced warning 
(baseline = left movement − no advanced warning) 

−2.833 0.956 −4.490 −1.315 0.059 

Random Effects 

Approach ID 0.282 0.220 0.021 0.703  

Driver ID 1.665 0.252 1.294 2.115  
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stop. The inverse of values less than zero can be used to describe the likelihood 
of stopping. For instance, when a vehicle was present on the major approach, driv-
ers were 0.111 times less likely to not stop. Alternatively, they were 1/0.122476 = 
55.53 times more likely to engage in rolling/full stop. When lighting was present 
at the intersection, drivers were 2.32 times more likely to engage in a rolling/full 
stop. Time of day was also significant. Drivers were 2.47 times more likely dur-
ing the daytime and 1.60 times more likely at night to engage in a rolling/full 
stop than at dawn/dusk.  

Interactions were present between intersection skew and turning movement 
and between turning movement and presence of an advance intersection warn-
ing sign. These relationships can be better described graphically. Figure 1 shows 
the credible sets for the interaction between turning movement and intersection 
skew. The probability of not stopping is represented on the y-axis, and skew is 
represented in the x-axis.  

As the figure shows, left-turning drivers had a low probability of not stopping 
for all skew scenarios, including left skew, right skew, and no skew (skew direc-
tion is from the perspective of the driver). However, left turning drivers were 
more likely to not stop when left skew was present. Right-turning drivers were 
more likely to not stop when either no skew (62%) or right skew (70%) was 
present. They were less likely to not stop (approximately 28%) when left skew 
was present. However, the credible sets are rather large so results should be used 
with caution. 

Figure 2 shows the relationship between presence of an advance intersection 
warning sign, turning movement, and the probability of a driver not stopping.  

 

 
Figure 1. Interaction between turning movement and intersection skew for T-intersections. 
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Figure 2. Interaction between turning movement and presence of an advance warning sign 
for T-intersections. 

 
As the figure shows, right-turning vehicles at T-intersections had a high proba-

bility of not stopping regardless of the presence of advance signing. Left-turning 
drivers had a low probability of not stopping when no advance signing was 
present but a 25% probability of not stopping when advance signing was present. 
This result was unexpected, since the purpose of the signing is to warn drivers of 
an upcoming intersection. However, it should be noted that advance signing and 
other countermeasures are placed at locations where a problem with safety or 
driver behavior already exists. As a result, the presence of a countermeasure may 
be a surrogate for a problem location. In these cases, a before-and-after analysis 
may yield more representative results.  

5. Discussion 
5.1. Summary 

Stopping behavior at rural T-intersection approaches was modeled using the 
SHRP 2 naturalistic study data. Logistic regression was used to model intersec-
tion behavior using type of stop (full/rolling versus no-stop) as the dependent 
variable. Type of stop was used as a surrogate for intersection safety. It was as-
sumed a full/rolling stop was less likely to result in a conflict or crash than a 
non-stop. The purpose of the analysis was to better understand driver behavior 
at rural intersections so that agencies can better address intersection crashes.  

The most influential variable in terms of the odds ratio was the presence of a 
vehicle on the major approach at the time of the arrival of the subject vehicle at 
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the stop bar.  
Daytime and nighttime driving were associated with a higher likelihood of a 

rolling/full stop than driving at dawn or dusk. As a result, nighttime driving is 
more problematic than daytime. However, the model also indicated presence of 
lighting was associated with a higher likelihood of a rolling/full stop. This sug-
gests improved visibility increases driver recognition of the presence of an inter-
section.  

Interactions were present between intersection skew and turning movement. 
Left-turning drivers were more likely to not stop when any type of skew was 
present than when no skew was present. Interactions were also present between 
presence of an advance intersection warning sign and turning movement. 
Right-turning vehicles at T-intersections had a high probability of not stopping 
regardless of the presence of advance signing. Results suggest intersection recon-
figuration may have a positive safety impact. 

Left-turning drivers were more likely to not stop when an advance warning 
sign was present, which was noted in both models. This result was unexpected, 
since the purpose of the signing is to warn drivers of an upcoming intersection. 
However, it should be noted that advance signing and other countermeasures 
are placed at locations where a problem with safety or driver behavior already 
exists. As a result, the presence of a countermeasure may be a surrogate for a 
problem location. In these cases, a before-and-after analysis may yield more 
representative results. 

Driver behavior was also a major contributing factor. Drivers who were trav-
eling over the posted speed limit upstream of the T-intersections were 2.24 times 
more likely to not stop than drivers traveling at or below the speed limit up-
stream of the intersection. This suggests speed management could have positive 
impacts on intersection behavior as well. 

5.2. Conclusions 

This study showed naturalistic driving study data can be used to better under-
stand driver behavior at rural intersections. In particular, the results were able to 
show a relationship between upstream speed and stopping behavior. This type of 
information is not available in crash data showing the utility of NDS. Other 
driver characteristics, such as distraction and glance location, were also included 
in the model. These characteristics showed up as relevant in models for all-way 
stop intersections (which is the subject of another paper) but not for the model 
for T-intersection described in this paper. Distraction and glance location could 
only be reduced for a subset of the traces modeled due to resource constraints. 
As a result, a larger sample size could show the impact of these characteristics. 

Additionally, the results show key intersection characteristics such as lighting 
improved stopping behavior. Other intersection characteristics, such as skew 
were correlated with drivers not stopping. This provides information for agen-
cies in addressing rural intersection crashes. 
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Supplementary Material 

Table S1. Categorical independent variables for stopping model at T-intersections with all traces. 

Variable Description Counts 

Movement turning movement left = 461, right = 817, through = 0 

Following subjective measure of following close = 60, following = 47, not following = 1170 

TOD time of day dawn/dusk = 32, day = 1077, night = 168 

Weather ambient conditions clear = 1,158, raining = 119 

Overhead overhead flashing beacon yes = 74, no = 1203 

Lighting intersection lighting yes = 337, no = 940 

Skewed skew and direction from perspective driver left = 128, no = 625, right = 524 

RightLane right turn lanes present on minor approach yes = 1226, no = 51 

LeftLane left turn lanes present on minor approach yes = 1226, no = 51 

Sight estimate of intersection sight distance good = 118, limited = 237, somewhat_limited = 922 

AdvisorySpeed advisory speed limit upstream yes = 105, no = 1172 

AdvancedWarning advance intersection warning sign yes = 751, no = 526 

AdvancedType type of advance warning sign 
none = 526, w2-2* = 21, w3-1* = 371, w2-2* = 5, 
w3-1a = 301 

DoubleWarning double advance warning signs yes = 88, no = 1189 

Enhancements intersection warning signs yes = 27, no = 1250 

DoubleStop double stop signs yes = 177, no = 1100 

TransverseRumble transverse rumble strips yes = 35, no = 1242 

Beacon flashing overhead or stop sign beacon yes = 74, no = 1203 

Stop Bar stop bar yes = 147, no = 1130 

Channelization channelization at the intersection yes = 43, no = 1234 

Median divided median on the major approach yes = 22, no = 1255 

MedianType type of median no = 1255, painted = 8, raised = 14 

Grade qualitative assessment of grade downhill = 583, flat = 317, uphill = 377 

Splitter presence of a splitter island yes = 87, no = 1190 

Speeding max driver speed > speed limit yes = 1049, no = 228 

SpeedingAbove5 max speed > 2.24 m/s (5 mph) over the speed limit Yes = 826, No = 451 

SpeedingAbove10 max speed > 4.47 m/s (10 mph) over the speed limit Yes = 573, No = 704 

Gender driver gender Male = 752, Female = 525 

MajorApproachVeh 
Presence of vehicle on perpendicular major approach 
within 3 seconds of the subject vehicle entering the 
intersection 

Yes = 457, No = 820 

IsectAngle 
angle of incoming approach to the outgoing  
approach treated as a categorical variable 

90 degree = 625 
<90 degree = 103 
>90 degree = 549 

AgeCategorical Driver age 
Age < 25 years = 139 
25 ≤ Age < 60 = 779 
Age ≥ 65 years = 359 
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