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Abstract

Fuel taxes are still a primary funding source for the development and main-
tenance of transportation infrastructure. Such a tax is collected as a flat fee
from the importer or producer of the taxable fuel product. Fuel-efficiency im-
provements and the adoption of zero-emission vehicles result in a continuous
decrease in gasoline tax revenues. This paper proposes a novel distance-based
alternative method to replace current gasoline tax collection systems in Japan
by providing a software architecture platform. In this platform, we utilize
driving information gathered via communication mechanisms installed in
connected automated vehicles to develop a system that collects gasoline tax
based on reserving spatio-temporal grids. Spatio-temporal sections are created
by dividing space and time into equal grids and a designated tax charge is as-
signed. Connected automated vehicles reserve a planned travel route in ad-
vance and travel based on reservation information. The performance evalua-
tion results indicate that the proposed system adequately reserves the re-
quested grids and accurately collects gasoline taxes based on a spatio-temporal
grid with minimum communication time and no data package loss. The pro-
posed method is based on micro travel distance charges, which generates gas-
oline tax revenue by 5.7 percent for model year 2022 and 21.8 percent for
model year 2030 as compared to the current flat-fee system.

Keywords
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1. Introduction

The era of automated, connected, and electric vehicles is exploding. Extensive
worldwide research efforts over the last two decades have resulted in sufficiently
reliable, affordable, and popular products [1]. According to the results of the
2015 World Economic Forum survey of cities around the world, nearly 60% of
consumers are willing to commute in self-driving vehicles [2]. The revolutions of
electrification, automation, and sharing create new challenges for major revenue
sources in transportation infrastructure.

Based on Bloomberg’s Electric Vehicle Outlook, the annual publication for the
world of electric vehicles, predicts that by 2040, AVs (Autonomous Vehicles)
will account for 50% of all vehicle sales, 30% of vehicle ownership, and 40% of all
vehicle commutes [3]. In order to advance innovation and maintain global mar-
ket competitiveness, the automobile industry invested approximately 103 billion
dollars in R & D in 2020 [4]. With optimistic announcements made by some or-
ganizations and successful testing and launching of autonomous vehicles by Tes-
la, Google, Waymo, Toyota, Honda, and others, commercialization and greater
adoption of autonomous vehicles are accelerating [5].

Based on the OECD/ITF (International Transport Form) report, they predicted
that when more zero-emission cars are adopted, gasoline tax revenue will de-
crease by 56% between 2017 and 2050. This is mainly due to improvements in
fuel efficiency and the adoption of zero-emission vehicles with respect to the in-
crease in demand for vehicles [6]. As well, the United States Environmental Pro-
tection Agency (EPA) reports that vehicle fuel consumption efficiency will im-
prove from 35 to 54.5 mpg based on corporate average fuel economy standards
(CAFE) for model years 2017 to 2025 [7]. Several studies and publications have
highlighted the shortfalls in gasoline tax revenue, particularly when high fuel-
efficiency vehicles are adopted. Alan Jenn et al. studied the revenue generation
for the state of Colorado in the United States and warned that annual gasoline
tax revenue will decline by 2025 due to the adoption of zero-emission vehicles
[8]. Japan’s gasoline tax supports the development and maintenance of its
transportation infrastructure. According to the national tax agency (NTA), gaso-
line tax revenue continuously decreased from 2010-2020 [9]. Fuel tax revenue is
decreasing as fuel efficiency improves and zero-emission vehicles are adopted.

To find a solution for obtaining sustainable gasoline tax revenues, various re-
searchers are investigating a flat annual fee, a vehicle’s manufacturer’s retail
price, and vehicle mile travel methods. Many of the proposed methods have
drawbacks and cannot address the emerging challenges. Certain research studies
show that vehicle mile travel is a promising alternative method to replace the
current flat-fee gasoline taxation methods. Since the VMT tax is a relatively new
concept and still in the experimental stage, less is known about its actual impact
on driving behaviors, tax revenues, and tax burden.

Alan Jean et al. investigate a flat annual registration fee and the study suggests

a flat annual registration fee of 0.6% of the vehicle’s manufacturer’s retail price
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(MSRP). Furthermore, they estimated a 22-cent per mile fee to overcome the
decrease in revenue for the USA. McMullen et al (2010) find that a VMT tax (set
at 1.2 cents per mile) that replaces a 24-cents-per-gallon gasoline tax would be
slightly more regressive than the fuel tax [10]. Robitaille ef a/. compare a $0.015
VMT tax with a $ 0.10 federal gasoline tax increase and conclude that the former
leads to a larger decrease in consumer surplus and a loss of social welfare.

In 2013, the first pilot project for a mileage-based revenue system was imple-
mented in Oregon, USA. They installed the GPS tracking device on voluntary
vehicles (limited to 5000 automobiles and light-duty commercial vehicles in the
injtial phase) at a cost of $250 per vehicle. Each vehicle was charged a tax of 1.5
cents per mile on their traveled distance on public roads. Participants in the
scheme got monthly invoices for their road-use costs and had the state fuel tax
repaid when they bought gasoline at Oregon stations. As a result, it is a compli-
cated system for both users and authorities to implement on a large scale and
with less accuracy for assigning gasoline tax charges. Furthermore, it is difficult
to distinguish between travel in the different provinces or states and calculate the
tax revenue for each type of vehicle in many provinces or states.

The University of Iowa’s public policy center conducted a 2-year field study to
evaluate the technical feasibility and user acceptance of mileage-based charging
systems. In this research, technical feasibility problems included on-board unit
installation, tax calculation accuracy, and fee evasion. They were able to track
approximately 92.5 percent of all traveled miles using GPS and onboard vehicle
devices. The remaining driven miles were estimated from the car’s odometer us-
ing an interpolation technique, which will have an impact on revenue collection
by not registering and calculating driven miles for each vehicle type. The second
part of the study results shows that 71% of the participants preferred auditability
and maximum privacy protection when using the system.

The most significant component for people’s acceptance of the new system is
determining an acceptable tax price for each vehicle type via the VMT method,
which is one of the barriers to overcome [11]. Since all studies suggest a flat fee
per mile, it raises further equality problems and challenges the willingness to
adopt the new tax system. Furthermore, in terms of fuel consumption and road
occupancy, there are various types of vehicles. A flat fee levied as a tax on all
types of vehicles is provoking equity concerns regarding willingness to change to
the new system. Each type of vehicle consumes a different amount of fuel for
commuting 100 km and has various types of fuel efficiency, such as cars, buses,
trucks, hybrid vehicles, electric vehicles, hydrogen, solar energy, etc. Further-
more, as each vehicle occupies a distinct section of the road, it is not appropriate
to compare the road damage of a small passenger vehicle to that of a truck.
which is an equity concern regarding road maintenance fees charged for each
type of vehicle.

When modelling the effects of a VMT tax or any other alternative method, it
is essential to consider how drivers will respond to dynamic changes in the tax

structure and driving prices for each type of vehicle. However, since the vehicles
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have different fuel consumption and various types of energy use, in all studies,
they found that drivers preferred auditability and maximum privacy protection
to understand their daily usage. Furthermore, because each state has different
tax regulations, an intelligent system that levies charges for different states when
a vehicle travels between states is required. Moreover, when vehicles travel be-
tween two states, the boundary may not always be exactly one mile or km to
calculate accurately the fuel tax or road tax for a vehicle. Therefore, a system is
needed that could be able to calculate the two-state different types of fuel tax
charges and charge based on a minimum travel distance, as all travel distances
could not be exactly one km or one mile.

To implement the distance-based charging system, collecting real-time traffic
data, vehicle networking, and communication are the essential factors for im-
plementing the new system. Moreover, to understand the distance traveled with
high accuracy for each vehicle type, it is important to collect real-time data for
all the vehicles. To impose the new gasoline tax system on those who try to
manipulate the total distance traveled to avoid the tax. It is essential to collect
real-time data on vehicles, and the vehicles reserve the route for driving. Human
drivers may not strictly observe these traffic rules, but automated vehicles would
easily do it. However, the new distance-based charging system could be imple-
mented in any type of ordinary vehicle by installing a low-cost device equipped
with GPS localization and a cellular-like communication (e.g., 4G) system. Al-
though, because the future vehicle will be an automated and intelligent vehicle,
and the new system will collect gasoline tax from zero-emission vehicles, we will
consider an automated vehicle for this study. The vehicle’s driving information
is collected through communication methods installed in connected automated
vehicles, which can cooperate to fulfill the essential factors to implement the
proposed method.

Automated vehicles are sophisticated networks that collect data and commu-
nicate with their surrounding environment with high accuracy, which are ex-
pected to reduce traffic fatalities by replacing human drivers with self-driving
technology using autopilot [12]. Automated vehicles utilize lidar, radar, and
high-resolution cameras that operate as an independent in-vehicle unit to detect
such nearby objects as road markings, infrastructure, automobiles, bicycles, and
pedestrians [13]. To enable automated driving, the fundamental principle of au-
tomated vehicles is to travel from point A to B by navigating a state space. A
state space is commonly described as an occupancy grid, which shows where ve-
hicles are located in the environment [14]. In addition, such motion-planning
techniques as graph search, sampling, interpolating, and numerical optimization
generate optimal path planning based on collected data to travel from a starting
point to a destination [15]. Currently, automated vehicles utilize advanced driv-
ing assistance systems (ADAS) that improve safety, comfort, travel time, and
energy consumption [16].

Technologies like adaptive cruise control, automatic emergency braking, in-

telligent speed adaptation, lane keeping assist, lane departure warning, and lane
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change assist are the main assistance technologies that address longitudinal and
lateral comfort, safety, and security [17]. Currently, ambiguous obstacle detec-
tion at high speeds over long distances is one of the most difficult technical
challenges. Cameras can’t see through fog, lidar can’t interpret a driver’s inten-
tions, and detecting a human in the dark by machine learning is also challeng-
ing, although communications from vehicle to vehicle or vehicle to anything can
convey information [18] [19]. If AVs act independently, then efficient and safe
mobility will not be feasible. Instead, to achieve a cooperative environment, which
is globally known as a connected automated vehicle (CAV), further connectivity
is needed to advance safety [20].

A connected vehicle is a collection of applications, services, and technologies
that enable the creation of such vehicular communications systems as vehicle-
to-anything V2X, which includes vehicle-to-vehicle (V2V) and vehicle-to-infra-
structure (V2I) communication [21]. These vehicular communication technolo-
gies permit external support for computing tasks that mitigate traffic collisions
and blind-spot detection by simultaneously exchanging such real-time state in-
formation as location, speed, acceleration, and direction among vehicles within a
particular range [22]. In a smart travel system, communication and choosing an
appropriate networking system are essential for response time in the reserva-
tions mechanism. However, depending on the application, two types of technol-
ogies are extensively utilized in vehicular networking communication: dedicated
short-range communications (DSRC) IEEE 802.11p and cellular networks as
third generation long-term evolution (2 - 3 GLTE). Both DSRC and cellular net-
works are currently collecting ETC highway tolls and providing weather, con-
struction congestion awareness information, and parking assistance [23]. It is
easy to collect real-time data and provide a response for reservations as well as
detailed travel and tax information.

CAYV technology improves the overall traffic flow and safety on freeways us-
ing heuristic algorithms and optimal control strategies that were developed for
ramp-metering to regulate the flow of vehicles merging onto freeways to de-
crease traffic congestion and increase safety [24]. For safe and efficient auto-
nomous control of traffic through intersections, coordination methods are used
so that vehicles cross intersections (or merge) without rear-end or lateral colli-
sions in the merging zone. Centralized [25] and decentralized [26] control algo-
rithms or intersection managers coordinate the reservation or crossing schedules
based on the received requests and information to improve traffic capacity. Since
vehicular networking technology is developing so rapidly, connected vehicles
will soon be integrated with 5G technology to optimize their cooperative effi-
ciency, including the internet of things and heterogeneous access of networks
[27]. These technological advancements, paired with the applicability of new
methodology in automated vehicles, increase the feasibility of accurately imple-
menting dynamic map systems for road reservation mechanisms based on the

distance-based charging method.
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In this paper, a novel dynamic distance-based gasoline tax charging system is
proposed, aiming to collect gasoline tax revenue as an alternative to the current
flat-fee method. We propose the vehicle’s driving information through commu-
nication methods installed in connected automated vehicles, reserving a geo-
graphical space (several meters) and time (several seconds) and applying dis-
tance-based charges as an alternative tax to replace the current flat-fee gasoline
tax collection method.

In summary, our contributions are as follow:

* The adoption of zero-emission vehicles has escalated, leading to a reduction
in fuel tax revenue. It is critical to develop a system capable of collecting the
gasoline tax in the zero-emission vehicle era.

* The tax issue is critical for vehicle owners in general, and an increase in the
tax would present a new challenge to the willingness to transition to the new
tax system. Therefore, a system is needed that does not change much in their
ownership cost. Thus, based on the proposed design, a tax charge system
comparison with the current method does not change much in the ownership
cost of the vehicle.

* Tax charge accuracy is essential in terms of individual payments as well as
total tax revenue for the government. Therefore, a system is needed that ac-
curately collects the gasoline tax with high accuracy. The proposed method’s
performance evaluation result shows that the proposed method is able to
collect gasoline tax with high accuracy with no data package losses.

* According to numerous studies, auditability and privacy are the two most
important factors influencing willingness to change to the new gasoline me-
thod. As a result, we develop a system that provides auditability while also
protecting the owner’s privacy, with only specific data considered to be stored
to protect the user’s privacy.

This paper is organized as follows: in Section II, the proposed method struc-
ture and system module are presented. Section III describes our system’s imple-
mentation. Section IV outlines its performance evaluation. Section V describes
the results and discussion. Finally, in Section VI, we conclude and describe fu-

ture work.

2. Related Work

Fuel tax is still collected as a flat-fee from all types of vehicles based on their fuel
consumption as a specific percentage of the fuel price. Currently, no alternative
system has been implemented for collecting gasoline tax based on vehicle miles
traveled or any other method. The University of Iowa’s public policy center
conducted a 2-year field study to evaluate the technical feasibility and user ac-
ceptance of mileage-based charging systems for vehicles through such physical
operations as installing on-board units (OBUs) and interviews and questionnaire
surveys of various stakeholders [31]. In this research, technical feasibility prob-

lems included on-board unit installation, tax calculation accuracy, and fee eva-
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sion. As well, the questionnaire survey results show that when using the system,
71% of the participants preferred auditability and maximum privacy protection
[28].

Several studies have examined its distributional implications and equity con-
cerns. Zhang et al (2009) estimate that Oregon’s flat VMT tax would not lead to
significant changes in the tax burden and taxpayers’ welfare in either the short or
long term [29]. Weatherford (2011) finds that a VMT tax, set at 0.98 cents per
mile, would shift the tax burden from low-income to high-income households,
from rural to urban households, and from retired to younger households with
children [30]. The VMT tax would benefit rural households more than their ur-
ban counterparts because the vehicles owned by rural households are on average
less fuel-efficient. Robitaille ef al (2011) compare a $ 0.015 VMT tax with a
$ 0.10 federal gasoline tax increase and conclude that the former leads to a larger
decrease in consumer surplus and a loss of social welfare [31].

Alan Jenn ef al. studied the revenue generation for the state of Colorado in the
United States, estimating that total annual revenue generation would decrease by
about $200 million by 2025 as a result of EV adoption in our base case, but in
projections with larger adoption of alternative vehicles, it could lead to revenue
generation reductions as large as $900 million by 2025. A flat annual registration
fee at 0.6% of the vehicle’s manufacturer suggested retail price (MSRP) or 22 cent
per mile fee as an alternative method to enhance the gasoline revenue. Since there
are various types of vehicles, each with different sizes, fuel economy, and axel
loads, both the MSRP and the per mile price may not be viable.

Rebecca Lewis and Benjamin Y. Clark investigate the revenue loss attributed
to new mobility and evaluate revenue sources to fund transportation. They stu-
died five Oregon cities, describing how transportation is currently funded and
estimating revenue loss in a scenario of electrification, automation, and sharing
using empirical analysis of local government budget data. They suggest that
governments should seek out ways to find more stable revenues (VMT-based
revenues) and move away from less stable revenues (motor fuel) [32]. Yiwei
Wang and Qing Miao simulate the vehicle usage, tax burdens, and total tax rev-
enues generated under a possible nationwide revenue-neutral flat VMT tax [33].
Caplan (2009) estimates a VMT tax (set at 0.3 cents per mile for cars and 1 cent
per mile for light trucks) would decrease annual pollution emissions by 7% -
11%, suggesting a significant environmental benefit [34].

As mentioned earlier, VMT is at an early stage because there is no adequate
mechanism being investigated as a replacement for the gasoline tax, such as a
collection mechanism, dynamic pricing system, reducing administrative costs,
preventing payment evasion, maintaining privacy, and vehicle onboard equip-
ment installation. However, utilizing the tollgate on all roads is one of the op-
tions to collect gasoline tax, but the system has many drawbacks, including vi-
olation processing, high operational cost, fixed infrastructure device dependen-
cy, and a large amount of electronic equipment that must be installed in every

vehicle and on the road infrastructure. To summarize, In the current situation, the
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collection of gasoline tax are dependent on permanent fixed infrastructure devices,
and a huge number of electronic devices must be installed in both vehicles and on
all roads. Moreover, the deployment of tollgates on all roads is unfeasible due to
the significant operational expenses associated with utilizing the equipment for
accurately collecting road-pricing tax based on the vehicle mile travel method.
Therefore, the proposed method provides a sustainable new mechanism of col-
lecting gasoline tax as well as addresses many of the aforementioned challenges. In
the following sections, we address the above concerns and describe our novel mi-

cro-road-pricing method based on reserving spatio-temporal grids.

3. Structure and System Model

This section presents the overall structure of the proposed system, which re-

serves (virtual) spatio-temporal sections of a road as grid/msec units in real time.

3.1. Micro-Road-Pricing

At present, road pricing refers to a fee determined for the use of a road, such as
distance or time-based fees [35], toll roads, congestion charges [36], and taxes
intended to discourage certain types of cars, such as fuel propellants or polluting
automobiles [37]. In this paper we propose a radical new approach to replace the
present gasoline tax collecting method, which reserves (virtual) spatio-temporal
sections of the road in real time for road pricing. This idea refers to the reserva-
tion of a geographical space (several meters) and time (several seconds) as well
as levying a designated charge on the space-time/grid unit for each type of ve-
hicle. Although human drivers would struggle to precisely observe such compli-
cated traffic rules to reserve space-time grids on the road and manage gasoline
tax-related issues, automated vehicles can manage them simply. However, by in-
stalling a low-cost device equipped with GPS localization and a cellular-like
communication (e.g., 4G) system in any type of ordinary vehicle, the new mi-

cro-road pricing system could be implemented with an additional cost.

3.2. Overview of Proposed Method

In this study, a configuration system platform was established that consists of a
network operating center/server, a viewer/user, and a billing center. An auto-
mated vehicle assumes the role of a vehicles or user to transmit position and
driving information collected from various sensors to the server. Each connected
automated vehicle reserves a scheduled travel route and time on a dynamic map
and travels based on the reserved information. When the automated vehicle
starts to drive, it sends the desired departure time, vehicle ID, origin, and desti-
nation information to the server. The network operating center/server commu-
nicates with the connected vehicles and generates a database based on the col-
lected information.

Since a dynamic map contains a spatio-temporal grid, by dividing time and

space into equal grids, spatio-temporal grids can be reserved on the road in real
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time. It computes a dynamic travel distance by grid/millisecond unit and assigns
a designated charge for each independent cell or grid, which is converted from
the fuel consumption of each type of vehicle. The network operating center pro-
vides detailed information about the travel distance and related costs to the ve-
hicle users. If the user does not pay the charges online, the billing center creates
a monthly charge invoice and sends it to the vehicle owner. The viewer displays
the dynamic map generated by the server and provides detailed travel and tax
information to the vehicle user via an API, as shown in Figure 1. When the ve-
hicle starts driving, it sends the user's information and requests to the network
operating center to reserve the grid in the route as shown in number (1) of Fig-
ure 1. After that, when the server receives the request, it first checks the dynamic
map for occupancy and decides for the reservation of the grid (2), and then re-
sponds to the vehicle with grid and route reservations as well as tax charges (3).
When the vehicle arrives at the destination (4), the server sends the overall de-
tailed travel and payment information (5). Additionally, it saves designated data
(6). If the vehicle doesn’t pay the tax charges, it will send the monthly bill to the
vehicle owner (7) as illustrated in Figure 1.

A dynamic map is a platform that collects probe data such as vehicle position
and speed information from various sensors in connected vehicles. The main
criteria of real-time data collection and display, such as car reflection on the
map, transmission, registration of vehicle information, and static map informa-
tion, will be fulfilled by implementing the dynamic map platform, as studied by
Netten, L. Kester ef al [38]. Due to the above advantages of the dynamic map
platform, we created a web-based dynamic map to implement the proposed sys-
tem. In Figure 2, the overview of the structure’s architecture that reserves a
grid-based charging method is illustrated.

3.3. Overview of Dynamic Map Application

We created a server environment in Node.js and a web application framework
called Express to implement a dynamic spatio-temporal section on roads in a
Network Operating Center

Dynamic Map Mongo DB, Save all info
Spatio-temporal grid

Origin Destination

Figure 1. Sequence diagram of grid-based charging system.
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Sensors/GPS receiver
Longitude and latitude

Automated vehicle, API

¢ Vehicle unique ID & vehicle type
* Build a spatio-temporal grid

* Request grid reservation

¢ View travel information

l T

Network operating center/server
Dynamic map * Provide or confirm vehicle unique ID Uplc;ia‘;:%ioagal;b/ase
Spatio-temporal grid Confirm grid reservation

Reserve grid along the route
Compute travel tax per grid route
Send travel distance and cost info
Total user charge due

Detail info to user

Periodically send to user charge
apportionment

l

Billing and dispersal center

* Bills to users

¢ Revenue to jurisdictions

*  Check for data discrepancies

L |

Figure 2. Structure architecture of reserving grid-based charging method.

real-time grid/millisecond unit-charging system. We developed spatio-temporal
grids with MongoDB, a document-oriented database like the Relational Data-
base Management System (RDBMS) that supports a nested document structure.
A spatio-temporal grid resembles a collection of grids or cells created by equally
dividing time into one millisecond intervals and space into latitude and longi-
tude and expressed in a nested document structure. We created a one-kilometer
straight road environment by equally dividing a space into a spatio-temporal
grid and making independent cells.

The grid cell mechanism is shown in Figure 3. The white arrow represents the
vehicle’s traveling path, the gray cells indicate the reserved cells on the travel
route, and the other cells indicate unreserved cells. Since we concentrate on co-
operative autonomous vehicles, a vehicle must travel precisely during the reserved
time and be able to communicate with its surrounding environment. Thus, the
connected automated vehicle sends vehicle information to the server, such as the
desired departure time, origin, and destination position. For the first time, if the
system registers a new vehicle, the network operating center/server provides a
unique ID number to each vehicle and verifies it on the dynamic map to reserve
the requested space-time grid to respond to the vehicle. If the grid is occupied,
then the server notifies the vehicle to pause (shown in red cell) and call back the
request for reservation, as described in Figure 4. The server generates a database
based on the information collected from all the vehicles; when a vehicle sends a
request to reserve a grid, the server reserves the requested grid along the travel

route.

3.4. Method of Assigning Cost to the Grid

As previously mentioned, the space is divided into equal grids, and designated
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Time

Spatio-Temporal grid

Reserved grid
Space

Figure 3. The reservation method of the spatio-temporal grid on a route.

Time Spatio-Temporal grid

Reserved grid

Pause, reserved grid,

by other vehicle

Space

Figure 4. The mechanism of reservation of the spatio-temporal grid if the grid is reserved
by another vehicle.

charges are allocated as the cost of each grid. When a vehicle submits a request to
reserve the grid, the server assigns a designated tax charge to the grid for each type
of vehicle and continuously calculates the tax costs for the travel route shown in
Figure 5. Afterward, it records the vehicle information in MongoDB based on the
vehicle’s unique ID, date, time, travel distance, and calculated total tax charges for
each type of vehicle. The billing center in turn creates monthly invoices and sends
them to the vehicle’s user if she does not use ETC or a credit card.

The assigned designated grid charge unit rate is converted from the fuel con-
sumption efficiency of each type of vehicle to the grid/L from the CAFE stan-
dard. Based on the JAMA 2020 report [39], the fuel consumption efficiency rate
for model year 2020 is 20.3 km/L, as estimated from the average fuel consump-
tion of urban, rural, and express highways. The fuel consumption efficiency rate
is converted into km/L and then grid/L units, multiplied by the 20% gasoline
price, and assigned to each grid in the server’s grid-based charging system. Fol-
lowing that, to create a grid/millisecond charge tax unit, the gasoline price is as-
sumed to be constant at 1.5 $/L, where the government’s gasoline tax revenue is

20% of the gasoline price per liter for each vehicle type, which is a combination
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Figure 5. Description example of spatio-temporal grid and assigning charges.

of 10% local and 10% national tax revenues assumed for this study. Additionally,
the average fuel efficiency rate for each type of vehicle was created using differ-
ent vehicle types, makers, and model years. Vehicles were classified into ten dif-
ferent categories, based on average fuel consumption from a combination of ur-
ban, rural, and express highways. The grid length could be any size, such as five
meters, ten meters, or the length of various types of vehicles. It is possible to
charge each type of vehicle based on its size and length, such as the length of a
car, truck, and bus is approximately 4.6, 14, and 12 meters, respectively. For this
study, we assumed the grid length to be five meters, which means 200 grids is
one kilometer.

In this study, we only considered conventional gasoline cars and assumed that
electric vehicles pay gasoline tax based on the travel distance in the proposed
method, just like passenger cars. The tax charges are calculated based on this as-
sumption and determined for both conventional gasoline cars and electric ve-
hicles as illustrated in Table 1. A grid/millisecond (5m/millisecond) unit tax
charge could also be created and expanded to every type of vehicle based on the
same method for assigning designed tax charges in the proposed system. Thus,
revenues can be captured from vehicles that do not use fossil fuels, such as elec-

tric cars or other zero-emission vehicles, for all vehicle categories.

4. Implementation

This section describes the implementation of our proposed method for reserva-

tions in a spatio-temporal grid-charging system.

4.1. Implementation Environment

The implementation environment of the proposed system is shown in Table 2.
The server environment is Node.js, and the web application framework is Ex-
press. Node]S is a JavaScript runtime execution environment for web servers
that handle the back end of web development. Express is a minimal and flexible
Node.js web application framework that provides a robust set of functionalities
for web and mobile applications. This framework has the advantage of simplify-
ing the description of numerous procedures for developing a web application
with a variety of HTTP utility methods as well as the ability to establish a com-

prehensive API quickly and simply. The server was started on a Mac computer
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Table 1. Conversion of fuel efficiency rate to grid (5 m/millisecond) for each vehicle type.

Fuel Fuel .
. Fuel . Fuel Grid/msec
Vehicle economy Space-time . tax .
types rate econormy grid L/grid price 20% unit
te L/1k /L, 2020 i
km/L, 2020 o¢ M $ $/L price
Gasoline
173 km/L 0.058 L/km 0.00029 L/G 1.25$/L 0.25$ 0.0000725 $
car
Hybrid
Zail 203km/L  203km/L  0.00025L/G 125$/L 0.25$ 0.0000625$
Electri
‘Zrﬂc 203km/L  203km/L  0.00025L/G 125$/L 0.25$ 0.0000625$

Table 2. Implementation environment for the proposed system.

Environment Model
(ON Mac OS Mojave 10.14.6
CPU 2.4 GHz Intel Core i5
Memory 8 GB
Python 3 COM interface
Server environment Node.js + Express
Database MongoDB version 4.0.4
PTV VISSIM 11 Traffic environment simulation
Load Test Apache JMeter
Environment Model

to ensure the proposed system’s performance, and both HTTP requests and res-

ponses were validated in the local environment.

4.2. Application Programming Interface (API)

Figure 6 describes the flow chart of the reservation and cost assignment to the
road or a grid. The network operating system/server enables vehicle users to ap-
ply for grid reservations to facilitate their driving. Thus, the server provides APIs
to the automated vehicle users to make reservations on space-time grids using
the POST method to reserve a travel route. The POST method transmits the ve-
hicle’s unique ID, scheduled departure time, origin’s latitude and longitude, and
destination position in the request body. After the server receives a request, it
first queries the spatio-temporal grid database for an empty spatio-temporal grid
in the travel route, then responds to the requested vehicle with grid and route
reservations and calculates the route’s cost. When the automated vehicle starts
driving and continuously sends requests for grid reservations, the server dy-

namically reserves the grids and travel routesas illustrated in Figure 6.
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Reservation
request

Calculate the required
spatial grid

}

Set the origin and departure
time to the target grid

L

Reservation
of the target

grid

Delay target grid
time by one

Request next saptio- No Destination

temporal as the target reservation
grid complete
Yes
| Calculate cost /grid |

Response/Vehicle

Figure 6. Flow chart of grid reservation and assigning cost processing of network oper-
ating server.

4.3. Spatio-Temporal Grid

MongoDB, which implements the spatio-temporal grid, is a document-oriented
database, such as the Relational Database Management System (RDBMS) and is
also open-source software. MongoDB does not save data in a table structure; it
stores it in a JavaScript Object Notation (JSON) file format. JavaScript Object
Notation (JSON) is a widely used open file and data interchange format which
stores information in an organized and easy-to-access manner. The other bene-
ficial quality is that it transmits data consisting of attribute-value pairs and array
data types, which can be easily changed. Since the transportation infrastructure
increases and decreases frequently, the space-time grid’s data structure must also
be frequently changed. Consequently, MongoDB is a schema-less database that
is more flexible in terms of modifying the data structure after executing a system
operation and enables a nested structure to store data. Thus, we manage our
proposed system’s spatio-temporal grid with MongoDB.

In this study, time is described in ISO Date type, which is divided into 1-mil-
lisecond intervals, and space is expressed in a nested document structure as lati-
tude and longitude. A road’s north-south direction (latitude) and east-west di-
rection (longitude) are determined and controlled at regular intervals. When the
vehicle reaches its destination, the server provides the user through the API with
such detailed information as vehicle ID, travel time, travel distance, travel tax
charges, and total tax charges as well safe data in Mongo DB as demonstrated in

Figure 7.

DOI: 10.4236/jtts.2022.124038

664 Journal of Transportation Technologies


https://doi.org/10.4236/jtts.2022.124038

B. Habibullah et al.

_id: objectid("ee618430cee348f8bcd7ad3s"™)
totalDistance: 12¢@e
totalCost: 8.0125
totalGridNum: 5
vehicleType: "passengercar”
sid: 20
endTime: 2021-23-29707:39:29.198+00:20Q
startTime: 2021-23-29707:29:28.231+2@:ee
v destination: Object
Ing: 135.70342
lat: 24.79827
vorigin: Object
Ing: 135.70961
lat: 24.8056

Figure 7. Description example of storing data in MongoDB.

5. Performance Evaluation

5.1. Evaluation Environment

To evaluate the proposed method, we use three evaluation methods such as per-
formance evaluation of the system, response time for the communication, and
car ownership cost for both the grid-based charging system and flat-fee method.

First, we created a traffic environment in PTV VISSIM (Verkehr in Stadten-
SIMulations Model) software, which is a microscopic multi-model traffic flow
simulation software which can model a variety of types of traffic environments.
Thus, we use it to model the traffic environment for the flow of passenger cars
and electric cars. As well as the PTV VISSIM COM (Component Object Model)
interface, which defines a hierarchical model in which the functions and para-
meters of the simulator allow you to externally design a model for any intelli-
gence transportation system.

Second, we use PTV VISSIM 11, which supports the COM interface and can
read script files written in any programming language. We developed a script file
in the COM interface in Python that provides an environment for cooperative
automated vehicles that communicate with the networking operator center/server.
Thus, to execute the functions of the connected and automated vehicles, they
send package data such as vehicle ID, origin position, and destination position to
request a grid reservation through URLs to the server for each type of vehicle, as
illustrated in Figure 8.

To implement the traffic environment as mentioned above we create a one-
kilometer road with two-lane and 3.5-meter-wide. The number of vehicles on
the road ranged from 100 to 500 vehicles per hour as a different vehicle input for
simulation, and the vehicle speed limit was set to 60-kilometer meter/hour.
Based on current global electric vehicle sales worldwide [40], the percentage of
electric vehicles and passenger cars is assumed to be 1.6% and 98.4%, respec-
tively, and the simulation measurement times were set to one hour as all the si-

mulation parameters are illustrated in Table 3.
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Vehicle data

(ex, ID, postion, time) 5 ;
VISSIM | (6(0)%1 4 > perating
interface center/server

Figure 8. Demonstrate the environment developed for automated vehicles transmitting
data to the network operating center.

Table 3. Simulation parameters for VISSIM.

Parameters Setting
Speed limit 60 km/h
Number of vehicles (Sample) 500 veh/hr
Passenger vehicles: 2020-2030 98.4% - 80% = 492 - 400 vehicle
Electric vehicles: 2020-2030 1.6% - 20% = 8 - 100 vehicle
Lane width 3.5m
Measurement time 1 hour
Number of measurements 10 times
Measurement section 1000 m
TTC (time-to-collision) 5.0s

The measurement time is one hour, the number of measurements is ten times,
and time to collision (TTC) is considered five seconds. To achieve the required
60 km/hr speed on one kilometer of road, we calibrated the software based on
changes in the vehicle behavior and driving behavior parameters. Figure 9 shows
the PTV VISSIM execution screen for the proposed method, where red and

green cars represent conventional gasoline cars and electric cars.

5.2. Flow of Reservation and Assigning Cost to Grid

When an automated vehicle makes a grid reservation, perhaps other vehicles are
simultaneously making reservations, which can cause inconsistencies and confu-
sion. To avoid such issues, the server must process a vehicle’s grid reservation
requests on a first-come, first-served basis. Thus, Node.js provides non-blocking
I/O asynchronous processing methods, which can process multiple requests with
a single thread. Furthermore, to reserve a grid for each vehicle based on re-
quests at a specific time, if the grid is already reserved by another vehicle, re-
gaining access to the database is essential to process it once again. Therefore, a
callback processing mechanism must be appropriately established. If the
processing time is constant for requests and responses from the database, no in-
consistency or overlapping will occur due to another vehicle’s request for route
reservations. This method of operation is faster than locking the database. In ad-

dition, when the server responds to a vehicle’s grid reservation and the vehicle
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drives it successfully, the server assigns the charges to a grid that is driven on
and saved in the MongoDB based on the vehicle’s unique ID. When the server
reserves the grid, it assigns the unique ID of the requested vehicle to the spa-
tio-temporal grid, which is highlighted in red as illustrated in Figure 10. When
the server reserves the grid, it assigns 1 as occupied and 0 demonstrate as unre-

serve grid.

5.3.Load Test

We conducted load tests to analyze the system’s response time using Apache
JMeter, an open-source Java application that tests load, functional behavior, and
application performance. The response time is the period between when the co-
operative autonomous vehicle sends a request and receives a response from the
server. An HTTP request protocol is utilized that contains the vehicle ID, de-
sired departure time, origin, and destination positions, which are contained as
5-space grids in the X direction and 5-space grids in the Y direction. We as-
sumed that a cooperative automated vehicle could drive at 1 grid/millisecond
and the desired departure time is identical for all the requests. The starting point
is (0, 2) or (2, 0), and the destination is (2, 4) or (4, 2). The load test begins with
the server in an unreserved state, and the results are obtained three times for
such numerous requests as 1, 10, 15, and 50 in a loop. The load test results in
Table 4 include average, maximum, and standard deviation of response times

for each number of requests.

Figure 9. Execution screen of VISSIM simulation for proposed method.

_id: objectId("ee61842e3ee61e4990d1a6as")
time: 2021-03-29707:39:28.597+00:00
v space: Object

2.0:90
2_1:
2_2:
2_3:
2_a:
0_2:
1 2:
3 23
4.2:

station: ObjectId("e@61842ecee348f8bcd7ade1”™)

OO0 0O OO0

Figure 10. Description example of spatio-temporal grid reservation.
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Table 4. Measurement of required times for requests and responses.

Response Time

Number of
requests Mean Max SD
1 41 41 0
10 33 46 7
15 36 58 11
50 43 48 10

5.4. Confirmation of Package Data, Accuracy, and Privacy

To clarify whether the proposed method is operating accurately, PTV VISSIM 11
provides an environment for cooperative automated vehicles that communicate
with the networking operator center/server. In addition, PTV VISSIM supports
the Component Object Model (COM) interface, which can read script files writ-
ten in any programming language and send data from VISSIM to the server.
Thus, script files were developed in Python 3 to execute the functions of the
connected and automated vehicles to send package data such as vehicle ID, ori-
gin position, and destination position through URLs to the server for each type
of vehicle.

First, we validated the required speed of 60 km/hr on the road in VISSIM
based on changes in the vehicle behavior and driving behavior parameters. Sub-
sequently, we ran the simulation and input various numbers of cars, such as 100
- 500, and checked the number of vehicles assigned from VISSIM to the network
operating center database. We verified in the database all the assigned parame-
ters, including the calculated distance, tax charges, and the number of invoices
submitted to the billing center. If 100 vehicles make grid reservation requests
from VISSIM, the server reserves grids and routes for all 100 vehicles, accurately
calculates the travel distance, applies the designated charges, and saves the in-
formation in its database. We repeated the same approach for different vehicle
inputs and verified that our proposed method’s performance was accurate.

We created a one-km straight road in VISSIM and confirmed the distance
traveled and tax charges for each vehicle in the database as 1000 meters and
$0.0125 for Prius vehicles. Detailed information was provided to the vehicle
owner at the end of each travel trip to verify and ensure the ability to minutely
audit both travel and tax information. The gasoline tax revenue charged to all
vehicles is verified in the (MongoDB) database to validate that all vehicles were
charged and to collect the tax from each vehicle as shown in Figure 6. To protect
user privacy, only the vehicle ID, travel distance, tax charges, and invoice num-
ber related information are disclosed to the billing center, and not all the loca-
tion data is considered to prevent tracking travel information issues as shown in

Figure 11.
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_id: ObjectId("eesbedsd4eco75cc7efaccsc™)
decisionTime: 2€21-23-24T799:59:41.969+20:09
cost: 9.9125
number: 122
sid: 1
regAt: 2021-02-247€9:59:20.222+00:00

v:®

Figure 11. Description example of invoice to billing center.

6. Simulation to Compare Gasoline Tax Revenue Collection
for Flat-Fee and Proposed Grid-Based Charging Method

6.1. Proposed Method

To determine the proposed method’s effectiveness, we evaluated and compared
the gasoline tax revenue for a vehicle using the current conventional flat-fee
method with the grid-based gasoline tax charging method. The grid-based charg-
ing method is to pay the gasoline tax fee based on the distance you traveled,
which is considered a minimum of a grid (5 meters/millisecond), and the pro-
posed system can be able to charge gasoline tax on a grid basis for all vehicle
types. The revenue is calculated for 500 vehicles sample and for one km of travel
road for both methods in model years 2022 and 2030. PTV VISSIM 11 is a mi-
croscopic multi-modal traffic flow simulator that models various traffic envi-
ronments and visualizes traffic phenomena with 3D graphics. We used it to si-
mulate a real traffic environment for the proposed method as well as, provide an
environment for the cooperative automated vehicles. Since PTV VISSIM 11 also
supports the Component Object Model (COM) interface to read script files
written in any programming language and can transmit data from VISSIM to
the server. We developed a script file in Python 3 that performed the roles of the
connected and automated vehicles to transmit package data to the server through
URL for each type of vehicle, including vehicle ID, origin position, and destina-
tion position.

The simulation environment for the proposed method is identical to the one
described in the evaluation environment section. As the new gasoline tax charges
are illustrated in section D of the proposed method structure and system model,
we considered three types of vehicles for our simulation. The conventional gaso-
line cars such as gasoline-powered cars, hybrids (gasoline and battery electric),
and full-battery electric vehicles (BEV). The average fuel consumption is consi-
dered for each type of vehicle for the JAMA 2021 report. Since full electric ve-
hicles do not use fuel, we considered them the same as hybrid vehicles.

In this study, the road length is set to one km, the departure time for all ve-
hicles starts from zero, and the end time is measured from the destination posi-
tion when the vehicle arrives at the 1000-m position. First, we ensured that if 100
vehicles make grid reservation requests from VISSIM, the server reserves the gr-

ids and routes for all 100 vehicles. Second, ensure that for various types of ve-

DOI: 10.4236/jtts.2022.124038

669 Journal of Transportation Technologies


https://doi.org/10.4236/jtts.2022.124038

B. Habibullah et al.

hicles, the designated charges are applied accurately based on the driven dis-
tance, such as, a vehicle being charged $0.125 for one kilometer of travel, as an
example is shown in Figure 11.

Moreover, to confirm that there was no data package loss, the database was
checked to ensure that all the information was saved in the database without any
data package loss. As demonstrated in detail in section (D) of the proposed me-
thod structure and system model, the unit rate of the designated grid charge unit
rate is assigned $0.0000725 in the network operating center/server. The first
scenario in the proposed method is gasoline tax revenue for the 2022-year mod-
el. In PTV VISSIM, the percentage of cars in 500 vehicles for model year 2022 is
set at 64.2 percent, 35 percent, and 0.8 for conventional gasoline vehicles (com-
bination of Conventional and Clean diesel vehicles), hybrids, and electric ve-
hicles (combination of Plug-in hybrid, Electric, and Fuel cell vehicles), respec-
tively [41]. The plug-in hybrid electric vehicle is considered the same as the BEV
for this study. Following the above settings and parameters, the simulation ran
for one hour, and overall, 500 vehicles communicated with the network operat-
ing center/server and were charged based on their designated grid charge unit.
The total revenue for these 500 vehicles was confirmed in the MongoDB data-
base, and the overall result is illustrated in Table 5.

The second scenario in the proposed method is for model year 2030 and is
identical to the first scenario. The change point is the percentage of cars in the
500-vehicle sample, which is 50 percent of conventional gasoline cars, 30 percent
of hybrid vehicles, and 20 percent of electric vehicles, to represent the forecasted
percentage for model year 2030 [41]. The simulation ran for one hour, and the
revenue collection was confirmed in the database, as illustrated in Table 6. It is
assumed that for model year 2030, all vehicles will be charged gasoline tax by the
proposed method. Therefore, since electric vehicles are charged based on a
grid-based charging system, the collected tax results in a revenue increase of up
to 21.8 percent, as illustrated in Table 6 and Figure 14.

Table 5. Shows analyzed parameters in the proposed method for model year 2022.

parameters for model year 2022

; Grid-ti Total
Vehicle r1 . Hme 20% Tax of Veh types %
Types unite, . . Revenue,
) gasoline in 500 Veh )
Grid/L . Vehicle
price $ Sample
(5 meter/L) types $
Passenger
0.00029 * 200 0.25 64.2% = 321 4.65
car
Hybrid
0.00029 * 200 0.25 35% =174 2.523
car
Electric
0.00029 * 200 0.25 0.8% =4 0.058
car
Total 0.058 0.25 500 7.25
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Table 6. Shows analyzed parameters in the proposed method for model year 2030.

parameters for model year 2030

: Grid-time Total
Vehicle ] 20% Tax of Veh types %
Types unite, . . Revenue,
yYp . gasoline in 500 Veh .
Grid/L ice S ) Vehicle
rice ample
(5 meter/L) P P types $
Passenger car 0.00029 * 200 0.25 50% = 250 3.62
Hybrid car 0.00029 * 200 0.25 30 % =150 2.175
Electric car 0.00029 * 200 0.25 20% = 100 1.45
Total 0.058 0.25 500 7.25

6.2. Flat Fee Method

The flat-fee method is calculated for 500 vehicles for one kilometer using the
formula Equation (1). The fuel price is assumed to be constant at $1.25 for both
model years 2022 and 2030. In Equation (1), R represents revenue in dollars,
VKMT represents vehicle kilometer traveled; for this study, one kilometer is
considered; L/KM represents fuel economy in kilometer per liter; C represents
the fuel tax, which is 20%, a combination of 10% local tax revenue and 10% na-
tional tax revenue; and N represents the number of vehicles driven in one kilo-

meter.

R = VKMT #(1L/KM)*C*N (1)

In the third scenario for model year 2020, the fuel price is $1.25 per liter and
the 20% tax (C) on the fuel price is 0.25. In a 500-vehicle sample, conventional
gasoline vehicles, hybrids, and electric vehicles received 64.2 percent, 35 percent,
and 0.8 percent, respectively, for model year 2022. The VKMT is one kilometer
since we are calculating revenue for one kilometer. Furthermore, fuel economy
for conventional gasoline vehicles is 17.2 km/L and hybrids are 20.3 km/L, which
is converted to liters/km for model years 2022 [41].

Since, in the current condition, electric vehicles are not paying the gasoline
tax, the electricity cost is considered instead of the gasoline tax. The average effi-
ciency of the Nissan Leaf is 164 Watthour/km, which is 0.061 kW per kilometer.
The average price of one kilowatt in Japan is $0.19, and we assumed that the
electricity tax is also 20%. In a 500-vehicle sample, the BEV percent is consi-
dered 0.8 percent to represent the current BEV and PHEV for model year 2022.
Based on the above-mentioned parameters, the gasoline tax revenue is calculated
using Equation (1) for model year 2022 as demonstrated in Table 7.

The fourth scenario is for model year 2030. The fuel price is assumed to be
constant and the unit price of (C) is the same as 0.25 as well as the vehicle tra-
veled distance is one kilometer. In a 500-vehicle sample, conventional gasoline
vehicles are expected to account for 50%, hybrid vehicles for 30%, and electric
vehicles for 20%. Furthermore, the average fuel efficiency for model year 2030 is
25.4 km/L is forecasted, which is converted to L/km as 0.04 liters/km [41].
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Table 7. Shows analyzed parameters in the flat-fee method for model year 2022.

Parameters for model year 2022

Vehicle Grid-time unite, 20% Tax of Veh types %  Total Revenue,
Types Grid/L gasoline in 500 Veh Vehicle
(5 meter/L) price $ Sample types $
Passenger car 0.058 0.25 64.2% = 321 4.65
Hybrid car 0.05 0.25 35% =174 2.175
Electric car 0.061 kw/km 0.004, Elec price 0.8% =4 0.001
Total 0.079 0.25 496 6.825

The average efficiency of the Nissan Leaf is assumed to be the same at 164
Wh/km, which is 0.061 kW per km for this study. The average price of one ki-
lowatt is $0.19. Electricity tax is assumed to be 20% in Japan. As of model year
2030, the percentage of BEVs is expected to be 20%. Based on the above para-
meters, the gasoline tax revenue is calculated using Equation (1) for model year
2030 as illustrated in Table 8. As the number of electric vehicles in the global

market grows and fuel efficiency improves, revenue will decrease continually.

6.3. Car Ownership Comparison for Grid-Based Charging and
Flat-Fee Method

This total cost of ownership is the sum of all the expenditures associated with
purchasing and operating a vehicle over a period of time. This cost includes not
only the purchase and financing price of the vehicle but also maintenance costs,
gasoline costs, insurance, and depreciation costs. Total car ownership can vary
substantially across different countries. For this study, to specify the parameters
and vehicle characteristics, we considered the annual cost of ownership in Japan.

In this study, the following representative vehicles are considered among all
different types of vehicles, such as the Toyota Prius (HEV) for hybrid electric
vehicles and the Nissan Leaf Battery Electric (BEV), as well as compared with
conventional gasoline vehicles such as the Toyota Corolla for Japan. The typical
comparison vehicles were chosen for their significant market share, model size,
and representation of different vehicle types. The annual ownership cost for the
vehicles mentioned is calculated using the following parameters: annual tax and
fee; annual maintenance; insurance; gasoline and electricity costs; and average
annual mileage.

The vehicle tax and fee systems have changed over the time period. Therefore,
for this study, the total cost of ownership is considered only for the model year
2022. In Japan, three distinct taxes must be paid: an acquisition fee based on the
vehicle’s Manufacturer Suggested Retail Price; a weight tax every two years; and
an annual tax [42]. The annual tax and fee in Japan are paid differently for each
type of vehicle, such as an average for conventional gasoline vehicles of $1078,
average for hybrid vehicles of $315, and an average for electric vehicles of $315
[43].
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Table 8. Shows analyzed parameters in the flat-fee method for model year 2030.

Parameters for model year 2030

. Grid-time Total
Vehicle . 20% Tax of Veh types %
Types unite, . . Revenue,
yYp . gasoline in 500 Veh .
Grid/L ice § S ) Vehicle
rice ample
(5 meter/L) P P types $
Passenger
0.058 0.25 50% = 250 3.62
car
Hybrid
0.04 0.25 30 % =150 1.5
car
Electric
0.061 kw/km 0.004, Elec price  20% = 100 0.025
car
Total 0.05 0.25 400 5.145

The average annual maintenance cost for each vehicle type is different for
each type of vehicle. Electric vehicles were found to be less expensive due to
lower brake wear and fewer moving parts. Annual taxes and fees are $358 per
year for traditional gasoline vehicles, $323 for hybrid vehicles, and $276 for elec-
tric vehicles, as explained in detail in [43].

In the case of car ownership costs, the annual fuel cost is usually the largest
operating cost; therefore, it is important to use representative real-world driving
fuel consumption. The average gasoline cost for a conventional gasoline vehicle
(corolla) is calculated to be $663. As well, the annual gasoline cost for hybrid ve-
hicles is $562 considered [43].

The insurance is mainly dependent on the vehicle model, condition, insurance
company, and other factors. The Prius is classed as an average vehicle for insur-
ance purposes [44].

Therefore, the average comprehensive insurance cover is considered to ade-
quately represent insurance costs for all vehicle types. Therefore, for this study,
we assumed full insurance at an average cost of $1512 in 2022 for a Prius vehicle
to adequately represent insurance costs for all vehicle types [45].

The average annual travel distance of LDV is 9120.3 km [46]. The fuel price
and the fuel economy for each type of vehicle are used to calculate the gasoline
cost. The average fuel economy for conventional gasoline vehicles is 17.2 km per
liter, while hybrid vehicles average 20.3 km/L for model year 2022, and electric
vehicles are considered the same as hybrid vehicles for this study. In addition,
for model year 2030, conventional gasoline vehicles have an average fuel econo-
my of 20.1 km/L, hybrid vehicles have an average of 25.4 km/L, and electric ve-
hicles are considered the same as hybrid vehicles. For models 2022-2030, the fuel
price is assumed to be constant for both model years at $1.25 per liter.

Since BEV vehicles do not use gasoline, the electricity cost is considered for the
Nissan Leaf. The average annual electricity cost is dependent on the increased ef-

ficiency of the electric drive power train during urban or rural driving. Annual
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fuel costs are usually cheaper for BEVs and PHEVs depending on the percentage
of driving in fully electric mode. The average efficiency of the Nissan Leaf is 164
Wh/km, and it can travel 6.1 kilometers at one kilowatt [47]. As well, the average
annual travel distance is considered the same as a hybrid vehicle, which is 9120.3
km, and the average price of one kilowatt in Japan is $0.19. Based on these pa-
rameters, the average annual cost of electricity is $284.

The annual gasoline tax (20%) is calculated for each type of vehicle based on
the average annual travel distance of LDVs of 9120 km, the 20% fuel price of
$1.25, and the fuel economy for each vehicle type for the current flat-fee method.

The annual ownership cost is calculated for conventional gasoline, hybrid, and
battery electric vehicles and compared for both model years 2022 and 2030 as il-
lustrated in Figure 12 and Figure 13.
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Figure 12. Annual usage cost of ownership in currant flat-fee and proposed method (PM)
model year 2022.
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Figure 13. Annual usage cost of ownership in currant flat-fee (FF) and proposed method
(PM) model year 2030.
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7. Result and Discussion

A software platform has been developed based on a grid-based charging system
as an alternative for collecting gasoline tax from zero-emission vehicles. In the
new method, spatio-temporal sections are created as equal grids of space and
time for the road. All vehicles can reserve the grid, route, and travel based on the
reservation role and charge dynamically upon arrival at their destination. This
provides maximum auditability to the user for each trip’s information and tax
charges. The reservation role will improve traffic management as well as im-
prove dynamic maps based on real-time information collection. A designated tax
fee is assigned per grid (5 meters/second) to the various types of vehicles to util-
ize as minimum travel distance tax charges. The designated tax charge unit is
created for each type of vehicle based on its fuel consumption; it could be devel-
oped for any type of vehicle and integrated into the platform for numerous types
of vehicles. The platform does not save any trip GPS data until the user pays the
taxes and collects the minimum information to provide privacy to users. The
new method is based on a reservation system that will provide assistance to
emergency vehicles in traveling to their destinations on time. The revenue could
be generated by collecting fees from emergency vehicles as well, which would
increase the total revenue.

The load test was conducted to measure communication time requests and
responses. The maximum response time for processing each vehicle was less than
48 milliseconds. However, when the number of requests increased, the average
value of the response time decreased, as shown in Table 3. The main reason is
that in the proposed method, the asynchronous processing method is imple-
mented with non-blocking I/O. Whenever the number of requests increases, it
simultaneously increases the processing threads, which reduces the response
times. However, when the number of processed requests reached 50, inconsis-
tencies occurred twice in the data storage. Therefore, when operating in a real
environment, inconsistencies could be avoided by determining the number of
requests to be handled for each thread on a server.

As shown in Figure 6 and Figure 9, the proposed method’s performance was
successfully tested by checking the grid reservations and collecting the gasoline
taxes using the spatio-temporal grid-charging method. We confirmed that if 100
vehicles submit requests, the server can reserve grids, compute the travel distance,
impose tax charges, and send invoices to the billing center for 100 vehicles. Fur-
thermore, since we created a one-kilometer road environment in VISSIM, to as-
sure accuracy, the distance traveled and tax charges for each vehicle were con-
firmed in the server database as 1000 meters and 0.0125 dollars.

We repeated the same procedure to validate the performance of different ve-
hicle inputs and found that the proposed method functioned accurately. To sum-
marize, we confirmed that the system can safely collect gasoline tax revenue for
all types of vehicles based on a micro-road-pricing method without errors or

data package losses for distance traveled. Each time the vehicle travels, the ve-
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hicle user could audit in detail his travel and tax information. To protect user
privacy, only the vehicle ID, travel distance, tax charges, and invoice number re-
lated information are disclosed to the billing center.

We evaluate and compare the gasoline tax of a 500-vehicle sample for one ki-
lometer as well as the annual ownership cost for both the proposed and current
flat-fee methods. Table 5 and Table 6 demonstrate the grid-based charging sys-
tem results, which show a 5.7 percent revenue increase for model year 2022 as
well as 21.8 percent for model year 2030, as shown in Figure 14. Table 7 and
Table 8 illustrate the gasoline tax revenue of 500 vehicle samples in one kilome-
ter. The result shows that since the electric vehicles are not paying the gasoline
tax as well as the hybrid vehicles are paying less tax, the total revenue decreased
compared to model years 2022 and 2030.

The proposed software platform is capable of taking taxes from any type of
vehicle based on its fuel consumption. We considered only the abovementioned
types of vehicles to compare them with conventional gasoline tax collection me-
thods such as the flat fee method. For this study, the grid-based charge fee is
considered to be constant, and it is converted based on conventional gasoline
vehicle fuel consumption. which applies to hybrids and BEVs as well. Thus, it
will bring equity in road tax for all types of vehicles that are using the road, as
well as increase the revenue per kilometer.

Furthermore, to better understand the tax burden for each type of vehicle for
both methods, we investigate how the annual cost of ownership changes for each
type of vehicle for both methods. We found that in model year 2022 the annual
gasoline tax differences for conventional vehicles and hybrid vehicles were al-

most the same, a BEV $76 increase utilizing the proposed method as illustrated
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Figure 14. The comparison of total tax revenue for the proposed and flat-fee methods in
model years 2022 and 2030.
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in Figure 12. Furthermore, using the proposed method, the annual gasoline tax
differences for conventional vehicles are $20, hybrid vehicles are $43, and BEVs
are $76 in model year 2030, as illustrated in Figure 13. Since in the proposed
method (PM), grid-based charging units are considered constant for convention-
al, hybrid, and BEV vehicles in both model years 2022 and 2030. Thus, the gaso-
line tax revenue will increase by 5.7% and 21.8% in 2020 and 2030, respectively,
over that gained by the flat fee method (FFM).

8. Conclusions

In this paper, a novel distance-based gasoline tax charging system as an alterna-
tive method to replace the current flat-fee method for collecting gasoline tax is
proposed. We used the vehicle-driving information through communication me-
thods installed in connected automated vehicles to develop a system to collect
gasoline tax. With a dynamic map platform, we created spatio-temporal sections
by dividing space-time into equal grids and assigning designated tax charges.
The result of our performance evaluation shows that the proposed method ade-
quately reserved grids and accurately collected gasoline taxes based on spatio-
temporal grids with minimum data package loss.

We tested and validated that our proposed method accurately generates reve-
nue from all types of vehicles. Each time the vehicle travels, the vehicle user
could audit in detail his travel and tax information to maintain privacy. The load
test result reveals that the response time was less than 48 milliseconds for com-
munication. The total gasoline tax revenue is supposed to increase by 5.7% and
21.8% in 2020 and 2030, respectively, over that gained by the flat fee method
(FEM).

Furthermore, the annual ownership cost difference between the proposed and
flat-fee methods is not high. Therefore, the proposed method is capable of pro-
viding sustainability and guaranteeing long-term alternative gasoline tax reve-
nue. Since the proposed method is implemented based on reservation role, routes
can be reserved in a time frame based on traffic demands with a pricing-based
control charging system over traffic density, which will reduce and manage traf-
fic congestion as well as increase revenue for road usage. For the future work,
since the new method is based on a reservation system that will provide assis-
tance to emergency vehicles in traveling to their destinations on time. The reve-
nue could be generated by collecting tax fees from emergency vehicles as well,

which would increase the total revenue.
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