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Abstract 
Low visibility condition hinders both air traffic and road traffic operations. 
Accurate forecasting of visibility condition helps aircraft operators and travel-
ers to make better decisions and improve their safety. It is, therefore, essential 
to investigate and identify the predictor variables that could influence and 
help predict visibility. The objective of this study is to identify the predictor 
variables that influence visibility. Four years of surface weather observations, 
from January 2011 to December 2014, were collected from the weather sta-
tions located in and around the state of North Carolina, USA for the model 
development. Ordinary least squares (OLS) and weighted least squares (WLS) 
regression models were developed for different visibility and elevation ranges. 
The results indicate that elevation, cloud cover, and precipitation are nega-
tively associated with the visibility in visibility less than 15,000 m model. The 
elevation, cloud cover and the presence of water bodies within the vicinity play 
an important role in the visibility less than 2000 m model. The chances of low 
visibility condition are higher between six to twelve hours after the rainfall 
when compared to the first six hours after the rainfall. The results from this 
study help to understand the influence of predictor variables that should be 
dealt with to improve the traffic operations and safety concerning the visibil-
ity near the airports/road transportation network. 
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1. Introduction 

Inclement weather conditions such as snow, sleet, fog, heavy rainfall, and cross-
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wind affect the air and road traffic operations. From the year 1982 through the 
year 2013, inclement weather condition contributed to 35% of the general fatal 
aviation incidents in the United States [1]. Low ceiling, fog, and clouds were 
among the top three variables which contributed to the weather-related fatalities 
in air traffic operations. According to the Federal Highway Administration 
(FHWA), from the year 2005 to the year 2014, around 28,533 road crashes oc-
curred per year due to fog, resulting in over 495 fatalities and 10,448 injury 
crashes [2]. From the year 2002 to the year 2012, there were 19,188 reported 
fog-related crashes in North Carolina alone [3]. A recent study also quantified 
the effect of rainfall and visibility conditions on road traffic travel time reliability 
[4]. Therefore, it is necessary to alert the aircraft operators and motorists befo-
rehand to improve safety and mobility during low visibility. However, fog is a 
localized phenomenon. It would be expensive to install visibility sensors at every 
few miles along roads. Hence, identifying the predictor variables associated with 
low visibility not only helps predict visibility but also helps disseminate potential 
risk associated with low visibility condition. 

In the past, researchers used several statistical and numerical modeling tech-
niques for fog assessment. Vislocky and Fritsch [5] developed linear regression 
models to predict ceiling height and visibility. The threshold values for visibility 
were less than 1.61 km, 4.83 km, 8.05 km, and 11.27 km, which were based on 
aircraft operations. Surface observation parameters such as opaque cloud amount, 
cloud cover, precipitation occurrence, wind direction and speed, sea level pres-
sure, dewpoint, and dewpoint depression were considered as the predictor va-
riables. Hilliker and Fritsch [6] developed models to forecast visibility at the San 
Francisco International Airport for 1 - 6 hour lead times. They observed that the 
inclusion of upper-air predictor variables can reduce prediction error by 3% 
than models solely from surface data. 

A detailed literature review related to the fog prediction methods is presented 
by Gultepe et al. [7]. Several research studies documented the parameters in fog 
assessments. Meyer et al. [8] showed that visibility in foggy conditions is a func-
tion of droplet number concentration. On the other hand, Jiusto [9] suggested 
that visibility is a function of both droplet size and liquid water content, con-
cluding that liquid water content is directly related to the droplet size. 

Tardif and Rasmussen [10] analyzed meteorological factors and scenarios lead-
ing to the occurrence of precipitation fog in the New York City area. Their study 
indicates that 18% of the analyzed precipitation events corresponded with fog 
events and that the majority of fog events occurred during light precipitation. 
Most of the fog events occurred at high elevation stations due to upslope flow 
and lowering of the cloud base. Since relative humidity is a function of tempera-
ture, they divided fog events into those that occurred due to moistening, cooling, 
moistening and cooling, or static conditions. An analysis of all fog events based 
on these tendencies indicates that moistening, cooling, moistening and cooling, 
and static conditions were observed for 42%, 25%, 10%, and 23% of the fog 
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events, respectively. 
Studies such as by Pulugurtha et al. [11] have explored the influence of surface 

weather observations and meteorological predictor variables on visibility. How-
ever, the visibility could be influenced by time-of-the-day, rainfall in past hours, 
wind speed, and the presence of water bodies within the vicinity. The contribu-
tion of the aforementioned predictor variables for different visibility and eleva-
tion ranges could vary and has not been explored in the past. Therefore, this 
study focuses on identifying the meteorological and temporal predictor variables 
which could influence the visibility with respect to change in the elevation and 
its range. 

2. Methodology 

The methodology adopted in this study includes the following steps. 
1) Identify the weather stations and collect surface weather observations 
2) Process data 
3) Develop and compare the linear regression models 
4) Validate the developed models 
Each step is explained next in detail. 

2.1. Identify the Weather Stations and Collect Surface Weather 
Observations 

National Oceanic and Atmospheric Administration (NOAA)/National Centers 
for Environmental Information (NCEI) collects hourly meteorological data from 
over 20,000 locations across the world [12] [13]. This Integrated Surface Data-
base (ISD) includes visibility, 2-m air temperature, dew point temperature, wind 
speed, atmospheric pressure, precipitation, and current weather conditions. Some 
stations also collect snow depth and snowfall information. The ISD database un-
dergoes a meticulous quality control process before distribution [14] [15]. How-
ever, data quality issues still remain in the database [15]. These issues are dealt 
with effectively through additional quality assurance algorithms. 

Data for four years, from January 2011 to December 2014, for 238 ISD loca-
tions in and near the state of North Carolina, USA were collected and processed 
for this study. 

2.2. Process Data 

The collected surface weather observations were processed by deleting the missing 
values and outliers using Microsoft SQL server. Further, precipitation in previous 
hours and time-of-the-day could influence the formation of fog. Therefore, binary 
variables such as the occurrence of rainfall and time-of-the-day were added to the 
database. 

Oliver [3] stated that crashes related to the low visibility conditions (49%) are 
more likely during morning hours. In addition, the literature review indicated 
that precipitation is a governing factor in low visibility conditions. Therefore, 
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the occurrence of rainfall variable was classified into four groups. They are 
rainfall in the past 3 hours (R0-3hrs), 3 to 6 hours (R3-6hrs), 6 to 12 hours (R6- 
12hrs), and 12 to 24 hours (R12-24hrs). Also, six subcategories of time-of-the- 
day were identified. They are 12 AM to 4 AM (T0am-4am), 4 AM to 8 AM (T4- 
am-8am), 8 AM to 12 PM (T8am-12pm), 12 PM to 4 PM (T12pm-4pm), 4 PM 
to 8 PM (T4pm-8pm), and 8 PM to 12 AM (T8pm-12am). Each of the categories 
was considered as a binary variable. In addition, dewpoint depression was computed 
by taking the difference between the air temperature and dew point temperature. 
Typically, fog forms when the dewpoint depression is roughly less than 2.5˚C - 
4.0˚C. 

According to the NOAA, fog is formed by the collection of suspended water 
droplets or ice crystals near Earth’s surface, which reduces the horizontal visibil-
ity below 1 km [16]. The water bodies in the vicinity of the weather station could 
influence the formation of fog. Therefore, the presence of water bodies within a 
1.61-km buffer of each weather station was captured using ArcGIS and was 
represented as a dichotomous variable. 

2.3. Develop and Compare the Regression Models 

Ordinary least squares (OLS) and weighted least squares (WLS) regression mod-
els were developed to investigate the effect of predictor variables on the visibility. 
OLS regression is the simplest form of linear regression and tries to minimize 
the residual sum of squares (RSS). In OLS regression, equal weight is given for 
each observation to minimize the RSS. However, WLS regression minimizes the 
weighted RSS with weighti = 1/variancei [17], where “i” is the individual obser-
vation. In other words, more weights are given to the observations closer to the 
population mean. 

OLS and WLS regression models were developed based on visibility and ele-
vation. The visibility range was classified into four groups: less than 15,000 m, 
less than 10,000 m, less than 5000 m, and less than 2000 m. As per the literature 
review, change in the elevation alters the visibility. Therefore, regression models 
were developed by the elevation range. The elevation ranges were classified into 
five groups: less than 50 m, 50 m to 250 m, 250 m to 750 m, and greater than 750 
m. 

For each visibility range, regression models were developed by considering all 
the samples irrespective of the elevation. Overall, twenty OLS and twenty WLS 
regression models were developed to investigate the influence of predictor va-
riables on visibility based on change in the elevation. 

Predictor variables with a level of significance (p-value) less than 0.05 (at a 
95% confidence level) were considered to have a statistically significant effect on 
the dependent variable (visibility). Predictor variables with p-value more than 
0.05 were removed from the regression model one at a time. This method is also 
called as a backward elimination method. Statistical measures such as R-squared, 
adjusted R-squared, Akaike Information Criterion (AIC), and root mean square 
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error (RMSE) were computed to evaluate the performance of the models devel-
oped. 

2.4. Validate the Developed Models 

Among all the developed models, the best-fitted model was selected based on the 
statistical tests. Two months (July and August of 2016) of hourly surface weather 
observations from the weather stations located in and around the state of North 
Carolina were collected for validation. Mean Absolute Percentage Error (MAPE) 
was used to check the accuracy of the developed model. The mathematical ex-
pression of MAPE is expressed as Equation (1). 

( ) ( )

( )

observed , predicted ,
1

observed .

1MAPE i j i jN
i

i j

V V

N V=

−
= ∑               (1) 

where, Vobserved(i,j) is the observed visibility at a weather station “i” during an hour 
“j”, Vpredicted(i,j) is estimated visibility at the same weather station “i” during the 
same hour “j”, and, N is the total number of hours. 

3. Results 

The developed models are discussed next. 

3.1. Visibility Less than 15,000 m 

OLS and WLS regression models were developed by considering all the samples 
with visibility value less than 15,000 m. The first model was developed using all 
the data. Other four models were developed for different elevation ranges (<50 
m, 50 m to 250 m, 250 m to 750 m, and >750 m). The results from OLS models 
(Table 1) indicate that elevation, cloud cover, and the amount of precipitation 
are negatively associated with visibility less than 15,000 m when all the data are 
used for modeling. However, wind speed at 10-m above ground level (m10wspd) 
and dew point depression (tair_dew) are positively associated with visibility less 
than 15,000 m when all the data are used for modeling. The positive coefficient 
for wind speed at 10-m indicates that the visibility increases by ~230 m for every 
1 m/s increase in wind speed at 10-m. This could be attributed to boundary-layer 
mixing during higher wind speeds, resulting in reduced humidity leading to 
good visibility condition. Likewise, rainfall in the past three hours, three to six 
hours, and twelve to twenty-four hours are positively associated with the visibil-
ity when all the data are used for modeling. However, the rainfall during the past 
six to twelve hours was observed to be negatively associated with the visibility 
when all the data are used for modeling. In other words, if rainfall occurred 
during past six hours to twelve hours, the chances of lower visibility would be 
higher. 

For regression models based on different elevation ranges (OLS and WLS), 
cloud cover and the amount of precipitation are negatively associated with the 
visibility. The results indicate that the coefficient of cloud cover is lower in the  

https://doi.org/10.4236/jtts.2022.123027


A. S. Mane et al. 
 

 

DOI: 10.4236/jtts.2022.123027 444 Journal of Transportation Technologies 
 

Table 1. OLS and WLS regression model coefficients for visibility data < 15,000 m. 

Variable 

OLS WLS 

All 
Elevation 

All 
Elevation 

<50 m 50 - 250 m 250 - 750 m >750 m <50 m 50 - 250 m 250 - 750 m >750 m 

Elevation −0.76 −6.79 1.58 −0.62 −2.74 −0.78 −7.59 1.50 −0.67 −3.05 

Cloud cover −32.07 −30.46 −31.21 −35.15 −40.11 −32.38 −30.43 −31.66 −35.77 −41.65 

m10wspd 231.90 265.33 273.84 250.82 120.49 234.85 262.50 274.46 246.38 122.74 

Precipitation −183.39 −219.76 −159.00 −185.38 −74.06 −184.56 −228.52 −166.44 −192.18 −85.40 

tair_dew 268.18 199.31 298.13 363.39 277.89 265.58 191.97 296.01 362.05 285.38 

T0am-4am 10,148.4 10,084.1 9843.0 10,214.8 11,820.3 10,247.4 10,211.0 9986.0 10,350.7 12,215.9 

T4am-8am 9745.7 9540.6 9519.0 9914.4 11,302.4 9833.0 9641.0 9643.3 10,042.8 11,632.0 

T8am-12pm 9292.9 9106.8 9008.2 9474.8 10,865.8 9367.3 9184.1 9091.5 9588.6 11,157.9 

T12pm-4pm 9639.2 9356.1 9461.5 9735.2 11,275.4 9700.7 9426.4 9544.3 9856.9 11,624.3 

T4pm-8pm 9190.0 9175.7 8819.9 9300.6 10,964.4 9199.8 9239.3 8901.7 9404.0 11,274.4 

T8pm-12am 9520.6 9582.6 9094.7 9528.1 11,274.1 9578.3 9672.9 9186.1 9629.3 11,585.4 

R0-3hrs 711.86 679.21 557.05 753.21 1212.77 683.66 652.33 545.01 762.64 1288.2 

R3-6hrs 93.73 102.47 89.48 69.91 − 74.74 99.86 84.92 50.92 − 

R6-12hrs −44.87 159.78 −118.56 −273.55 −185.96 −48.45 159.26 −157.62 −324.04 −201.17 

R12-24hrs 50.15 166.28 − − 174.51 45.96 166.97 − − 203.30 

water − 114.83 −46.65 133.37 − − 97.51 −67.99 115.88 − 

No. of Observations 685,375 244,448 259,202 158,126 23,599 685,375 244,448 259,202 158,126 23,599 

R-Squared 0.86 0.87 0.86 0.84 0.80 0.99 0.99 0.98 0.98 0.95 

Adj. R-Squared 0.86 0.87 0.86 0.84 0.80 0.99 0.99 0.98 0.98 0.95 

AIC 13,200,000 4,674,395 4,983,872 3,038,998 451,866 11,200,000 366,836 4,468,495 2,684,371 415,281 

RMSE 3567.00 3436.30 3622.50 3606.30 3479.40 825.40 808.27 1340.60 1175.10 1602.80 

Note: All the variables are significant at a 95% confidence level. 
 

regression models based on an elevation greater than 750 m compared to the re-
gression models based on an elevation less than 50 m. In other words, for a par-
ticular percent of cloud cover, the visibility is lower in higher elevation area 
(>750 m) compared to the lower elevation area (<50 m), if all the other predictor 
variables are kept unchanged. 

In addition, the coefficient of precipitation is higher in the regression models 
based on an elevation greater than 750 m compared to the regression models 
based on an elevation less than 50 m. Also, the coefficient of precipitation is 
steadily increasing in the regression models based on an elevation between 50 m 
to 250 m and between 250 m to 750 m. Therefore, for a particular amount of 
precipitation, the visibility is higher in the elevation greater than 750 m com-
pared to the elevation lower than 50 m, if all the other predictor variables are 
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kept constant. Further, rainfall in the past six to twelve hours is negatively asso-
ciated with the visibility in regression models for elevation between 50 m to 250 
m, 250 m to 750 m and greater than 750 m. 

The coefficients of predictor variables in OLS and WLS models are fairly con-
sistent. In terms of goodness-of-fit, both OLS and WLS models are acceptable, but 
the developed WLS models have slightly higher R-square and adjusted R-square 
values and lower AIC and RMSE values compared to OLS models. Similar obser-
vations were observed in case of developed models for different elevations. 

3.2. Visibility Less than 10,000 m 

The developed OLS and WLS regression models for visibility less than 10,000 m 
are summarized in Table 2. The WLS regression models outperformed the OLS  

 
Table 2. OLS and WLS regression model coefficients for visibility data < 10,000 m. 

Variable 

OLS WLS 

All 
Elevation 

All 
Elevation 

<50 m 50 - 250 m 250 - 750 m >750 m <50 m 50 - 250 m 250 - 750 m >750 m 

Elevation −0.39 − 1.89 −0.05 −0.83 −0.44 − 2.01 −0.06 −0.79 

Cloud cover −27.90 −28.20 −26.92 −28.91 −33.01 −28.39 −28.87 −27.63 −29.73 −34.03 

m10wspd 171.60 181.64 205.36 192.98 132.37 178.65 189.37 211.70 199.64 138.62 

Precipitation −72.42 −99.64 −63.34 −57.13 − −74.99 −102.16 −64.49 −58.03 − 

tair_dew 126.20 107.67 147.31 137.40 117.39 127.14 102.90 145.39 134.62 116.94 

T0am-4am 7060.1 6840.5 6707.1 7170.2 7597.8 7109.3 6911.7 6759.3 7240.6 7627.6 

T4am-8am 6839.6 6560.4 6551.5 6942.9 7376.7 6897.9 6596.7 6613.1 7019.9 7960.1 

T8am-12pm 6693.7 6488.5 6363.1 6759.9 7093.9 6722.7 6519.7 6390.5 6816.7 7080.8 

T12pm-4pm 7027.4 6890.6 6717.8 6976.3 7335.9 7071.5 6940.1 6769.0 7043.1 7341.0 

T4pm-8pm 6878.6 6790.8 6444.5 6945.6 7193.2 6901.1 6827.1 6468.1 7003.2 7193.1 

T8pm-12am 6979.2 6930.5 6504.8 7039.2 7388.9 7012.0 6965.0 6549.9 7098.8 7405.5 

R0-3hrs 916.54 1002.32 801.65 845.83 1130.51 926.88 1021.40 812.61 849.06 1176.7 

R3-6hrs 158.21 184.84 155.20 126.25 − 143.17 190.18 141.72 123.49 − 

R6-12hrs 50.85 199.27 46.63 −148.63 −102.69 55.87 208.90 41.51 −178.46 −95.62 

R12-24hrs − 169.87 −41.18 −119.56 − − 177.17 −50.67 −110.93 − 

Water −222.53 −219.11 −224.95 − − −234.49 −219.00 −241.94 − − 

No. of Observations 361,182 117,233 137,447 90,637 15,865 361,182 117,233 137,447 90,637 15,865 

R-Squared 0.83 0.84 0.83 0.81 0.79 0.98 0.98 0.97 0.97 0.96 

Adj. R-Squared 0.83 0.84 0.83 0.81 0.79 0.98 0.98 0.97 0.97 0.96 

AIC 6,701,768 2,173,896 2,550,679 1,681,680 292,863 5,254,038 1,846,543 2,292,924 1,485,337 264,234 

RMSE 2587.90 2572.60 2590.90 2586.30 2466.40 348.78 636.84 1014.50 875.56 1000.50 

Note: All the variables are significant at a 95% confidence level. 
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regression models based on the R-square, Adjusted R-square, AIC, and RMSE 
values. The elevation, cloud cover, amount of precipitation, and the presence of 
water are negatively associated with visibility when all the data are used for 
modeling. However, the elevation is observed to be positively associated with vi-
sibility for regression models based on an elevation between 50 m to 250 m. 
Further, in all the regression models, wind speed at 10-m and dewpoint depres-
sion are positively associated with the visibility. Also, rainfall in the past three 
hours, three to six hours, and twelve to twenty-four hours are positively asso-
ciated with the visibility when all the data are used for modeling. However, rain-
fall in the past six to twelve hours and twelve to twenty-four hours are negatively 
associated with the visibility for regression models based on an elevation be-
tween 250 m to 750 m. For regression models based on different elevation ranges 
(OLS and WLS), the coefficient of cloud cover decreases with an increase in the 
elevation, while the coefficient of precipitation increases with an increase in the 
elevation. 

3.3. Visibility Less than 5000 m 

The developed OLS and WLS regression models for the visibility less than 5000 
m are summarized in Table 3. The cloud cover, amount of precipitation, dew 
point depression, and the presence of water are negatively associated with visi-
bility when all the data are used for modeling. However, except rainfall in the 
past twelve to twenty-four hours, all other rainfall categories are positively asso-
ciated with the visibility when all the data are used for modeling. In all the re-
gression models, wind speed at 10-m is positively associated with visibility. How-
ever, rainfall in the past six to twelve hours and twelve to twenty-four hours are 
negatively associated with the visibility for regression models based on an eleva-
tion between 250 m to 750 m. For regression with different elevation ranges, the 
coefficient of cloud cover is lower in the regression models based on an elevation 
greater than 750 m compared to the regression models based on elevation less 
than 50 m. Likewise, dewpoint depression is negatively associated with the visi-
bility in all the regression models except for the regression model based on ele-
vation greater than 750 m. Also, the presence of water is negatively associated 
with visibility in all the regression models except for the regression model based 
on an elevation greater than 750 m. 

3.4. Visibility Less than 2000 m 

The developed OLS and WLS regression models for visibility less than 2000 m 
are summarized in Table 4. The elevation, cloud cover, and the presence of wa-
ter bodies are negatively associated with visibility when all the data are used for 
modeling. However, elevation is positively associated with the visibility for re-
gression models based on an elevation between 50 m to 250 m and greater than 
750 m. In all the regression models, wind speed at 10-m and the amount of pre-
cipitation are positively associated with the visibility. Also, the coefficient of  
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Table 3. OLS and WLS regression model coefficients for visibility data < 5000 m. 

Variable 

OLS WLS 

All 
Elevation 

All 
Elevation 

<50 m 50 - 250 m 250 - 750 m >750 m <50 m 50 - 250 m 250 - 750 m >750 m 

Elevation 0.06 5.90 1.54 − − 0.09 6.32 1.64 − − 

Cloud cover −17.87 −17.12 −17.33 −19.63 −24.52 −18.76 −18.45 −18.51 −20.39 −25.13 

m10wspd 109.61 101.52 137.48 130.29 114.44 112.19 105.74 143.10 137.30 118.44 

Precipitation −6.62 −19.51 − − − −7.87 −22.74 − − − 

tair_dew −14.59 −12.94 −8.24 −20.46 54.87 −14.87 −15.98 −11.51 −19.27 52.86 

T0am-4am 3956.1 3542.0 3744.7 4333.0 4355.2 4006.4 3626.5 3809.6 4381.2 4400.9 

T4am-8am 3795.4 3406.1 3586.0 4161.0 4224.3 3866.9 3465.5 3644.3 4202.7 4259.3 

T8am-12pm 3730.9 3438.1 3499.5 3990.9 4140.0 3781.9 3504.7 3554.5 4041.3 4127.1 

T12pm-4pm 4038.8 3812.2 3797.8 4257.2 4293.6 4085.9 3894.7 3883.8 4308.1 4332.6 

T4pm-8pm 4225.0 3916.4 3986.9 4515.6 4382.6 4295.4 4011.9 4067.1 4578.4 4393.0 

T8pm-12am 4179.3 3928.5 3894.2 4462.2 4457.4 4247.5 4022.4 3977.9 4523.7 4496.3 

R0-3hrs 696.22 754.85 612.67 658.82 879.57 735.63 814.40 647.13 697.50 928.77 

R3-6hrs 198.93 193.97 211.37 202.77 − 206.85 200.41 217.62 204.66 − 

R6-12hrs 62.29 196.46 53.15 −69.18 − 55.34 202.04 56.21 −71.68 − 

R12-24hrs −45.67 94.78 −61.42 −179.96 − −47.05 103.02 −68.91 −197.12 − 

Water −231.30 −308.40 −127.30 −113.81 − −249.03 −344.62 −135.75 −134.60 − 

No. of Observations 163,213 48,951 60,442 44,703 9117 163,213 48,951 60,442 44,703 9117 

R-Squared 0.79 0.79 0.81 0.80 0.77 0.97 0.95 0.96 0.96 0.96 

Adj. R-Squared 0.79 0.79 0.81 0.80 0.77 0.97 0.95 0.96 0.96 0.96 

AIC 2,845,300 852,055 1,053,069 778,812 159,183 2,515,898 772,895 936,818 696,850 140,030 

RMSE 1476.70 1456.90 1469.00 1468.30 1496.00 538.30 649.02 562 587.06 523.29 

Note: All the variables are significant at a 95% confidence level. 

 
precipitation is higher in the regression models based on an elevation greater 
than 750 m compared to the regression models based on an elevation less than 
50 m. On the other hand, dewpoint depression is negatively associated with the 
visibility for regression models based on an elevation between 50 m to 250 m 
and positively associated with the visibility for regression models based on an 
elevation greater than 750 m. In addition, the rainfall in the past twelve to twen-
ty-four hours is negatively associated with the visibility for regression models 
based on an elevation between 250 m to 750 m and greater than 750 m. Also, the 
presence of water is negatively associated with the visibility in the majority of the 
regression models. In addition, the coefficient of rainfall in the past six to twelve 
hours is lower compared to the earlier hours after the rainfall. In other words,  
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Table 4. OLS and WLS regression model coefficients for visibility data < 2000 m. 

Variable 

OLS WLS 

All 
Elevation 

All 
Elevation 

<50 m 50 - 250 m 250 - 750 m >750 m <50 m 50 - 250 m 250 - 750 m >750 m 

Elevation −0.13 −0.58 0.49 −0.19 0.85 −0.14 −0.63 0.44 −0.19 0.93 

Cloud cover −2.78 −2.66 −2.88 −3.39 −34.66 −2.92 −2.72 −3.09 −3.70 −36.16 

m10wspd 33.65 30.14 40.18 30.80 56.38 35.10 29.98 41.39 32.24 61.23 

Precipitation 6.44 3.38 5.78 13.54 36.39 6.89 4.29 6.98 14.34 40.65 

tair_dew − −4.90 − − 66.70 − −3.75 − − 65.18 

T0am-4am 1133.3 1106.0 1057.3 1268.9 3271.0 1145.8 1104.0 1078.8 1296.3 3307.3 

T4am-8am 1090.6 1065.4 1023.2 1208.8 3317.7 1103.3 1069.2 1041.7 1239.8 3362.6 

T8am-12pm 1001.4 992.1 924.2 1112.8 3220.3 1010.3 995.7 947.9 1134.0 3274.9 

T12pm-4pm 988.3 961.2 898.9 1117.5 3196.3 992.6 961.3 912.9 1143.8 3239.6 

T4pm-8pm 1153.3 1132.6 1069.0 1308.9 3252.7 1174.6 1137.2 1099.2 1359.1 3304.6 

T8pm-12am 1146.8 1153.9 1025.4 1312.3 3234.7 1157.5 1160.0 1050.0 1346.7 3276.0 

R0-3hrs 137.14 102.13 110.72 156.78 219.15 135.92 102.04 111.51 159.57 250.79 

R3-6hrs 58.60 75.76 45.23 75.17 − 57.59 77.53 44.61 74.71 − 

R6-12hrs 18.94 30.46 21.71 − − 17.93 29.65 19.22 − − 

R12-24hrs − 42.75 − −52.69 −57.10 − 42.13 − −55.72 −49.05 

Water −41.79 −47.31 − −66.86 − −45.20 −47.48 − −76.24 − 

No. of Observations 54,232 17,125 19,144 14,590 3373 54,232 17,125 19,144 14,590 3373 

R-Squared 0.76 0.78 0.77 0.76 0.66 0.98 0.97 0.96 0.96 0.93 

Adj. R-Squared 0.76 0.78 0.77 0.76 0.66 0.98 0.97 0.96 0.96 0.93 

AIC 821,396 258,336 289,282 221,156 51,702 665,843 222,987 249,388 192,932 45,662 

RMSE 470.56 456.35 462.27 473.24 514.49 112.14 162.58 163 179.89 210.16 

Note: All the variables are significant at a 95% confidence level. 
 

the chances of low visibility condition are higher between six to twelve hours af-
ter the rainfall compared to the first six hours after the rainfall. 

Based on the mode or type of transportation application, the developed re-
gression models would be helpful to understand the relationship between pre-
dictor variables and visibility. The WLS model for visibility less than 15,000 m 
would be suitable for air traffic or similar operations, while the WLS for visibility 
less than 2000 m would be suitable to share visibility information with motorists. 
In addition, both the aforementioned models are observed to be best-fitted 
models with higher R-square and adjusted R-square values and lower AIC, and 
lower RMSE values. 

3.5. Validation of the Selected Model 

The WLS regression model for visibility less than 15,000 m and the WLS regres-
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sion model for visibility less than 2000 m by considering the complete dataset 
were validated with the separate data acquired from the weather stations. The 
results indicate that the majority of the samples fall under the visibility range of 
15,000 m to 10,000 m with MAPE values between 10% and 30% (Figure 1). In 
addition, the majority of the samples fall under the MAPE greater than 40% cat-
egory for the regression model based on visibility less than 2000 m (Figure 2). 

4. Conclusions 

This study focuses on identifying predictor variables associated with different vi-
sibility and elevation ranges. Based on the application/mode of transportation,  

 

 
Figure 1. Distribution of errors—visibility less than 15,000 m. 

 

 
Figure 2. Distribution of errors—visibility less than 2000 m. 
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the developed models could be used to identify the effect of meteorological va-
riables on visibility. The WLS regression model for visibility less than 2000 m by 
considering all the samples and irrespective of elevation is the best-fitted model 
for road traffic operations and safety. Typically, the presence of water within the 
vicinity contributes to low visibility conditions (less than 2000 m). Also, the 
contribution of cloud cover on the low visibility conditions increases with an in-
crease in the elevation if all other predictor variables are kept constant. In gener-
al, the chances of low visibility condition are higher between six to twelve hours 
after the rainfall when compared to the first six hours after the rainfall. 

The WLS regression model for visibility less than 15,000 m, by considering all 
the samples and irrespective of elevation, is the best-fitted model for air traffic 
operations and safety. For visibility less than 15,000 m, the contribution of cloud 
cover on visibility increases with an increase in the elevation while the influence 
of precipitation on visibility decreases with an increase in the elevation. Also, the 
chances of visibility less than 15,000 m are higher between six to twelve hours 
after the rainfall when compared to the first six hours after the rainfall. 

Based on the findings, implementing dynamic message sign-boards/commu- 
nicating the information through radio/phones or the Internet to the motorists 
in the mountainous areas, near the water bodies and between six to twelve hours 
after the rainfall about the possibility of low visibility condition could improve 
the safety for motorists. 

Comparing the visibility from weather stations, numerical models, satellite 
data, and for regions with different climatic and topographical conditions war-
rant further investigation. 
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