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Abstract 
The present study aims to conduct 2 types of statistical analysis to reveal the 
impact of the spread of COVID-19 on train delays by comparing the potential 
contributing factors before, during and after the outbreak of the virus in the 
metropolitan train lines in Japan. First of all, the result of the present study 
clearly revealed the changes in contributing factors for train delays caused by 
the spread of COVID-19. Specifically, the contributing factors for train delays 
changed due to the decrease of passengers by the effect of the outbreak of the 
virus. Additionally, though large terminal stations were considered to be a 
major contributing factor in causing and increasing train delays in the past, 
this was not the case after the spread of COVID-19. Therefore, under such 
conditions, it is more effective to make improvements in small to medium 
stations and tracks rather than terminal stations. Furthermore, as the de-
crease in passengers also decreased train delays in commuter lines going to 
the suburbs due to the spread of COVID-19, the contributing factor for such 
lines is the excessive number of passengers. Therefore, as for countermea-
sures for train delays after the effects of COVID-19, it is necessary to disperse 
passengers in order to avoid passengers concentrating in the same time zones 
and train lines.  
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1. Introduction 

Regarding many train lines in the metropolitan area in Japan, the commuting 
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rush hour in the morning can be very heavy with delays in many train lines. 
However, the frequency and length of train delays vary from one train line to 
another. According to the Ministry of Land, Infrastructure, Transport and Tour-
ism [1], the number of days in which train delays certificates were issued during 
a period of 20 weekdays in 2016 was a maximum of 19.1 days and a minimum of 
1.4 days. Additionally, through services between train lines have been increasing 
in recent years and a further increase is also expected. Therefore, it is not un-
common for an issue that occurred in one location to affect the entire metropol-
itan area. Furthermore, according to the Tokyo Metro Co., Ltd. [2], through ser-
vices has caused an increase in passengers at specific central stations which has 
significantly intensified the congestion within stations. Therefore, in order to 
improve the convenience of railway networks within the metropolitan area, the 
contributing factors for train delays must be analyzed and improved based on 
the characteristics of each train line. 

On the one hand, COVID-19 is an infectious disease that was first erupted in 
Wuhan, China, in December 2019, and spread across the entire globe in 2020. In 
order to prevent its spread, the Japanese government declared a state of emer-
gency based on the Act on Special Measures for Pandemic Influenza and New 
Infectious Diseases Preparedness and Response for Tokyo Metropolis and Sai-
tama, Chiba, Kanagawa, Osaka, Hyogo and Fukuoka Prefectures for the first 
time on April 7th, 2020. However, the infections continued even after the re-
moval of the state of emergency. Additionally, the number of people taking 
trains decreased due to the spread of COVID-19. According to the East Japan 
Railway Company [3], their train operating revenue for April 2020 compared 
with the previous year was 50.5% for commuter passes and 24.0% in total in-
cluding non-commuter passes. In this way, the spread of COVID-19 has affected 
the trend of people taking trains and this change is ongoing as the virus contin-
ues to spread.  

On the other hand, quantitative analysis to search for contributing factors is 
extremely important in order to discover potential contributing factors. The 
present study aims to conduct statistical analysis to reveal the impact of the 
spread of COVID-19 on train delays by comparing the potential contributing 
factors before, during and after the outbreak of the virus. Specifically, contribut-
ing factors can be identified from a wider range of elements by adding train cars, 
stations, tracks and timetables as explanatory variables. Moreover, by preparing 
data for both single train line sections as well as through service train line sec-
tions, contributing factors for train delays can be clarified based on the recent 
conditions of metropolitan railway networks. Accordingly, the present study will 
clarify whether the spread of COVID-19 had effects on train delays, by compar-
ing the contributing factors before, during and after the outbreak of COVID-19. 

2. Related Work 

The present study will be categorized as a study related to the train delays in 
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metropolitan areas. In this category, the preceding studies can be divided into 
two groups. The first one is the studies related to the modeling of passengers’ 
behaviors, and the second one is related to the characteristics of train delays fo-
cusing on specific lines and train lines network. 

Regarding the studies related to the modeling of passengers’ behaviors, Ue-
matsu et al. [4], Landex et al. [5], Dollevoet et al. [6], Jian et al. [7], Iwakura et al. 
[8], Kobayashi et al. [9] [10], Kunimatsu et al. [11], Corman [12] and König et 
al. [13] developed their original simulation models and conducted train delay 
simulations. Additionally, Kanai et al. [14] proposed an optimal train delays 
management from passengers’ viewpoints considering the whole railway net-
work. Börjesson et al. [15] investigated how passengers on long-distance trains 
value unexpected delays relative to scheduled travel time and travel cost. Sato 
et al. [16] formulated the timetable rescheduling problem as a Mixed Integer 
Programming (MIP) problem and introduced a timetable rescheduling algo-
rithm that outputs a rescheduling plan minimizing further inconvenience to 
the passengers caused by the disruption. Robenek et al. [17] analyzed and im-
proved the current planning process of the passenger railway service in light of 
the recent railway market changes, in order to introduce the passenger centric 
train timetabling problem. Li et al. [18] analyzed passengers’ alternative choices 
and the corresponding influence mechanism with train delay in detail. Xu et al. 
[19] proposed the last train delay management especially for serious effect on 
transfer passengers’ regular trips, using bi-objective Mixed Integer Programming 
(MIP) model and Genetic Algorithm (GA). Yap et al. [20] propose a supervised 
learning approach to predict multiple types of disruption occurrence at differ-
ent stations of a public transport network and measure the impacts on passen-
ger delays. 

Regarding the studies related to the characteristics of train delays focusing on 
specific lines and train lines networks, in Japan, Kariyazaki et al. [21] [22] [23] 
[24], Yamamura [25] [26], Miyazaki et al. [27], Kobayashi et al. [28] and Ohshima 
et al. [29] conducted current state analyses of train delays and its expansions in 
order to clearly gasp the actual conditions in the metropolitan area. The above 
studies also identified the characteristics of train delays using data related to ur-
ban railways in the metropolitan area. In other countries, Goverde [30] and 
Corman et al. [31] computed the propagation of initial delays over a periodic 
railway timetable and the domino effect of secondary delays over the entire net-
work in the Netherlands. Dingler et al. [32] determined the cause of train delays 
making extensive use of a simulation tool known as rail traffic controller (RTC) 
in the United States (U.S.). Cule et al. [33] adapted and applied the state-of-the-art 
techniques for mining frequent episodes to the specific problem, in order to re-
veal the hidden patterns of trains passing under the knock-on delay in Belgium. 
Liu et al. [34] conducted statistical analyses to examine the effects of accident 
cause, type of track, and derailment speed in the U.S. Bergström et al. [35] ad-
dressed the lack of reliability within the Swedish rail network by identifying pas-
senger train delay distributions. Markovića et al. [36] proposed machine learn-
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ing models that capture the relation between passenger train arrival delays and 
various characteristics of a railway system in Serbia. Wen et al. [37] conducted 
statistical analysis on primary delays in the Wuhan-Guangzhou high-speed rail-
way (HSR). Mussanov et al. [38] described the train delays performance of dif-
ferent train types under combinations of structured and flexible operations on 
single-track railway lines in North America. Onet et al. [39] developed a da-
ta-driven Train Delay Prediction System (TDPS) for the Italian railway network 
which exploits the most recent big data technologies, learning algorithms and 
statistical tools. Arshad et al. [40] presented the prediction of train delay in In-
dian Railways through machine learning techniques. Wang et al. [41] collected 
and analyzed a three-month dataset of weather, train delay and train schedule 
records in order to understand the patterns of delays and to predict delay time of 
the Beijing-Guangzhou railway. Huang et al. [42] [43] developed Deep Learning 
(DL) approach to predict train delays in the railway networks in China and the 
Netherlands. Huang et al. [44] proposed a hybrid model to predict the main 
consequences of disruptions and disturbances during train operations, targeting 
Wuhan-Guangzhou and Xiamen-Shenzhen HSR lines. Mohd et al. [45] devel-
oped a machine learning model to predict the delay in the arrival of trains com-
bining previous train delay data and weather data in India. 

While the above are representative studies related to the present study, except 
for Ohshima et al. [30], there are few studies that have quantitatively revealed 
the contributing factors for train delays in the metropolitan area despite it being 
a significant issue that greatly impacts the daily lives of many people. This is be-
cause train networks, especially in large metropolitan areas in any country, are 
complex and contributing factors for train delays differ according to the train 
line or station. Therefore, the present study has a profound significance as it 
proposes strategies to reduce train delays by identifying the contributing factors. 
Additionally, in comparison with the aforementioned preceding studies, refer-
ring to the result of Ohshima et al. [30], the first originality of the present study 
is that quantitative analysis is conducted regarding the potential contributing 
factors for delays that generally occur in the train lines within the metropolitan 
area in Japan by conducting statistical analyses after collecting and processing 
multiple open data concerning various train lines and train delays. The second 
point of originality is that a plan to deal with the changes in contributing factors 
for train delays is proposed by comparing those before, during and after the 
outbreak of COVID-19 in order to identify the impact of train delays caused by 
the virus. 

3. Framework and Method 
3.1. Framework and Process 

In Section 4, data concerning train lines that are explanatory variables and data 
concerning train delays that are explained variables are collected and processed 
in order to conduct statistical analyses. Next, in Section 5, statistical analyses are 
conducted based on the data collected and processed in the previous section. 
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Furthermore, in Section 6, contributing factors for train delays are evaluated and 
discussed based on the results of statistical analyses in the previous section. 
Moreover, Kariyazaki et al. [22] revealed that the number of train delays certifi-
cates issued is higher on weekday mornings comparing with weekends. There-
fore, the present study will only target weekday mornings. 

In order to reveal the impact of COVID-19 on train delays, the present study 
will analyze 2 time periods: Before and after it was affected by COVID-19. First, 
data from June 2018 will be analyzed to clarify the contributing factors for train 
delays before the spread of COVID-19. The reason for selecting this month to 
represent the period before COVID-19 is that it is not affected by any holidays as 
there are no national holidays in June, and that it had comparatively low rainfall 
during the rainy season. Next, data from 2020 were analyzed in order to reveal 
the contributing factors for train delays caused by COVID-19. 2020 was divided 
into smaller periods to analyze and identify the changes in impact according to 
the progression of the spread of infections. 

3.2. Method 

In order to quantitatively grasp contributing factors for train delays, the present 
study will conduct 2 types of statistical analysis: standard multiple regression 
analysis and logistic regression analysis. The explained variable for the former is 
the “average delay time”, which indicates the quantitative condition of delays, 
while that for the latter is the “number of days that a delay occurred”, which in-
dicates the qualitative condition of delays. Additionally, the stepwise method 
employing the Akaike Information Criterion (AIC) [46] will be used as a varia-
ble selection method. 

3.3. Target Train Lines 

In the present study, the Tokyo metropolitan area, which is the largest metro-
politan area in Japan and has tremendously complicated train lines network and 
serious congestion, is selected as a target. The Tokyo metropolitan area consists 
of six prefectures such as Tokyo Metropolis and Kanagawa, Chiba, Saitama, Ya-
manashi, Tochigi, Gunma and Ibaragi Prefectures. Thus, in the Tokyo metro-
politan area, the range of train lines is very huge, it is necessary to grasp the out-
lines of the target train lines selected in the present study. Therefore, Figure 1 
describes the schematic diagram of the target train lines. 

As shown in Figure 1, the present study targets 55 train lines of 17 railway 
companies in the Tokyo metropolitan area. However, in the Tokyo metropolitan 
area, as train lines network is tremendously complicated, it is difficult to dis-
play all train lines in a single figure. Therefore, Figure 1 shows the schematic 
diagram of the target train lines excluding subway lines. As shown in Figure 1, 
the Yamanote Line (the Tokyo Loop Line) surrounds the central part of Tokyo 
Metropolis, and most of train lines are radially extended from the sub-centers 
such as Shinjuku, Shibuya, Ikebukuro and Shinagawa to the suburban areas.  
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Figure 1. Schematic diagram of the target train lines in the Tokyo metropolitan area. 

 

4. Collection and Processing of Data 
4.1. Collection of Train Delay Data 

For train delay data, train delay certificates made public on the website of each 
company were recorded and used. Figure 2 shows a sample of train delay certif-
icate that describes date of delay occurrence, time period of delay, train line of 
delay occurrence, and maximum delay time. The website of each company was 
regularly visited, and the delay times displayed on the train delay certificates re-
leased on the respective days were recorded.  

If there was no train delay certificate issued on a certain day, the delay time 
for that day was recorded as zero. Though the recording time used for delays was 
between the first train to 10 am, the records were made from the first train to 9 
am for some companies that did not issue train delay certificates until 10 am. If 
there were multiple train delay certificates for the corresponding time period, 
the longest delay is recorded as the delay time. Since many of the major railway 
companies provide train delay certificates combining main and branch train 
lines, train line data were also calculated by combining multiple train lines ac-
cordingly. Additionally, in cases where train delay certificates were separately 
provided, one from before major stations and the other starting from major sta-
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tions, the data for the 2 zones were combined. Figure 3 shows sample prepro-
cessed data concerning the average delay time for standard multiple regression 
analysis, and the number of days that a delay occurred for logistic regression 
analysis. 

4.2. Explanatory Variables 
In order to consider the effect of train cars, stations, passengers, tracks and working  
 

 

Figure 2. Sample of train delay certificate. 
 

 

Figure 3. Sample preprocessed data for average delay time and number of days that a de-
lay occurred. 
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timetables in 2018 and 2020 (My LINE Tokyo Timetable in 2018 and 2020) [47] 
[48] on train operations, based on the results of Ohshima et al. [30], 10 explana-
tory variables shown in Table 1 will be selected. Table 1 enumerates these ex-
planatory variables together with the data sources, and Figure 4 shows sample 
data for explanatory variables. 
 

 

Figure 4. Sample data for explanatory variables. 
 
Table 1. Sources of data for explanatory variables. 

Explanatory variables Data sources 

1) Transportation capacity for each train 
during peak hours (unit: people/train) 

Ministry of Land, Infrastructure, Transport and 
Tourism: Statistics information on congestion 
rates [49] [50]. 

2) Number of stations 
Kotsu Shinbunsha: My LINE Tokyo Timetable 
[47] [48]. 

3) Number of transported passengers per 
hour during peak hours (unit: people/hour) 

Ministry of Land, Infrastructure, Transport and 
Tourism: Statistics information on congestion 
rates [49] [50]. 

4) Number of stairs and escalators in 
terminal stations 

Station yard map from the website of each 
railway company. 

5) Length of train lines (unit: km) 
Kotsu Shinbunsha: My LINE Tokyo Timetable 
[47] [48]. 

6) Average number of tracks 
Kotsu Shinbunsha: My LINE Tokyo Timetable 
[47] [48]. 

7) Number of operating trains per hour 
during peak hours (unit: train/time) 

Ministry of Land, Infrastructure, Transport and 
Tourism: Statistics information on congestion 
rates [49] [50]. 

8) Number of trains according to type 
Kotsu Shinbunsha: My LINE Tokyo Timetable 
[47] [48]. 

9) Number of through service train lines 
Kotsu Shinbunsha: My LINE Tokyo Timetable 
[47] [48]. 

10) Length of through service sections 
(unit: km) 

Kotsu Shinbunsha: My LINE Tokyo Timetable 
[47] [48]. 

11) Number of connecting operation stations 
Station maps from the website of each railway 
company. 

12) Length of lines with connecting 
operation (unit: km) 

Station maps from the website of each railway 
company. 
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In the following part, the details of the explanatory variables shown in Table 1 
are explained. 

1) Transportation capacity for each train during peak hours (unit: people/train): 
This variable relates to the train’s car indicating the capacity of a train, calcu-

lated by dividing the transportation capacity per hour within the most congested 
section during peak hours by the number of operating trains (7) per hour. 

2) Number of stations: 
This variable represents the number of stations on the target train lines.  
3) Number of transported passengers per hour during peak hours (unit: 

people/hour): 
This variable indicates the number of passengers on a train in the most con-

gested sections during peak hours.  
4) Number of stairs and escalators in terminal stations: 
This variable relates to the stations and it is the number of stairs and escala-

tors on the platform of the terminal station. Stations from each train line with 
the highest number of incoming/outgoing passengers were selected as terminal 
stations.  

5) Length of train lines (unit: km): 
This variable relates to tracks indicating the length of train lines. For the dis-

tance, working kilometers are used. 
6) Average number of tracks: 
This variable indicates the number of tracks. For example, an entire train line 

that has double tracks is counted as 2, while a train line with quadruple tracks on 
one half and double tracks on the other are counted as 3.  

7) Number of operating trains per hour during peak hours (unit: train/time): 
This variable concerns the timetables indicating the number of operating 

trains per hour in the most congested sections during peak hours.  
8) Number of trains according to type: 
This variable relates to the timetables which indicate the number of each train 

type, such as “rapid”, “express” and “commuter express”, operated during the 
target time slot.  

9) Number of through service train lines: 
This variable represents the number of train lines with through services oper-

ated by multiple trains on corresponding train lines. Through service sections 
are mentioned in the following section.  

10) Length of through service sections (unit: km): 
This variable indicates the length of the entire through service sections in-

cluding the relevant train lines. The length of train lines with no through service 
will be the same length calculated in (5).  

11) Number of connecting operation stations:  
This variable indicates the number of stations on the relevant train line in which 

passengers can transfer to other lines. Transfers between train lines that are in-
cluded in the same train line group are not counted as connecting stations on 
data. 
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12) Length of lines with connecting operation (unit: km): 
This variable indicates the total number of connecting train lines for each sta-

tion on the relevant train line. The criteria for transfers are the same as the 
number of connecting stations in (11). Additionally, if transfers can be made to 
multiple lines included in the same train line group from the same station, they 
will be compiled.  

4.3. Setting Connecting Operation Sections 

In order to consider the through services that have been increasing within the 
metropolitan area in recent years, explanatory variables concerning the entire 
through service sections were adopted. The criterion for through service section 
was “the sections in which a train that runs on the relevant train line during the 
target period runs to the end of the target period”, and the through service sec-
tion were set based on the My Line Tokyo Timetables [47] [48]. 

4.4. Dividing of the Analysis Period 

In the present study, 2020 was divided into smaller periods to analyze and iden-
tify the changes in the contributing factors for train delays according to the pro-
gression of the spread of COVID-19. The analysis periods were divided as shown 
below based on events that greatly impacted the general public such as the dec-
laration of the state of emergency in Tokyo Metropolis as well as the start and 
discontinuation of the Go To Travel Campaign by the Japanese government. The 
Go To Travel Campaign was an initiative to provide subsidies equivalent to a 
maximum of 50% towards travel products and accommodations. In the present 
study, this campaign will be considered as a Japanese government initiative to 
encourage people to go out, and its start and discontinuation date will be used 
for the dividing of analysis periods. Table 2 presents each period and its details 
in the present study. 
 
Table 2. List of analysis periods in 2020.  

Number Start End Events of the starting date 

1 January 4th April 7th - 

2 April 8th May 25th 

Declaration of the state of emergency in 
Tokyo Metropolis and Saitama, Chiba, 
Kanagawa, Osaka, Hyogo and Fukuoka 
Prefectures 

3 May 26th July 17th 
Lifting of the state of emergency 
mentioned above 

4 July 22nd September 30th Start of the Go To Travel Campaign 

5 October 1st December 14th 
Start of the application of the Go To 
Travel Campaign for travels to and 
from Tokyo Metropolis 

6 December 15th December 28th 
Announcement of temporary 
discontinuation of the Go To Travel 
Campaign 
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5. Results 
5.1. Overview of the Results 

This section will conduct analyses using the R language and examine the results. 
R is a programming language used in statistical analysis for free and open-source 
software. In this section, the explanatory variables selected as a result of Section 
4.2, and the results of the regression analysis using the selected explanatory va-
riables will be shown in the table. The items in the table of the results differ 
according to the type of analysis. In the standard multiple regression analysis, 
Table 3 and Tables 5-10 indicate the regression coefficient, standard error, t 
value, and p value of each explanatory variable. In the logistic regression analysis, 
Table 4 and Tables 11-16 indicate the regression coefficient, Exp (regression  
 
Table 3. Results of the standard multiple regression analysis for June 2018. 

 
Regression 
coefficient 

Standard 
error 

t value p value 

Intercept 6.609 × 10−15 2.676 × 10−2 0 1 

Number of through service train lines 9.174 × 10−2 4.255 × 10−2 2.156 3.1298 × 10−2 

Length of through service sections 0.1210 4.446 × 10−2 2.722 6.587 × 10−3 

Transportation capacity for 
each train during peak hours 

0.1449 4.284 × 10−2 3.382 7.43 × 10−4 

Number of stairs and escalators 
in terminal stations 

6.732 × 10−2 3.989 × 10−2 1.686 9.1761 × 10−2 

Number of trains according to type −6.319 × 10−2 3.242 × 10−2 −1.989 5.1538 × 10−2 

Number of connecting operation stations −0.1336 7.039 × 10−2 −1.897 5.8024 × 10−2 

Length of lines with connecting operation 0.2755 7.618 × 10−2 3.617 3.11 × 10−4 

 
Table 4. Results of the logistic regression analysis for June 2018. 

 
Regression 
coefficient 

Exp 
(regression 
coefficient) 

Standard 
error 

z value p value 

Intercept −4.107 1.645611 × 10−2 0.9369 −4.384 1.17 × 10−5 

Number of through 
service train lines 

0.2299 1.25851362 4.970 × 10−2 4.626 3.72 × 10−6 

Number of operating trains 
per hour during peak hours 

−8.150 × 10−2 0.92173524 1.618 × 10−2 −5.036 4.76 × 10−7 

Number of transported 
passengers per hour 
during peak hours 

2.882 × 10−5 1.00002882 6.651 × 10−6 4.334 1.47 × 10−5 

Number of stairs and 
escalators in terminal stations 

0.2034 1.22552414 7.381 × 10−2 2.755 5.87 × 10−3 

Number of stations −9.050 × 10−3 0.99099086 5.399 × 10−3 −1.676 9.367 × 10−2 

Average number of tracks 1.651 5.21247949 0.5042 3.274 1.06 × 10−3 

Length of lines with 
connecting operation 

3.513 × 10−2 1.03575200 5.269 × 10−3 6.667 2.60 × 10−11 

https://doi.org/10.4236/jtts.2021.114033


K. Ohshima, K. Yamamoto 
 

 

DOI: 10.4236/jtts.2021.114033 530 Journal of Transportation Technologies 
 

coefficient), standard error, z value and p value. As suggested in the tables, the 
larger the absolute value of the regression coefficient is, the greater the impact its 
explanatory variable will have on the explained variable. 

5.2. Results for before the Spread of COVID-19 (June 2018) 

In this section, Table 3 and Table 4 show the results before the spread of 
COVID-19 (June 2018). In the standard multiple regression analysis for June 
2018, the regression coefficient for the length of lines with connecting operation 
was exceptionally high, while the regression coefficient for the number of con-
necting operation stations was largely negative. This is because the train delay 
time in commuter lines connecting to large terminal stations that go out towards 
the suburbs is longer than that of the central lines that connect with many sta-
tions. The greater regression coefficient for the transportation capacity for each 
train during peak hours demonstrated the large-scale impact on the delay times 
of commuter lines, which tend to have more cars, going out to the suburbs. Ad-
ditionally, the regression coefficient for the length of through service section was 
also high. This is because the delay times are long for the lines that connect with 
other commuter lines through the train lines in the city center. From the above, 
before the spread of COVID-19, delay times were longer in commuter lines 
going towards the suburbs and lines that run through services with many other 
train lines.  

In regards to the logistic regression analysis for June 2018, the regression coef-
ficient for the average number of tracks was especially high, and the regression 
coefficient for the number of stairs and escalators in terminal stations was also 
high. Tracks were accordingly quadrupled, indicating that the commuter lines 
with large-scale terminal stations going out to suburbs have a high delay proba-
bility. Additionally, the regression coefficient for the number of through service 
train lines was also high, and this suggests that such lines with many train lines 
have a high delay probability. From the above, before the spread of COVID-19, 
the delay probability was high for commuter lines going towards the suburbs 
and train lines with through services with many other train lines. 

5.3. Results for after the Spread of COVID-19 (2020) 

In this section, Tables 5-16 show the results after the spread of COVID-19 
(2020). Each period of 2020 is marked by the number indicated in Table 2 of 
this section. In order to grasp the condition of the period in which COVID-19 
spread the most, the results for Period 2 when the state of emergency was de-
clared will be introduced first. Next, the results for the entire year of 2020 are 
compared in order to grasp the change in contributing factors for train delays 
due to the progression of the spread of COVID-19. 

In the standard multiple regression analysis for during the state of emergency 
(Period 2), the regression coefficients for the length of train lines and length of 
through service sections were largely positive, while that of the number of trains  

https://doi.org/10.4236/jtts.2021.114033


K. Ohshima, K. Yamamoto 
 

 

DOI: 10.4236/jtts.2021.114033 531 Journal of Transportation Technologies 
 

Table 5. Results of the standard multiple regression analysis for Period 1. 

 
Regression 
coefficient 

Standard 
error 

t value p value 

Intercept −7.301 × 10−15 1.569 × 10−2 0 1 

Length of train lines 0.1310 3.038 × 10−2 4.313 1.66 × 10−5 

Number of connecting operation stations 8.809 × 10−2 2.822 × 10−2 3.121 0.00182 

Length of lines with connecting operation 7.644 × 10−2 3.547 × 10−2 2.155 0.03125 

Number of operating trains 
per hour during peak hours 

−0.1066 2.727 × 10−2 −3.908 9.49 × 10−5 

Number of transported passengers 
per hour during peak hours 

0.1809 2.828 × 10−2 6.396 1.80 × 10−10 

Number of trains according to type −8.957 × 10−2 2.541 × 10−2 −3.524 0.00043 

Average number of tracks 3.357 × 10−2 1.916 × 10−2 1.752 0.07986 

Number of connecting operation stations −0.1422 4.499 × 10−2 −3.160 0.00159 

Length of lines with connecting operation 0.2248 4.564 × 10−2 4.926 8.77 × 10−7 

 
Table 6. Results of the standard multiple regression analysis for Period 2. 

 
Regression 
coefficient 

Standard 
error 

t value p value 

Intercept −2.562 × 10−15 2.355 × 10−2 0 1 

Length of train lines 0.1701 3.805 × 10−2 4.471 8.30 × 10−6 

Length of through service sections 0.1346 3.440 × 10−2 3.911 9.56 × 10−5 

Number of transported passengers 
per hour during peak hours 

7.718 × 10−2 2.717 × 10−2 2.841 4.56 × 10−3 

Number of each train type −0.1167 2.722 × 10−2 −4.286 1.92 × 10−5 

 
Table 7. Results of the standard multiple regression analysis for Period 3. 

 
Regression 
coefficient 

Standard 
error 

t value p value 

Intercept −5.511 × 10−15 1.939 × 10−2 0 1 

Length of train lines 0.22887 3.795 × 10−2 6.027 1.94 × 10−9 

Number of connecting operation stations 6.740 × 10−2 3.372 × 10−2 1.998 0.045790 

Length of through service sections 6.379 × 10−2 4.145 × 10−2 1.539 0.123939 

Number of transported passengers 
per hour during peak hours 

8.846 × 10−2 2.793 × 10−2 3.167 0.001559 

Number of trains according to type −0.1383 2.790 × 10−2 −4.956 7.72 × 10−7 

Number of connecting operation stations −0.1562 5.367 × 10−2 −2.909 0.003658 

Length of lines with connecting operation 0.1894 5.469 × 10−2 3.463 0.000544 
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Table 8. Results of the standard multiple regression analysis for Period 4. 

 
Regression 
coefficient 

Standard 
error 

t value p value 

Intercept −2.556 × 10−15 1.837 × 10−2 0 1 

Length of train lines 0.1557 3.203 × 10−2 4.861 1.24 × 10−6 

Length of through service sections 0.2304 2.957 × 10−2 7.792 9.64 × 10−15 

Number of operating trains 
per hour during peak hours 

−8.277 × 10−2 2.964 × 10−2 −2.793 0.00527 

Number of transported passengers 
per hour during peak hours 

0.1529 3.874 × 10−2 3.946 8.17 × 10−5 

Number of stairs and escalators 
in terminal stations 

−7.450 × 10−2 2.875 × 10−2 −2.591 0.00962 

Number of trains according to type −0.1309 2.577 × 10−2 −5.081 4.04 × 10−7 

Number of connecting operation stations −0.1155 5.112 × 10−2 −2.258 0.02400 

Length of lines with connecting operation 0.1614 5.229 × 10−2 3.086 0.00205 

 
Table 9. Results of the standard multiple regression analysis for Period 5. 

 
Regression 
coefficient 

Standard 
error 

t value p value 

Intercept −1.176 × 10−15 1.706 × 10−2 0 1 

Length of train lines 0.2802 3.318 × 10−2 8.446 <2 × 10−16 

Number of through service train lines 8.866 × 10−2 3.008 × 10−2 2.947 0.00324 

Length of through service sections 6.417 × 10−2 3.693 × 10−2 1.738 0.08238 

Number of operating trains 
per hour during peak hours 

−0.1209 2.800 × 10−2 −4.317 1.63 × 10−5 

Number of transported passengers 
per hour during peak hours 

0.2075 3.622 × 10−2 5.728 1.12 × 10−8 

Number of stairs and escalators 
in terminal stations 

−7.447 × 10−2 2.708 × 10−2 −2.750 0.00600 

Number of trains according to type −0.1604 2.778 × 10−2 −5.773 8.65 × 10−9 

Number of connecting operation stations −0.2714 4.819 × 10−2 −5.633 1.95 × 10−8 

Length of lines with connecting operation 0.2655 4.922 × 10−2 5.395 7.44 × 10−8 

 
Table 10. Results of the standard multiple regression analysis for Period 6. 

 
Regression 
coefficient 

Standard 
error 

t value p value 

Intercept −1.324 × 10−15 3.788 × 10−2 0 1 

Length of train lines 0.4182 8.025 × 10−2 5.211 2.67 × 10−7 

Length of through service sections 0.1261 6.239 × 10−2 2.021 0.043741 

Number of transported passengers 
per hour during peak hours 

0.1147 4.530 × 10−2 2.532 0.011635 

Number of stations −0.2328 6.063 × 10−2 −3.840 0.000138 
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Table 11. Results of the logistic regression analysis for Period 1. 

 
Regression 
coefficient 

exp 
(regression 
coefficient) 

Standard 
error 

z value p value 

Intercept −3.794 2.251302 × 10−2 0.5975 −6.350 2.16 × 10−10 

Number of through 
service train lines 

0.1348 1.14434786 3.501 × 10−2 3.851 1.18 × 10−4 

Length of through 
service sections 

1.117 × 10−3 1.00111781 5.345 × 10−4 2.090 3.6599 × 10−2 

Transportation capacity for 
each train during peak hours 

7.189 × 10−4 1.00071912 1.692 × 10−4 4.249 2.15 × 10−5 

Number of transported 
passengers per hour 
during peak hours 

6.059 × 10−6 1.00000606 3.466 × 10−6 1.748 8.0410 × 10−2 

Number of stairs and 
escalators in terminal stations 

6.553 × 10−2 1.06772353 3.811 × 10−2 1.719 8.5536 × 10−2 

Number of stations −9.290 × 10−3 0.99075273 2.897 × 10−3 −3.207 1.340 × 10−3 

Average number of tracks 0.7348 2.08508685 0.2930 2.508 1.2141 × 10−2 

Length of lines with 
connecting operation 

2.178 × 10−2 1.02201926 2.410 × 10−3 9.036 <2 × 10−16 

 
Table 12. Results of the logistic regression analysis for Period 2. 

 
Regression 
coefficient 

exp 
(regression 
coefficient) 

Standard 
error 

z value p value 

Intercept −1.9347811 0.1444559 0.9305960 −2.079 3.7610 × 10−3 

Length of train lines 1.48908 × 10−2 1.0150022 2.5325 × 10−3 5.880 4.11 × 10−9 

Number of through 
service train lines 

0.1787198 1.1956856 5.55136 × 10−2 3.219 1.285 × 10−3 

Transportation capacity for 
each train during peak hours 

9.385 × 10−4 1.0009389 2.863 × 10−4 3.278 1.046 × 10−3 

Number of operating trains 
per hour during peak hours 

3.71886 × 10−2 1.0378887 1.58399 × 10−2 2.348 1.8886 × 10−2 

Number of trains 
according to type 

−0.2703075 0.7631448 7.21054 × 10−2 −3.749 1.78 × 10−4 

Average number of tracks −1.4075520 0.2447417 0.5196405 −2.709 6.755 × 10−3 

Number of connecting 
operation stations 

2.69567 × 10−2 1.0273234 1.41192 × 10−2 1.909 5.6233 × 10−2 

 
Table 13. Results of the logistic regression analysis for Period 3. 

 
Regression 
coefficient 

exp 
(regression 
coefficient) 

Standard 
error 

z value p value 

Intercept −3.9398350 1.945142 × 10−2 0.2772774 −14.209 <2 × 10−16 
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Continued 

Length of train lines 8.0389 × 10−3 1.00807135 2.4639 × 10−3 3.263 1.10 × 10−3 

Number of through 
service train lines 

0.1462204 1.15745131 5.74517 × 10−2 2.545 1.092 × 10−2 

Length of through 
service sections 

1.8572 × 10−3 1.00185888 8.337 × 10−4 2.228 2.590 × 10−2 

Transportation capacity for 
each train during peak hours 

1.2679 × 10−3 1.00126873 2.336 × 10−4 5.427 5.72 × 10−8 

Number of stairs and 
escalators in terminal 

stations 
7.02043 × 10−2 1.07272733 4.67139 × 10−2 1.503 0.13288 

Average number of tracks −0.1895380 0.82734129 4.80941 × 10−2 −3.941 8.11 × 10−5 

Number of connecting 
operation stations 

2.97481 × 10−2 1.03019500 9.7559 × 10−3 3.049 2.29 × 10−3 

 
Table 14. Results of the logistic regression analysis for Period 4. 

 
Regression 
coefficient 

exp 
(regression 
coefficient) 

Standard 
error 

z value p value 

Intercept −2.653 7.045479 × 10−2 0.5076 −5.226 1.73 × 10−7 

Length of train lines 1.253 × 10−2 1.01260505 1.785 × 10−3 7.019 2.24 × 10−12 

Number of through 
service train lines 

0.1630 1.17703050 4.255 × 10−2 3.831 1.28 × 10−4 

Transportation capacity 
for each train during 

peak hours 
6.368 × 10−4 1.00063701 3.477 × 10−4 1.831 6.7027 × 10−2 

Number of operating trains 
per hour during peak hours 

−4.641 × 10−2 0.95465366 2.159 × 10−2 −2.149 3.1596 × 10−2 

Number of transported 
passengers per hour 
during peak hours 

1.704 × 10−5 1.00001704 8.356 × 10−6 2.039 4.1426 × 10−2 

Number of trains 
according to type 

−0.1800 0.83524205 4.973 × 10−2 −3.620 2.94 × 10−4 

Length of lines with 
connecting operation 

9.702 × 10−3 1.00974951 3.046 × 10−3 3.185 1.449 × 10−3 

 
Table 15. Results of the logistic regression analysis for Period 5. 

 
Regression 
coefficient 

Exp 
(regression 
coefficient) 

Standard 
error 

z value p value 

Intercept −1.445 0.2356813 0.1891 −7.642 2.14 × 10−14 

Length of train lines 1.524 × 10−2 1.0153522 1.628 × 10−3 9.359 <2 × 10−16 

Number of through 
service train lines 

0.1229 1.1307447 3.776 × 10−2 3.254 1.14 × 10−3 

Number of operating trains 
per hour during peak hours 

−9.642 × 10−2 0.9080841 1.451 × 10−2 −6.644 3.06 × 10−11 
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Continued 

Number of transported 
passengers per hour 
during peak hours 

3.636 × 10−5 1.0000364 4.527 × 10−6 8.031 9.69 × 10−16 

Number of trains 
according to type 

−8.789 × 10−2 0.9158592 4.312 × 10−2 −2.038 4.150 × 10−2 

Number of connecting 
operation station 

−4.418 × 10−2 0.9567818 2.183 × 10−2 −2.023 4.303 × 10−2 

Length of lines with 
connecting operation 

1.936 × 10−2 1.0195453 6.278 × 10−3 3.083 2.05 × 10−3 

 
Table 16. Results of the logistic regression analysis for Period 6. 

 
Regression 
coefficient 

exp 
(regression 
coefficient) 

Standard 
error 

z value p value 

Intercept −1.4713748 0.2296096 1.2810231 −1.149 0.260724 

Length of train lines 2.79134 × 10−2 1.0283066 4.5895 × 10−3 6.082 1.19 × 10−9 

Number of through 
service train lines 

0.2285692 1.2568005 9.31264 × 10−2 2.454 1.4112 × 10−2 

Transportation 
capacity for each train 

during peak hours 
1.3681 × 10−3 1.0013691 4.473 × 10−4 3.058 2.225 × 10−3 

Number of operating trains 
per hour during peak hours 

4.40979 × 10−2 1.0450847 2.49337 × 10−2 1.769 7.6959 × 10−2 

Number of trains 
according to type 

−0.3882041 0.6782739 0.1082648 −3.586 3.36 × 10−4 

Average number of tracks −1.4782268 0.2280417 0.7316531 −2.020 4.3343 × 10−2 

Number of connecting 
operation stations 

−5.01086 × 10−2 0.9511261 2.45271 × 10−2 −2.043 4.1053 × 10−2 

 
according to type were largely negative. The high regression coefficients for the 
length of train lines and the length of through service sections show that the de-
lay times increase in proportion with the length of the train operation zones. 
Additionally, the large negative regression coefficient for the number of trains 
according to type suggests the delay time is especially short for commuter lines 
where many types of trains run to the suburbs during commuting hours. From 
the above, delay times during the declaration of the state of emergency were long 
for lines with long operation zones, while it was not so long for commuter lines 
traveling towards the suburbs. 

On the other hand, in the logistic regression analysis for Period 2, the regres-
sion coefficients for the average number of tracks and the number of trains ac-
cording to type were largely negative. This suggests that quadruple tracks were 
accordingly developed, indicating that the delay probability especially on com-
muter lines with many types of trains traveling to the suburbs was low. Addi-
tionally, the regression coefficient for the number of through service train lines 
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is comparatively high. This is because the delay probability is low for older train 
lines that travel through the downtown area among the train lines without 
through services. From the above, the delay probability during the declaration of 
the state of emergency was low for commuter lines going towards the suburbs 
and lines going through downtown areas. 

6. Evaluation and Discussion 
6.1. Results for before the Spread of COVID-19 (June 2018) 

When comparing the results of the standard multiple regression analysis and the 
logistic regression analysis for June 2018, the common finding was that train de-
lays were frequent in commuter lines traveling to the suburbs. Additionally, the 
number of through service train lines was selected as a variable for both analyses, 
and the fact that their regression coefficients were high suggests that the high 
number of through service train lines significantly impacted both the delay 
probability as well as the delay times. The regression coefficient for the length of 
lines with connecting operation was high in the standard multiple regression 
analysis, while it was relatively low in the logistic regression analysis, and the 
number of connecting operation stations was not selected. In contrast, the re-
gression coefficient for the number of stairs and escalators in terminal stations 
was high in the logistic regression analysis. Therefore, while the delay probability 
had the most impact from large-scale stations, delay times are also affected by 
the connectivity of entire train lines to railway networks.  

From the above, before the spread of COVID-19, the high number of through 
service train lines affected both the delay probability and the delay time. The de-
lay probability was affected by the scale of the largest stations, while the delay 
time was affected by the connectivity of the entire train lines to other railway 
networks. 

6.2. Results for after the Spread of COVID-19 (2020) 
6.2.1. Results for the Standard Multiple Regression Analysis 
The results of the standard multiple regression analysis for the whole year of 
2020 are compared. First, the number of selected variables of the analyses for Pe-
riods 2 and 6 were low compared with other periods. This is because the de-
crease in the number of passengers during these 2 periods reduced the contri-
buting factors for train delays. Additionally, the selected variables gradually in-
creased from Period 3 to Period 5, with Period 5 having the same number of va-
riables as Period 1. This indicates that the contributing factors for train delays 
increased to the condition similar to before the spread of COVID-19 due to the 
implementation of the Go To Travel Campaign where people started to return to 
the streets feeling less hesitant to go out. Additionally, the regression coefficients 
for the length of train lines and the length of through service sections for Period 
6 were high as with Period 2. This shows that the length of train operation zones 
affected the delay times during Period 6 just as during the state of emergency. 
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From the above, while the contributing factors for train delays had begun to 
return to their original state before COVID-19 with people feeling less hesitant 
to go out due to the Go To Travel Campaign implemented after the state of 
emergency, the decision to temporarily discontinue the Go To Travel Campaign 
caused the situation to return to how it was during the state of emergency. This 
suggests that the decision to temporarily discontinue the Go To Travel Cam-
paign affected the use of trains almost as much as the first state of emergency 
did. 

6.2.2. Results for the Logistic Multiple Regression Analysis 
The results of the logistic regression analysis for the whole year of 2020 are 
compared. First, the regression coefficient for the average number of tracks was 
positive during Period 1 but turned negative during Periods 2 and 6. From this, 
while commuter lines with quadruple tracks traveling to the suburbs were a 
contributing factor to the increase in the delay probability before the progression 
in the spread of COVID-19, they had become contributing factors to decrease 
the delay probability due to the state of emergency and the discontinuation of 
the Go To Travel Campaign.  

Additionally, the regression coefficient for the number of trains according to 
type was largely negative during Period 2 but gradually moved towards zero 
from Period 3 to Period 5. This is because the delay probability increased as 
people were feeling less hesitant to go out with the implementation of the Go To 
Travel Campaign, and the use of commuter lines heading towards the suburbs 
gradually increased. However, the regression coefficient for the number of trains 
according to type in Period 6 was more largely negative than that of Period 2. 
This demonstrates that the delay probability had decreased due to the discon-
tinuation of the Go To Travel Campaign which again led to a decrease in train 
use.  

From the above, while the passengers of commuter lines traveling to the sub-
urbs have increased to the point where the delay probability also increased, the 
passengers decreased to the point where delay probability also decreased due to 
the spread of COVID-19. Additionally, the decrease in the delay probability for 
commuter lines running towards the suburbs especially in Periods 2 and 6 show 
that the discontinuation of the Go To Travel Campaign had the same effect as 
the state of emergency on the use and the delay of such lines. 

6.2.3. Comparison of the Results for the Standard Multiple Regression  
Analysis and the Logistic Regression Analysis 

The results of the standard multiple regression analysis and logistic regression 
analysis for the whole year of 2020 are compared. First, in contrast with the large 
decrease in the number of selected variables in the standard multiple regression 
analysis for Periods 2 and 6, the number of selected variables in the logistic re-
gression analysis had no major changes throughout the year. This indicates that 
there are many contributing factors that affected the delay probability but the 
spread of COVID-19 did not cause any major changes. However, as the number 
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of passengers affected the length of delay times, it was evident that the contri-
buting factors that increased delay times were reduced, when the difference be-
tween train lines were lessened due to the spread of COVID-19.  

Additionally, while the regression coefficients for variables representing the 
length of operation zones such as the length of train lines and the length of 
through service sections increased in the standard multiple regression analysis, 
the regression coefficients for such variables hardly increased or were not se-
lected in the logistic regression analysis. Therefore, it can be presumed that the 
length of train operation zones does not greatly impact the delay probability but 
greatly affects the length of delay times. From the above, though the contributing 
factors for train delays changed to the ones representing operation zones as a 
result of the decrease in passengers due to the spread of COVID-19, it did not 
greatly affect the delay probability.  

6.3. Comparison of the Results for before and after the Spread of  
COVID-19 

The results of June 2018 (before COVID-19) and each period of 2020 (after the 
spread of COVID-19) are compared. First, when comparing Period 1 with June 
2018, the trend of selected variables and the regression coefficients are similar in 
both the standard multiple regression analysis and the logistic regression analy-
sis. Therefore, before the declaration of the state of emergency with the progres-
sion of the spread, there was no impact large enough to change the contributing 
factors for train delays from before the spread of COVID-19.  

Next, Period 2 is compared with June 2018. In the standard multiple regres-
sion analysis, the number of selected variables was significantly reduced and the 
contributing factors for train delays also decreased. Additionally, with the logis-
tic regression analysis, the regression coefficient for the average number of 
tracks was positive in June 2018 but was negative in Period 2. Therefore, it is 
evident that train delays had decreased in commuter lines with quadruple tracks 
traveling to the suburbs after the spread of COVID-19. 

When comparing the results of the standard multiple regression analysis for 
Period 3 with June 2018, the selected variables are slightly different but the trend 
of the regression coefficients was relatively similar. This suggests that the lifting 
of the state of emergency caused the contributing factors for train delays to be-
come similar to that of before the spread of COVID-19. Additionally, the se-
lected variables are different from the results of June 2018 in the logistic regres-
sion analysis. In other words, while the variables representing transportation 
scale per hour and connectivity of railway networks were selected for June 2018, 
the variables indicating the length of operation zones and concentration towards 
major stations were selected for Period 3. Hence, in this period, train delays 
caused by the transportation scale were reduced with contributing factors of the 
length of train lines and major stations being the cause of most delays.  

When comparing the results of the standard multiple regression analysis for 
Period 4 with June 2018, the trend of regression coefficients was relatively close, 
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while the selected variables were slightly different as with the case in Period 3. 
However, the regression coefficient for the number of stairs and escalators in 
terminal stations was positive in June 2018 but was negative in Period 4. Though 
this variable was not selected in Period 3, train delays in lines with large terminal 
stations had reduced due to the spread of COVID-19. Additionally, regarding 
the logistic regression analysis, while the selected variables were slightly differ-
ent, the results were similar to that of June 2018 and the train delay occurrences 
were similar to the condition before COVID-19. However, the number of stairs 
and escalators in terminal stations was not selected, and train delays caused by 
large terminal stations had decreased.  

When comparing the results of the standard multiple regression analysis for 
Period 5 with June 2018, the regression coefficient for the number of stairs and 
escalators in terminal stations was negative as with the case in Period 4. This in-
dicated that the decrease of train delays in large terminal stations had continued. 
Additionally, the number of variables selected in Period 5 had become compara-
tively high, and the contributing factors for train delays had increased as the 
spread of COVID-19 slowed down. In the logistic regression analysis, just as in 
Period 4, the variable for the number of stairs and escalators in terminal stations 
was not selected, and the train delays caused by large terminal stations had de-
creased. Moreover, the regression coefficient for the number of through service 
train lines had decreased compared with June 2018, and train delays in lines with 
through services to many other train lines had also decreased compared with 
before COVID-19.  

When comparing the results of the standard multiple regression analysis for 
Period 6 with June 2018, as mentioned in Section 5.2, the number of selected va-
riables had decreased just as in Period 2, and the contributing factors for train 
delays had also decreased due to the temporary discontinuation of the Go To 
Travel Campaign. Additionally, the regression coefficient for the length of train 
lines was especially high in Period 6, and most of the train delays were propor-
tional to the length of operation zones during this period. In the logistic regres-
sion analysis, the regression coefficient for the average number of tracks turned 
from positive to negative as in Period 2, and the train delay occurrences in 
commuter lines traveling to the suburbs decreased due to the temporary discon-
tinuation of the Go To Travel Campaign. Furthermore, while there were many 
occurrences and increase of train delays in commuter lines traveling to the sub-
urbs before the spread of COVID-19, as mentioned earlier, train delays de-
creased in such lines after the spread of the virus and this was especially signifi-
cant in Periods 2 and 6. Therefore, it can be said that the contributing factors for 
train delays had changed due to the declaration of the state of emergency. Spe-
cifically, the contributing factors that previously increased train delays reduced 
those after the declaration of the state of emergency. Additionally, similar 
changes were seen due to the temporary discontinuation of the Go To Travel 
Campaign. 
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From the above, the number of train delays stopped increasing in the afore-
mentioned commuter lines traveling to the suburbs, and the contributing factors 
have changed due to the state of emergency and the suspension of the Go To 
Travel Campaign. Moreover, the occurrence and increase of train delays caused 
by large terminal stations significantly decreased due to the spread of COVID-19. 

7. Conclusions 

The present study conducted 2 types of statistical analysis to reveal the impact of 
the spread of COVID-19 on train delays by comparing the potential contributing 
factors before, during, and after the outbreak of the virus within the metropoli-
tan area in Japan. The results of the present study revealed the changes in con-
tributing factors for train delays caused by the spread of COVID-19. Especially 
during the state of emergency, as shown in Section 5.2, the occurrence and in-
crease of train delays in commuter lines going towards the suburbs decreased, 
and those became greatly affected by the length of the operating zones of trains. 
Additionally, after the decision to temporarily discontinue the Go To Travel 
Campaign, changes in contributing factors for train delays similar to that of the 
state of emergency were seen as described in Sections 5.1 and 5.2. This indicates 
that train delays were reduced in commuter lines traveling to the suburbs during 
the declaration of the state of emergency as well as after the temporary discon-
tinuation of the Go To Travel Campaign.  

Additionally, during the state of emergency and after the temporary discon-
tinuation of the Go To Travel Campaign, train delays caused by factors that 
contributed to congestion in the past decreased, and the impact that was depen-
dent on the length of operation zones had become relatively significant. This 
suggested that the contributing factors for train delays changed due to the de-
crease of passengers by the effect of the outbreak of COVID-19. In particular, 
the state of emergency and the temporary discontinuation of the Go To Travel 
Campaign had an extremely significant effect on the changes in contributing 
factors for train delays. The number of passengers had decreased during this pe-
riod, and there is a possibility that contributing factors for train delays changed 
when passengers in the Tokyo metropolitan area decreased. Moreover, as men-
tioned in Section 5.3, though large terminal stations were considered to be a 
major contributing factor in causing and increasing train delays in the past, this 
was not the case after the spread of COVID-19. Therefore, under such condi-
tions, it is more effective to make improvements in small to medium stations 
and tracks rather than terminal stations in order to improve train delays. 

Furthermore, as the decrease in passengers also decreased train delays in 
commuter lines going to the suburbs due to the spread of COVID-19, the con-
tributing factor for such lines is the excessive number of passengers. This sug-
gests that train delays can be reduced by the distribution of passengers. As for 
countermeasures for train delays after the effects of COVID-19, it is necessary to 
disperse passengers in order to avoid passengers concentrating in the same time 
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zones and train lines. From the above, regarding future measures for train delays 
as the social situation has changed due to the impact of COVID-19, the im-
provement on overall equipment and the prevention of extreme congestion are 
more effective than intensive investments in one location.  

The spread of COVID-19 continues even as the present study is advanced, and 
there may be further changes in contributing factors for train delays depending 
on future developments and trends. Therefore, train delay trends must continue 
to be closely observed until the pandemic comes to a complete end. Additionally, 
the decrease in passengers and changes in the use of trains due to COVID-19 
have also occurred in other areas outside of the Tokyo metropolitan area. Ac-
cordingly, before, during, and after the outbreak of the virus, contributing fac-
tors for train delays peculiar to the Tokyo metropolitan area can be identified by 
comparing with other areas.  
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