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Abstract 
The goal of this work is to develop a hybrid electric vehicle model that is 
suitable for use in a dynamic programming algorithm that provides the bench-
mark for optimal control of the hybrid powertrain. The benchmark analysis 
employs dynamic programming by backward induction to determine the glo-
bally optimal solution by solving the energy management problem starting 
at the final timestep and proceeding backwards in time. This method re-
quires the development of a backwards facing model that propagates the 
wheel speed of the vehicle for the given drive cycle through the driveline 
components to determine the operating points of the powertrain. Although 
dynamic programming only searches the solution space within the feasible 
regions of operation, the benchmarking model must be solved for every ad-
missible state at every timestep leading to strict requirements for runtime 
and memory. The backward facing model employs the quasi-static assump-
tion of powertrain operation to reduce the fidelity of the model to accom-
modate these requirements. Verification and validation testing of the dynam-
ic programming algorithm is conducted to ensure successful operation of 
the algorithm and to assess the validity of the determined control policy 
against a high-fidelity forward-facing vehicle model with a percent differ-
ence of fuel consumption of 1.2%. The benchmark analysis is conducted over 
multiple drive cycles to determine the optimal control policy that provides a 
benchmark for real-time algorithm development and determines control 
trends that can be used to improve existing algorithms. The optimal com-
bined charge sustaining fuel economy of the vehicle is determined by the 
dynamic programming algorithm to be 32.99 MPG, a 52.6% increase over 
the stock 3.6 L 2019 Chevrolet Blazer.  
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1. Introduction 

The objective of this research is to develop a hybrid electric vehicle (HEV) model 
that can be used to conduct a benchmark analysis by implementing a dynamic 
programming algorithm to identify the optimal control policy for a hybrid elec-
tric drivetrain on prescribed drive cycles. The results obtained from the bench-
mark analysis can be used to compare and improve existing hybrid supervisory 
control strategies by providing a frame of reference to the optimal performance 
of the hybrid drivetrain. Further, the methodology used in this analysis can be 
applied to a wide variety of HEVs. 

Under conventional vehicle operation, the range of torques and speeds that 
correspond to the maximum efficiency of the ICE is narrow, and in most con-
sumer automobiles, the ICE frequently operates outside of this envelope to hon-
or the torque and power requests of the driver. The increasingly large number 
conventional vehicles used across the world have begun causing consequential 
problems for the environment and hydrocarbon resource supplies. Deteriorating 
air quality, global warming issues and depleting petroleum resources have forced 
regulatory entities to implement ever more strict emissions regulations for au-
tomotive manufacturers. Rising to the challenge of meeting these regulations, 
innovation in the automotive design field has influenced HEVs popularity more 
than ever across the world. HEVs utilize a combination of conventional vehicle 
components, such as an engine and transmission, and electric vehicle compo-
nents, such as an electric motor and battery pack, to provide propulsive power to 
the wheels of the vehicle. By electrifying the powertrain, higher fuel efficiency 
and reduction in emissions can be achieved when compared to conventional ve-
hicles [1]. 

When considering the control of the HEVs powertrain components, it is easy 
to assume that the problem is as simple as utilizing the electric motors as much 
as possible due to their high operating efficiencies. For HEVs equipped with 
charge depleting (CD) modes where the state of charge (SOC) of the energy sto-
rage system (ESS) starts at a high value and depletes as the vehicle is driven, this 
would be the case. However, from a charge sustaining (CS) point of view where 
the SOC is kept near a setpoint and within a low and high threshold, the control 
problem becomes far more complicated when attempting to achieve improved 
fuel economy over a conventional vehicle. An effective energy management strat-
egy is essential to ensuring the efficient operation of the vehicle. Several families 
of energy management strategies have been investigated in existing literature. 
These strategies generally follow one of two trends, heuristic-based and mod-
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el-based optimization methods [2]. Heuristic energy management strategies are 
primarily based on intuition and logical relationships between variables and thus 
little optimization occurs. Heuristic control is popular among automotive man-
ufactures and is widely adopted in modern HEVs. Model-based optimization 
methods, also known as optimal control, make use of optimal control theory to 
derive the controller. Optimal control strategies are currently subject to research 
and are gradually being introduced in the industry [3]. Heuristic and optimal 
control strategies have two distinct subgroups as shown in Figure 1. 

The most attractive characteristic of heuristic control methods is their effec-
tiveness in real-time implementation. Since these strategies rely on predefined 
sets of rules and logic rather than minimization or optimization, heuristic con-
trollers require little computational resources to make decisions. These types of 
controllers generally fall into two categories: rule-based and fuzzy logic [2]. 
Rule-based control is the traditional control methodology used in the automo-
tive industry typically consisting of “if-then” and “switch” logic based on simu-
lation data, intuition, or some other set of prescribed behavior based on con-
straints and conditions [4]. Energy management systems based on predefined 
rules have been widely researched and shown to be practical and successfully 
implemented to control hybrid powertrains [5] [6] [7] [8] [9]. In these works, 
the authors applied rule based strategies to a variety of powertrain configura-
tions and found that a general set of rules could be developed to control HEVs, 
however, these rules required careful tuning to specific driving scenarios to achieve 
efficient performance. This major drawback is especially limiting in consumer 
applications due to the wide range of use cases. 

The use of fuzzy set theory to control systems is referred to as fuzzy logic. 
Fuzzy control gives users the ability to implement expert knowledge through 
automation, provide robust nonlinear control and reduce development and 
maintenance time [10]. Many examples of fuzzy logic use in powertrain control 
are available in literature [11] [12] [13] [14] [15] that show improvements over  
 

 

Figure 1. Control strategy classification [4]. 
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traditional rule-based control strategies but remain limited in their ability to op-
erate in an optimally efficient manor. This exhibits the fact that heuristic control 
strategies are sub-optimal as any optimization is conducted offline and used to 
design the governing statements of the controllers. Energy management of a HEV 
can also be posed as an optimization problem over a finite time horizon whose 
solution can be found from optimal control theory. The methods used are aimed 
at finding a control law for a given system such that a specific optimality crite-
rion, usually defined as an integral performance index, is achieved [2]. In an op-
timal strategy, an appropriate cost function is created which is minimized at 
each timestep. There are two main areas of optimal control methods: real-time 
optimization and global optimization.  

In real-time optimization, the cost function is minimized at each timestep of 
the online controller. In these controllers, simple mathematical models of the 
system are generally used to keep the execution time within a short time win-
dow. Potentially the most popular real-time optimal control strategy is Equiva-
lent Consumption Minimization Strategy (ECMS) which operates on the pre-
mise that in a CS HEV the differences between initial and final SOC are small. 
This creates a specific cost for utilizing electrical stored energy and draws an 
equivalence between using a certain quantity fuel or stored electrical energy [2]. 
ECMS has been successfully implemented as an effective energy management 
strategy in literature [16] [17] [18] with authors boasting potential fuel con-
sumption savings between 30% - 50% with the most significant savings occur-
ring in urban driving scenarios. This optimization method is again limited by 
the requirement of careful tuning as well as limited computation capabilities 
onboard vehicles. Most of the ECMS work is still conducted in literature and has 
not yet been applied to consumer vehicles. 

Alternatively, achieving a global optimal solution is generally directly corre-
lated with highly complex and computationally expensive numerical solutions. 
One of the most popular methods for solving the optimal control problems for 
HEVs is Dynamic Programming (DP) which reduces a multi-step decision mak-
ing problem into a series of single-step problems. These single-step problems 
may be solved either forward in time or backward from the last step to the first. 
The goal of DP is to minimize an incrementally increasing cost function at each 
step. DP offers dramatically reduced computation time compared to brute force 
methods of global optimization as it only searches over admissible state or con-
trol values. It is important to note however, DP still requires the storage of all 
valid state transition costs [4]. 

The results of the DP algorithm are used to determine appropriate control 
policies and the maximum efficiency a specific powertrain would be capable of 
achieving. DP algorithms typically require a highly simplified vehicle model due 
to the computational resources required to calculate the cost-to-go matrices 
throughout the simulation. DP is generally used to provide a benchmark to in-
terpret the results of online heuristic controllers more appropriately. The bene-
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fits of extracting data from DP to improve and assess online control strategies 
are well documented in literature [17] [19]-[24]. The authors of these works ap-
plied to a DP optimization to HEV control strategies, and found fuel consump-
tion performance improvements of ranging from 27% - 70%. 

In the following sections, the vehicle architecture applied in the EMC is dis-
cussed along with the formulation of the dynamic programming model. The re-
sults and conclusions of this study are then presented accompanied by future 
work suggestions. The final conclusions are based on results found in the study 
both from a fuel economy and computational perspective. 

2. Vehicle Architecture 

The vehicle modeled in this work was a P4 parallel HEV architecture that was 
selected for use in the West Virginia University EcoCAR Mobility Challenge 
(EMC) Advanced Vehicle Technology Competition (AVTC) as shown in Figure 
2. 

The performance metrics for the hybrid powertrain are shown in Table 1. 
The performance metrics for the P4 architecture supports three operating 

modes: front wheel drive (FWD) with opportunity charging, FWD with rege-
nerative braking, and all-wheel drive (AWD). In FWD with opportunity charg-
ing, the engine produces excess torque to the front axle while the P4 traction 
motor “drags” the rear axle by producing negative torque. When producing 
negative torque, the electric motor is spun thus generating power that is stored  
 

 

Figure 2. West Virginia university EcoCAR team competition vehicle architecture. 
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Table 1. West virginia university EcoCAR team competition vehicle architecture power-
train performance metrics. 

Component Specifications 

Engine 
 General Motors (GM) 2.5 L Naturally Aspirated LCV 
 Peak Power: 148 kW 
 Peak Torque: 255 Nm 

Transmission  GM M3D (9T50) 9-Speed Automatic 

Fuel  E10 Regular 

Energy 
Storage System 

 GM HEV4 
 Peak Power: 50 kW 
 Energy Capacity: 1.5 kWh 

Motor 

 Magna Powertrain Electrified Rear Axle Drive (eRAD) 
 Peak Power: 50 kW 
 Peak Torque: 200 Nm 
 Integrated Gear Ratio: 9.17 

Inverter  Magna Dual Inverter 

 
in the energy storage system (ESS). In FWD with regenerative braking, the en-
gine is supplying all of the positive propulsive torque for the vehicle. In situa-
tions where the driver requests a deceleration event, the electric motor is used to 
produce negative torque to meet the braking needs of the vehicle, producing 
power that is stored in the ESS. In AWD both the electric motor and engine 
produce positive torque to meet the needs of the driver. Figure 2 illustrates the 
directional shift of the engine operating profile of torque and speed for both 
FWD with opportunity charging and AWD. 

The operating mode of the vehicle can transition rapidly to meet the current 
driving conditions. Smooth transitions between these operating modes are a ma-
jor consideration HEV controls development with respect to the ride quality of 
the vehicle. 

In the WVU team competition vehicle, the engine (148 kW) is capable of 
producing nearly three times the power compared to the electric powertrain (50 
kW). This limits the electric powertrain’s ability to meet driver demands without 
the help of the engine. In addition, the selected ESS has a usable energy capacity 
of only 1.0 kWh with simulation results developed by the WVU EcoCAR team 
showing an all-electric range of only about 2 miles [25]. For these reasons, the 
team did not implement a charge depleting (CD) mode in the competition ve-
hicle. Based on the available power from the electric powertrain, the team com-
petition vehicle would operate exclusively in a CS mode with the electric motor 
augmenting the operation of the engine. Specifically, the electric powertrain 
would be used to shift the operating point of the engine to more efficient re-
gions, as shown in Figure 3. It is also important to note that for fuel economy 
results of HEVs, the vehicle is evaluated on a known drive cycle with the starting 
and ending SOC within a specified bound. This is commonly referred to as CS 
fuel economy. 

https://doi.org/10.4236/jtts.2022.124045


A. R. Mull et al. 
 

 

DOI: 10.4236/jtts.2022.124045 810 Journal of Transportation Technologies 
 

 

Figure 3. Example of engine operational point shifted with electric motor (left: FWD with opportunity charging; right: AWD). 

3. Benchmark Analysis Methodology 
3.1. The Basic Problem 

Consider a discrete-time deterministic system, the states evolve over time as de-
scribed by the transition function: 

( ) { }1 , , 0, ,k k kx f x u k T+ = =                      (1) 

where kx , the state variable at stage k, exists in a space kS , and ku , the control 
input at time k that modifies kx , exists in space kC . 

The set of control inputs, termed a policy, consists of a sequence of functions: 

{ }0 1 1,, , Tu u uπ −=                          (2) 

where each ku  is constrained to take values in a subset of kC , depending on 
the current state kx . The specific constraints applied are part of the formulation 
of a particular DP problem, and serve to eliminate infeasible control inputs. The 
set kC  is called an admissible policy. 

Each transition of kx  between different values incurs a cost. The cost represents 
the effort of moving from one state to another and serves to differentiate the 
paths. In a literal path-search problem, the cost represents the distance required 
for each path step. The cost function describing the state transition and imple-
menting constraints is given by ( ),k k kg x u . The cost of a given path is additive 
over time since it accumulates over each stage of the problem. The total cost of a 
path can be expressed as: 

( ) ( ) ( )1
0 0 ,T

T T k k kkJ x g x g x u−

=
= +∑                 (3) 

thus, the cost of following a given policy π  starting from state 0x  is:  

( ) ( ) ( )1
0 0 ,T

T T k k kkJ x g x g xπ π−

=
= +∑                 (4) 

An optimal policy can be found, denoted *π , that minimizes this cost, such 
that:  
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( ) ( ){ }* 0 0minJ x J xππ
=                     (5) 

3.2. Bellman’s Principal of Optimality  

The cornerstone of DP is Bellman’s Principal of Optimality, which states that 
“An optimal policy has the property that whatever the initial state and initial de-
cision are, the remaining decisions must constitute an optimal policy with re-
gard to the state resulting from the first decision” [26]. 

This property suggests that if the following optimal policy: 

{ }* * *
0 1 1, , , Tu u uπ −=                        (6) 

passes through the state ix  at time k i= , and with the desire to find the op-
timal policy to get from ix  to Tx , one would do so by minimizing the trun-
cated cost function: 

( ) ( ) ( )1 ,N
i T T k k kk iJ x g x g x uπ

−

=
= +∑                 (7) 

and would find that the optimal policy is simply the truncated policy: 

{ }* * *
1 1, , ,i i i Tu u uπ + −=                       (8) 

Practically, this means that the overall optimal control policy can be derived 
by sequentially determining the set of optimal policies for a series of smaller 
sub-problems. Applying this to a road trip example, if the fastest route from 
New York, New York to Los Angeles, California passes through Morgantown, 
West Virginia, then the principal of optimality implies that the Morgantown to 
Los Angeles section of the overall drive is also the fastest route from Morgan-
town to Los Angeles.  

3.3. Dynamic Programming by Backwards Induction 

In the HEV powertrain optimal control problem where knowledge of the drive 
cycle is known a priori, the optimal policy can be found with a DP algorithm 
that employs backward induction. This is where the problem is initially consi-
dered from the final, or terminal, point and the cost-to-go is calculated at each 
successive stage, working backwards in time toward the initial point.  

First, the final stage ( 1k T= − ) is considered, and an optimal control policy is 
determined for this step. This is referred to as the “tail sub-problem”. Next, the 
optimal policy for the tail sub-problem involving the final two stages  
( 2 : 1k T T= − − ) is determined. This process is continued until the policy for 
the full problem ( 0 :1k = ) has been identified.  

This type of problem can be efficiently solved using a recursive algorithm, as 
follows. Starting at the final stage ( 1k T= − ), the minimum cost is found to be: 

( ) ( ){ }*
1 1 1 1 1min ,T T T T TJ x g x u− − − − −=                 (9) 

The minimum cost of the next stage ( 2k T= − ) is therefore: 

( ) ( ){ }* *
2 2 2 2 2 1min ,T T T T T TJ x g x u J− − − − − −= +              (10) 
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Working backwards from here toward the initial stage 0k = , the total cost 
can therefore be found by the recursive equation: 

( ) ( ){ } { }* *
1min , , 0, , 1k k k k k kJ x g x u J k T+= + = −           (11) 

where the cost ( )*
0 0J x  is the optimal cost of the overall control policy *π . 

3.4. Statement of the Optimization Problem 

For the benchmark analysis for the optimal control of a parallel P4 hybrid-elec- 
tric 2019 Chevrolet Blazer, the basic objective function can be expressed as: 

( )0min fuk
T

elJ m k
=

= ∑                       (12) 

where k is the discrete timestep of the drive cycle, fuelm  is the fuel consumption 
rate of the engine (quasi-static over each timestep k), and 0 and T are the begin-
ning and end points, respectively. It is important to note that the minimization 
is not instantaneous fuel consumption, but instead the fuel consumption over 
the full drive cycle.  

In this work, CS operation is strictly enforced to allow direct comparison of 
fuel economy results without the need for a correction factor. CS operation is 
enforced due to the convenience afforded by the necessity to pick the starting 
state when determining the optimal control policy. It is important to note that 
the explicit selection of the CS SOC as the starting point may artificially skew the 
optimization as the optimal policy from a different starting point with an in-
cluded energy conversion may yield higher fuel economy. To implement this 
requirement, the change in ESS SOC between the beginning and end of the drive 
cycle must be kept at zero, regardless of the level of SOC variation during the 
drive. Note that this restriction is required for comparison and would not nor-
mally be present in real-world operation. This generates the constraint: 

( )0 0battk
T P k
=

=∑                         (13) 

A key constraint is imposed by the driver torque request ,w reqτ ; the power-
train cannot produce any more torque at the wheels than the driver commands 
in order to perfectly follow the drive cycle. In order to represent the operating 
regimes of positive or negative acceleration the following constraints are used. 

( ) ( ) ( ) ( ), , , ,, 0w req w ICE w mot w reqk k k tτ τ τ τ= + >             (14) 

( ) ( ) ( ) ( ) ( ), , , , ,, 0w req w brk w mot w ICE w reqk k k k tτ τ τ τ τ= + + <        (15) 

Additional constraints are imposed on the optimization due to the physical 
limitations of the vehicle powertrain. There are finite limits to the amount of in-
stantaneous power the ESS, electric motor, and ICE can supply at a given vehicle 
speed, stemming from the limits on both torque output and rotational speed of 
the components. These constraints are as follows where the subscript c identifies 
a component torque: 

( )SOC SOC SOCmin maxk≤ ≤                   (16) 

( ), , , , ,c ICE min c ICE c ICE maxkτ τ τ≤ ≤                  (17) 
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( ), ,ICE min ICE ICE maxkω ω ω≤ ≤                   (18) 

( ), , , , ,c mot min c mot c mot maxkτ τ τ≤ ≤                   (19) 

( ), ,mot min mot mot maxkω ω ω≤ ≤                    (20) 

3.5. Problem Formulation 

As backward induction dynamic programming requires the use of a discrete- 
time system, the powertrain and vehicle are modeled as such. The drive cycle is 
discretized to a time resolution of 1 second per step. Each timestep, referred to 
as a “stage” in DP terminology, is represented by the variable k. The SOC is se-
lected as the state variable, thus: 

( )SOCkx f=                        (21) 

The motor wheel torque and the current transmission gear are selected as the 
control variables, thus: 

( ) ( ), ,k w mot gearu k N kτ =                     (22) 

These control inputs influence the following state transition function: 

1SOC SOC
Battery Capacity

batt
k k

P t
+

− ∆
= +                (23) 

where battP  is the battery current required to provide the requested motor tor-
que, Δt is the timestep of the simulation in hours and Battery Capacity is the to-
tal energy capacity in Whr of the ESS. The negative sign is used to preserve the 
flow direction convention of positive current represents charge of the ESS and 
negative current represents discharge of the ESS.  

4. Benchmarking Model 
4.1. Drive Cycle Data and Shift Schedule 

The benchmarking model is a backwards facing model, which means component 
speeds and torques are propagated from the wheels through the drivetrain and 
to the powertrain components. These torques and speeds are based on the drive 
cycle selected for this analysis. First, the drive cycle must be resampled to the 
discrete timestep selected for the DP algorithm. In this analysis, the original drive 
cycle data has a timestep of 0.1 seconds. The drive cycle is resampled at 1 second 
by selecting the values of the drive cycle that correspond to the 1 second time-
step and ignoring the other entries. 

Once the drive cycle has been resampled to 1 sec, the roadload polynomial 
equation is used to determine the force at the wheels at each vehicle speed. The 
coastdown test for the 2019 Chevrolet Blazer competition vehicle resulted in the 
following polynomial to describe the roadload force: 

( ) ( ) ( )2118.56 3.54 0.54roadloadF k V k V k= + +            (24) 

where ( )roadloadF k  is the roadload force at the wheels, in N, for each timestep 
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and ( )V t  is vehicle speed. Applying Newton’s law for rigid bodies, the total 
force at the wheels of the vehicle can be determined as: 

( ) ( ) ( )total roadloadF k mV k F k= +                  (25) 

where ( )totalF t  is the total force at the wheels for each timestep, m is the mass 
of the WVU EcoCAR team competition vehicle, and ( )V t  is the acceleration of 
the vehicle at each timestep. The wheel torque, ( )wheel tτ , of the vehicle is then 
calculated as follows: 

( ) ( ),w req total wheelk F k rτ = ∗                    (26) 

where wheelr  is the rolling radius of the tires of the 2019 Chevrolet Blazer. The 
rotational wheel speed must also be known for each timestep. The wheel speed is 
calculated from the linear velocity of the vehicle as follows: 

( ) ( ) 30
wheel

wheel

V k
k

r
ω = ∗

π
                     (27) 

where ( )wheel kω  is the wheel speed in RPM. 
As part of the benchmark analysis, the constraint of the conventional shift 

schedule is implemented to capture the optimal fuel economy that can be achieved 
with the current transmission shift schedule. The gear shift schedule is deter-
mined based on the current vehicle speed and accelerator pedal position. The 
speed of the vehicle is inherently known a priori due to DP’s reliance on a prede-
fined drive cycle. The accelerator pedal position is determined by implementing 
the 2.5 L LCV and M3D pedal map which is a function of vehicle speed and ac-
celerator pedal position. 

4.2. Dynamic Programming Algorithm 

The following steps describe the operation of the developed DP algorithm. In this 
model, i indicates the state grid position at k, while j indicates the state grid posi-
tion at stage k + 1. The number of stages is indicated by T. To initialize the mod-
el, the transition cost from k = N − 1 to k = N is calculated. Figure 4 is included 
as a visual representation of this initialization step in the benchmarking model.  
 

 

Figure 4. Initial stage calculation of the benchmarking model. 
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4.2.1. Electric Powertrain Model 
The transition cost from each SOC in the state grid to the target SOC is calcu-
lated as follows. Rearranging the state transition equation to solve for battery 
power yields the following: 

( )
( ) ( )SOC SOC Battery Capacity

,
Δbatt

j i
P i j

t
−  =          (28) 

In the initial stage, j represents the target SOC while i is each SOC in the state 
grid. Note that a negative battery power is a discharge from a higher SOC (at i) 
to a lower SOC (at j). The electrical system power limit constraints are imposed 
in the following piecewise equation: 

,

, ,

,

NaN if
if

NaN if

batt batt min

batt batt batt min batt batt max

batt max batt

P P
P P P P P

P P

 ≤


= < <
 ≤

            (29) 

where ,batt minP  and ,batt maxP  are the minimum and maximum battery power lim-
its, respectively. The value “NaN” is useful in the DP model as it simplifies the 
removal of infeasible solutions as the value of “NaN” will persist through any 
mathematical operation and thus the transition will never be considered by the 
DP algorithm.  

With the entirety of the drive cycle known a priori, the rotational speed of the 
electric motor is determined from the rotational speed of the wheels of the ve-
hicle as follows: 

, 4mot wheel diff PGRω ω ∗=                      (30) 

where motω  is the P4 electric motor speed at stage k and , 4diff PGR  is the diffe-
rential gear ratio of the P4 differential. The torque produced by the electric mo-
tor is determined by a lookup table generated from the powerloss data of the 
eRAD P4 electric. The electric motor component torque produced for the transi-
tion from state i to state j, ,c motτ , is a function of the battery power and electric 
motor speed for that same state transition: 

( ), ,c mot batt motf Pτ ω= −                     (31) 

Note that the negative sign is used to preserve the battery power convention 
where negative power represents power discharged from the battery to produce 
positive propulsive torque from the electric motor.  

4.2.2. Conventional Powertrain Model 
With the produced motor torque known and the vehicle wheel torque require-
ments known a priori, the remaining torque produced by either the ICE or fric-
tion brakes is determined as follows: 

( ), , , , 4w remain w req c mot diff PGRτ τ τ= − ∗               (32) 

where ,w remainτ  is the remaining wheel torque after subtracting the wheel torque 
of the electric motor and ,w reqτ  is the required wheel torque given by the road-
load equation. The turbine speed of the torque converter is propagated from 
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wheel speed through the differential and transmission as follows: 

,turb wheel trans diff ICEGR GRω ω= ∗ ∗                (33) 

where turbω  is the turbine speed of the torque converter. The locking state and 
clutch status of the torque converter is determined as follows: 

( )
( )

,
,

,

0 unlocked if
1 locked if

turb idle ICE
TC Lock

idle ICE turb

Stat
ω ω
ω ω

 <=  ≤
         (34) 

( )
( )

,
,

,

0 disengaged if 0
1 engaged if 0

w req
TC Clutch

w req
Stat

τ
τ

==  ≠
           (35) 

where ,TC LockStat  is the status of the torque converter lockup condition and 

,TC ClutchStat  is the status of the torque converter clutch. The speed of the ICE is 
then determined: 

, if 0
if 1

ICE idle TC
ICE

turb TC

Stat
Stat

ω
ω

ω
=

=  =
                (36) 

where ,ICE idleω  is the target idle speed of the ICE. The speed ratio of the torque 
converter is determined by dividing the turbine speed by the impeller (ICE shaft) 
speed as shown: 

,

turb
TC

c ICE

ω
φ

ω
=                         (37) 

where TCφ  is the speed ratio of the torque converter. Using data provided by 
GM, the torque ratio can be determined as a function of speed ratio by imple-
menting a 1D lookup table:  

( )TC TCfψ φ=                        (38) 

The remaining wheel torque is then transformed into a component torque 
request for the internal combustion engine by multiplying by the transmission 
gear ratio, differential gear ratio, transmission efficiency, and torque ratio,  

transGR , ,diff ICEGR , transη , and TCψ  respectively: 

( ) ( ), , ,c remain w remain trans gear diff ICE trans gear TCGR N GR Nτ τ η ψ∗ ∗ ∗= ∗     (39) 

Next, a series of 1D lookup tables are used to identify the maximum and min-
imum admissible operating points of the ICE where the speed of the ICE is the 
independent variable as follows: 

( ), , 1c ICE max ICEfτ ω=                      (40) 

( ), ,  2c ICE min run ICEfτ ω=                     (41) 

( ), ,  3c ICE min FCO ICEfτ ω=                     (42) 

where , ,c ICE maxτ  is the maximum torque of the ICE, , ,  c ICE min runτ  is the mini-
mum running torque of the ICE, and , ,  c ICE min FCOτ  is the deceleration fuel cut 
off torque of the ICE. The ICE component torque produced is implemented in 
the MATLAB model as a piecewise function, but due to the length of the func-
tion, a flow diagram shown in Figure 5 is instead used to illustrate the logic.  

https://doi.org/10.4236/jtts.2022.124045


A. R. Mull et al. 
 

 

DOI: 10.4236/jtts.2022.124045 817 Journal of Transportation Technologies 
 

 

Figure 5. ICE torque determination logic. 

4.2.3. Additional Constraints 
With the operational points of the electric motor and engine known, two addi-
tional physical constraints must be imposed. The first is the requirement for me-
chanical braking to only apply “negative” torque to slow the vehicle down. Be-
fore calculating the braking torque, the component torques for both the electric 
motor and ICE must be converted to wheel torques by propagating the torques 
and speeds through each axle’s driveline. The conversion from component to 
wheel torque for the P4 electric motor and ICE are as follows, respectively: 

, , , 4w mot c mot diff PGRτ τ ∗=                     (43) 

, , ,w ICE c ICE diff ICE trans TC transGR GRτ τ ψ η∗ ∗ ∗ ∗=             (44) 

The braking torque is then determined from the following relationship: 

, , , ,w brk w req w mot w ICEτ τ τ τ= − −                   (45) 

The second is the required drive cycle torque not met. This constraint is ma-
thematically expressed by the following equation: 

, , , ,w req w mot w ICE w brkτ τ τ τ= + +                   (46) 

A violation of these constraints is imposed on the ICE torque value by assign-
ing the location of the violation to be NaN. 

4.2.4. Cost Function 
With the operational points of the engine known, the fuel flow rate can be de-
termined by interpolating the fuel flow rate map as follows: 

( ), ,fuel c ICE ICEm f τ ω=                       (47) 

where fuelm  is the fuel flow rate for the ICE torque ( ,c ICEτ ) and ICE speed 
( ICEω ). The DP algorithm is designed to assess the performance of the power-
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train for a defined shift schedule which removes the additional dimension, 

gearN , from the cost-to-go function, ( ),g i j , resulting in a matrix defining the 
cost-to-go for the transition from state i to state j in the specified gear gearN  
formulated as follows: 

( ) ( )( ), , ,, min fuel w ICE w mot w brakeg i j m α τ τ τ= + + +           (48) 

The cost function shown in Equation (49) applies a torque overproduction 
penalty based on the torque produced by the propulsion system with the tunable 
weight factor α. This effectively defines the goal of the DP algorithm to minimize 
the fuel consumed with the lowest possible production of torque. Finally, the to-
tal path cost for the initial step of the DP algorithm is simply equal to the cost- 
to-go matrix for every admissible transition from state i to j: 

( ) ( ), , for 1J i k g i k k T= = −                   (49) 

This concludes the initial stage of the DP algorithm. 

4.2.5. Remaining Stages of the DP Algorithm 
For each remaining stage of the DP algorithm ( 1, ,1k T= −  ), calculations are 
carried out for every transition from state i to state j as shown in Figure 6.  

For intermediate stages ( 2, ,1k T= −  ) the total path cost, ( ),J i k , is calcu-
lated according to Bellman’s Principal of Optimality by the following relation-
ship: 

( ) ( ) ( ), min , , 1J i k g i j J j k= + +                  (50) 

Using this relationship, the total path cost is minimized by identifying the 
combination of the current cost-to-go from state i to state j and the total path 
cost leading to that transition with the lowest cost at stage k. This method can be 
visualized as shown in Figure 7. 

The red path indicates the hypothetical selected transition path with the 
minimum total cost. This method implies that if at stage 2k T= −  the op-
timized control actions transition from the state SOC3 to state SOC2, then at an  
 

 

Figure 6. Intermediate stage calculations of the DP algorithm. 
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Figure 7. Example of intermediate stages of the DP algorithm at stage k = T − 2. 
 
earlier stage 3k T= − , any transition from state SOCi to SOC3, the optimal con-
trol policy will include the previously determined control actions taken at stage 

2k T= − . This methodology is visualized in the continued example shown in 
Figure 8. 

After reaching the final stage at 1k = , the total cost and control actions that 
constitute the global optimal solution have been calculated. In contrast with the 
final timestep, the starting SOC is difficult to enforce charge sustaining criteria. 
In this work, CS operation is imposed directly by selecting the initial state to be 
equal to the CS target SOC then following the optimal policy determined by the 
DP algorithm to the terminal SOC. 

Once the optimal policy is found, the following set of equations are applied to 
determine the total efficiency for both components and total system. 

ICE
ICE

fuel

P
P

η =                         (51) 

mot
mot

loss

P
P

η =                         (52) 

wheel
total

fuel

P
P

η =                         (53) 

where ICEη , motη  and totalη  are the efficiency of the ICE, electric motor, and 
total system, respectively.  

By examining the torque split decisions of the optimal policy determined by 
the DP algorithm, the criteria for operating at specific torque split ratios can be 
assessed. The torque split ratio is a key part of energy management in parallel 
HEVs and is often communicated in various forms. For consistency, in this work, 
the torque split ratio is defined as follows: 

,TSR w ICE

Req

τ
τ

=                         (54) 

where TSR is the torque split ratio between ICE wheel torque and the required 
torque by the cycle. The torque split ratio defined as such represents the amount 
of required torque to follow the drive cycle that is produced by the ICE. 
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Figure 8. Example of intermediate stages of the DP algorithm at stage k = T − 3. 
 

According to the EMC rules, the combined fuel economy of the Chevrolet 
Blazer is determined from a combined euwation of both city and highway driv-
ing characteristcis. This relationship is defined using the following relationship:  

1EMC Combined Fuel Economy
0.55 0.45

EMC City EMC Highway

=
+

    (55) 

5. Results and Discussion 

The benchmark analysis examines 5 drive cycles to determine the optimal con-
trol policies and relevant parameters that are beneficial with the design of the 
control system. The drive cycles are the EMC City, EMC Highway, US06, UDDS, 
and HWFET. The performance of the powertrain over these cycles can give in-
sight for how an online control should handle specific situations. The EMC City 
cycle is analyzed in detail to provide an in depth look at the performance of the 
benchmarking model while the results of the remaining cycles are summarized 
to provide additional data for this specific powertrain architecture.  

5.1. EMC City Drive Cycle 

The EMC City drive cycle is designed to be representative of city driving condi-
tions with two long driving events with variable speed followed by several short 
acceleration and braking events representative of driving behavior between stop 
lights. The speed and time profile with associated shift schedule of the cycle is 
shown in Figure 9. Similar to the torque and power requirements, the shift sche-
dule is relatively relaxed compared to the verification cycle. Relevant informa-
tion for the EMC City drive cycle and DP algorithm initialization are shown in 
Table 2. 

Discretizing 5000 points within the state grid strikes a balance between run-
time and memory requirements. The constraints of the ESS state that the SOC 
should remain between 20% and 80% and although the optimal control policy  
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Figure 9. EMC city drive cycle speed and shift schedule. 
 
Table 2. EMC city information and DP algorithm initialization parameters. 

DP Algorithm EMC City Drive Cycle 

Parameter Value Parameter Value 

Maximum SOC (%) 80 Distance (mi) 3.34 

Minimum SOC (%) 20 Total Time (s) 740 

Target SOC (%) 50 Sample Time (Hz) 1 

Number of Grid Points 5000 Maximum Acceleration (m/s2) 2.09 

ΔSOC (%) 0.012 Maximum Deceleration (m/s2) -1.86 

 
likely exists within a more narrow window of SOC, the entire feasible range of 
the ESS is included. The powertrain power output results are shown in Figure 
10.  

As the fuel consumption, power loss, and efficiency maps of both the ICE and 
P4 motor used in the benchmark analysis are protected by confidentiality agree-
ments, the operating points of these components are shown overlaid with con-
stant power lines and the maximum torque line as a frame of reference. It should 
be noted that the included line is a publicly available reported maximum torque 
determined from a 2016 Chevrolet Colorado [27] and differs from the maximum 
torque used to model the powertrain. The selected operating points for the po-
wertrain components are shown in Figure 11. 

The ICE can be identified operating at its minimum admissible running points 
such as minimum running power near the zero constant power line, and FCO in 
the negative region of torque. The ICE is shown to frequently operate around 
2000 RPM with the majority of torque commands between 0 and 75 Nm of 
component torque produced. The ICE operates outside of this region a few times 
with speeds reaching up to 2500 RPM and torques of up to 100 Nm. The electric 
motor typically operates between ±60 Nm over a large range of speeds. 
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Figure 10. EMC city powertrain power output. 
 

 

Figure 11. Operating points of ICE and P4 motor for EMC city drive cycle. 
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To examine the operating efficiency of the powertrain, a set of histograms 
were developed to look at the distribution of operating points with efficiency val-
ues originating from Equations (52)-(54). The ICE efficiency determined from 
ICE only operation of the vehicle over the EMC City drive cycle is used to dem-
onstrate the efficiency improvements from implementing the electric drivetrain 
in urban conditions. The distribution of ICE efficiencies for ICE only operation 
over the EMC City drive cycle is shown in Figure 12. 

The distribution of operating efficiencies for hybrid vehicle operation is shown 
in Figure 13. 

Comparing the ICE only operation to hybrid operation, there is a clear shift in 
ICE efficiency from a nearly uniform distribution to a significant skew to the 
right between 25% - 30% efficiency. There are noticeable peaks between 25% and 
30% with few operating points achieving efficiency greater than 30%. It is critical 
to note that for 18% of the drive cycle, the engine was in FCO and as such no  
 

 

Figure 12. Efficiency distribution of ICE only operation for EMC city drive cycle. 
 

 

Figure 13. EMC city optimal operating efficiency distribution. 
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fuel was burned. These points are not captured in the histogram as there is no 
associated efficiency for these points. The efficiency distribution for motor oper-
ation is significantly skewed to the right with peaks between 85% - 90% efficien-
cy that cover 57% of the operating points. It is important to note that for 62% of 
the drive cycle the motor is not used and thus no efficiency value is assigned to 
these points. Considering the system as a whole, the total fuel efficiency is skewed 
to the left with the majority of points operating below 20% efficiency. This dis-
tribution is expected due to the effects of losses from the driveline and energy 
conversions.  

The TSR, defined previously in Equation (55), provides a distinct relationship 
between two distinct driving conditions in the EMC City drive cycle. 

The first condition is a low-speed cruise with slight perturbations to the speed. 
Figure 14 shows the torque production of the hybrid powertrain for the second 
cruise condition of the EMC City Cycle. 

From the torque visualization of the torque split ratio of the cruise portion of 
the EMC City drive cycle, the electric motor is primarily used to assist the ICE at 
low speeds and high torque requirements. There is a corresponding significant 
increase in instantaneous fuel efficiency as the electric motor is used to provide 
positive propulsive torque. As speed increases, the ICE takes over to produce the 
entirety of required torque. For negative torque requirements, the ICE goes into 
FCO, as shown by the callout in Figure 14, while the electric motor supplies the 
remaining braking torque with regenerative braking.  

During the stop and go traffic driving condition portion of the EMC City 
drive cycle, the torque requirements are much higher with large speed variation. 
The vehicle is quickly accelerated and decelerated multiple times throughout this 
portion of the drive cycle. The torque production analysis of the stop and go 
point of the EMC City drive cycle is shown in Figure 15. 

Throughout the examined portion of the drive cycle in Figure 15, the electric 
motor is used significantly to produce both positive and negative torque to the 
wheels of the vehicle. The general trend during braking is that the ICE is pushed 
into FCO and the electric motor is used to capture regenerative braking. Through-
out this portion of the drive cycle, there is significant increase in instantaneous 
fuel efficiency as the electric motor is heavily used.  

Investigating the relationship between the power produced by the ICE and the 
torque split ratio reveals more about the control policy determined by the DP 
algorithm. The torque split ratio in the positive torque and power regime are 
shown in Figure 16. 

As noted in the results in Figure 16, the TSR is 1 for low torque requests, 
specifically torque requests under 112 Nm. For higher torque requests there is a 
loose correlation with smaller values of TSR. In general, the TSR splits between 
20% - 80% of torque between the ICE and electric motor with few operating 
points outside of that envelope. At very low power requests the ICE generally 
provides 100% of the torque request, but as the power requirement increases, 
there is a strong decreasing trend in the torque split ratio. This suggests that at  
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Figure 14. Torque production analysis of cruise portion of EMC city drive cycle. 
 
high power requests, the electric motor plays a much larger role in the torque 
production in the optimal control policy. 

The energy consumption of the vehicle for the EMC City drive cycle is shown 
in Figure 17.  

There is significantly more fuel energy consumed throughout the EMC City 
drive cycle. This result is expected as the ICE does not have engine start/stop 
functionality thus continuously burning fuel unless in FCO. As expected, the 
energy produced by the ICE is far lower than the total available fuel energy due 
to the inherent inefficiencies associated with the ICE. The produced ICE energy 
exceeds the net energy at the wheels due to the losses associated with drivetrain 
component efficiencies. Comparing hybrid performance with non-hybrid per-
formance, the 0.73 MJ of energy recovered using regenerative braking throughout  
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Figure 15. Torque production analysis of stop and go portion of EMC city drive cycle. 
 
the drive cycle that is, in turn, used for propulsive torque saved a total of 3.0 MJ 
of fuel energy. The resulting fuel economy of the vehicle following the optimal 
control policy is 30.11 MPG. 

5.2. Remaining Drive Cycles 

In addition to the hybrid vehicle benchmarking, the non-hybrid fuel economy 
results are determined. Table 3 presents a summary of the performance results 
determined from the benchmark analysis. 

Equation (56) defines the fuel economy calculaton according to the EMC rules, 
and with this relationship, the combined fuel economy of the hybrid 2019 Che-
vrolet Blazer developed by the WVU EcoCAR team is 32.99 MPG compared to 
the 21.6 MPG of the stock 3.6 L 2019 Chevrolet Blazer. 
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Table 3. DP algorithm powertrain performance results. 

Parameter EMC City EMC Highway US06 UDDS HWFET 

Non-Hybrid Fuel 
Economy (MPG) 

24.64 33.17 19.15 23.26 29.16 

Fuel Economy (MPG) 30.18 37.24 24.63 30.74 32.95 

Fuel Used (g) 311.19 2238.5 914.20 681.61 875.57 

Total Fuel Energy (MJ) 13.36 96.12 39.26 29.29 37.60 

Total Wheel Energy (MJ) 3.87 21.89 14.43 9.46 9.61 

Total ICE Energy (MJ) 3.27 26.36 13.77 7.56 12.15 

Maximum SOC (%) 53.85 54.22 53.41 51.66 51.48 

Minimum SOC (%) 47.02 46.09 30.07 33.74 43.57 

 

 

Figure 16. EMC city torque split ratio in positive torque and power regime. 
 

 

Figure 17. Energy analysis for EMC city drive cycle. 
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Throughout the benchmark analysis, the torque split ratio was examined as a 
function of torque request and power request. The relationship between the op-
timal torque split ratio and these parameters is often used to determine rule sets 
for heuristic controllers. To summarize the relationships determined from each 
drive cycle, a composite plot of the optimal torque split ratio is generated to 
identify overall control policies that may be useful for general operation of the 
vehicle. This composite plot is shown in Figure 18. 

Several general control policies can be established from these composite fig-
ures. In the positive regime of Figure 18, the torque split ratio never drops much 
below 0.6 unless the torque request exceeds roughly 200 Nm. There is a clear re-
lationship between power request and torque split ratio in both the positive and 
negative regimes. The data shown in Figure 18 can be used to generate a qua-
si-optimal torque split ruleset by using curve fitting tools to generate trendlines 
for this data.  

For urban driving conditions captured by the EMC City and UDDS drive 
cycles, the ICE operates over a range of low speeds and torques with the electric 
motor used to assist the engine in stop-and-go scenarios. In highway driving 
conditions captured by the EMC Highway and HWFET drive cycles, the ICE 
operates within a tighter envelope around 2000 RPM compared to urban driving 
with higher torque production. The electric motor is not heavily relied on for 
torque production in the highway driving scenarios. The seldom times that the 
electric motor does operate in this condition typically correspond to large power 
requests. The optimal control policy of the US06 drive cycle does not follow the 
trends of either urban or highway driving. The aggressive nature of this drive 
cycle results in wide operating envelopes of both powertrains. The ICE operates  
 

 

Figure 18. Optimal torque split ratio as a function of torque request for multiple drive cycles. 
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over nearly its entire admissible range of speeds and torques with several values 
reaching the maximum available torque from the ICE and electric motor. This 
operating strategy is likely due to the vehicle model attempting to keep up with 
the aggressive driving conditions of the cycle. 

5.3. Computational Considerations 

With a step size of 5000 steps, the memory requirement for the 5000 by 5000 ar-
rays is 200 MB each. At each stage, 245,000 by 5000 matrices are computed with 
150 smaller arrays and variables with the total memory corresponding to the 
length of the drive cycle. The shortest drive cycle is US06 at 600 seconds which 
has a memory requirement of 8.58 GB and the longest drive cycle is EMC High-
way at 2962 seconds with a memory requirement of 9.97 GB. Doubling the step 
size to 10,000 steps substantially increases the runtime and memory require-
ments. A 10,000 by 10,000 matrix requires 800 MB each with US06 and EMC 
Highway requiring a total of 24.43 GB and 26.47 GB, respectively. A PC equipped 
with 32 GB of memory can execute the DP algorithm with 10,000 steps provid-
ing higher resolution in the state grid, however, the additional runtime is signif-
icant. 

For the EMC City drive cycle, the runtime for 5000 steps is 26.5 minutes while 
10,000 steps have a runtime of 105.0 minutes, nearly four times longer than 5000 
steps. This difference in runtime is further recognized in the EMC Highway 
drive cycle with the 5000 and 10,000 step runtimes of 102 minutes (1.7 hours) 
and 436 minutes (7.3 hours), respectively. Examining the difference in fuel used 
results, the fuel used for the optimal policy determined for EMC City drive cycle 
with a step number of 5000 and 10,000 steps is 286.3 g and 284.6 g, respectively, 
with a percent difference of 0.55%. It is clear that for the considerable increase in 
runtime and memory requirements, the additional resolution of the optimal 
control policy is not necessary for the benchmarking activities presented in this 
work. 

6. Conclusions and Recommendations 

The objective of this work was to develop and execute a benchmark analysis for 
a hybrid 2019 Chevrolet Blazer using DP by backward induction. The end goal 
was to determine the global optimal control policy consisting of the TSR and 
transmission gear number for a variety of drive cycles to provide a frame of ref-
erence for the maximum possible performance of the powertrain. Throughout 
this work, several important takeaways and recommendations were discovered 
and are discussed in this section. 
 The development of an appropriate backward facing model is critical to the 

efficient operation of a DP algorithm. 
 The model must be of high enough fidelity to adequately capture the perfor-

mance of a vehicle while being low enough fidelity to have fast execution 
time. 

https://doi.org/10.4236/jtts.2022.124045


A. R. Mull et al. 
 

 

DOI: 10.4236/jtts.2022.124045 830 Journal of Transportation Technologies 
 

 Keeping as many of the calculations as possible in matrix form gave the DP 
algorithm incredible speed compared to using loops. 

 Memory requirements are a key design parameter for the DP algorithm.  
 Increased state grid resolution resulted in increased memory requirements 

and runtime. 
 There are diminishing returns on increasing state grid resolution. 
 Modifying the constraints can be useful for verification as well as generating 

additional benchmark data for the system. 
 The cost function for the DP algorithm can include soft constraints. 
 The cost function represents the overall goal of the DP algorithm optimal 

policy selection process. 
 An appropriately selected cost function should mitigate the negative effects 

caused by leaking and uniform transition cost. 
 The ability of the DP algorithm to select an appropriate set of control actions 

is highly dependent on the selection of a cost function.  
 The ICE should be pushed into FCO as much as possible in deceleration events 

and the electric motor should be used to make up the remaining braking tor-
que as regenerative braking.  

 Mechanical brake usage should be minimized as it wastes braking energy that 
should be captured by the electric motor. 
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