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Abstract 
Ride-hailing and carpooling platforms have become a popular way to move 
around in urban cities. Based on the principle of matching riders with drivers, 
with Uber, Lyft and Didi having the largest market share. The challenge re-
mains being able to optimally match rider demand with driver supply, re-
ducing congestion and emissions associated with Vehicle clustering, dead-
heading, ultimately leading to surge pricing where providers raise the price of 
the trip in order to attract drivers into such zones. This sudden spike in rates 
is seen by many riders as disincentive on the service provided. In this paper, 
data mining techniques are applied to ultimately develop an ensemble learn-
ing model based on historical data from City of Chicago Transport provider’s 
dataset. The objective is to develop a dynamic model capable of predicting 
rider drop-off location using pick-up location data then subsequently using 
drop-off location data to predict pick-up points for effective driver deployment 
under multiple scenarios of privacy and information. Results show neural 
network algorithms perform best in generalizing pick-up and drop-off points 
when given only starting point information. Ensemble learning methods, Ada-
boost and Random forest algorithm are able to predict both drop-off and 
pick-up points with a MAE of one (1) community area knowing rider pick-up 
point and Census Tract information only and in reverse predict potential pick- 
up points using the Drop-off point as the new starting point. 
 

Keywords 
Ride-Hailing, Braess Paradox, Vehicle Clustering, Deadheading, Congestion, 
Predictive Modelling, Vehicle Deployment, Ensemble Learning 

 

1. Introduction 

In recent years, ride-hailing and carpooling platforms have become increasingly 
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popular and convenient way of moving around in most modern cities, matching 
riders with drivers, with Uber, Lyft and Didi being the biggest providers within 
the industry. In light of increased environmental awareness as well as concerns 
on minimizing carbon footprint, ridesharing and carpooling has become increa-
singly important.  

Carpooling has numerous societal and individual benefits, including but not 
limited to reduction of Greenhouse-Gas emissions, cost savings in terms of shared 
travel costs for public agencies and employers [1]. 

In their paper, [2] present salient points in the understanding of the key as-
pects of the existing ridesharing system, going on to design a framework to iden-
tify challenges in the use of ridesharing thus fostering the development of me-
chanisms to overcome and promote widespread use.  

Emerging studies [3] demonstrate psychological factors such as monetary and 
time benefits becoming more dominant factors in decisions to use ride-hailing 
and carpooling services. In relation to rider satisfaction, [4] found surge pricing 
not to bias Uber towards riders of higher income threshold, but rather, homo-
philous matching that is, matching riders to drivers of a similar age resulted in 
higher ratings and further went on to use these insights to predict driver and/or 
rider retention. Examining ridesharing platforms, [5] concluded moving forward, 
these platforms will do more good than harm, also, it was found that relatively 
little is known about their efficiency and equity but is likely to change with grow-
ing research interest. Using online reviews of drivers of popular ride-hailing com-
panies, Uber and Lyft, [6] was able to demonstrate preference of Uber to Lyft. In 
addition, analysis show increased competition to attract more drivers, for which 
drivers counted job flexibility, and meeting new people as main advantages. In 
contrast, insufficient compensation, poor job security, poor rider behavior and 
poor customer service as impeding factors. 

2. Problem Statement 

The Braess Paradox [7] [8] is a network phenomenon in which it is observed 
that the addition of extra capacity reduces overall network performance over 
time with lack of cooperation of users being the ultimate culprit for network 
breakdown  

Congestion & Vehicle-Clustering: Over the years, the number of vehicles en-
gaged in ride-hailing has increased astronomically, surpassing taxis in many ur-
ban cities, [9]. A report from the (Union of Concerned Scientists, 2020) shows 
that ride hailing trips are responsible for 69 percent more emissions than the 
trips the service displaces with a significant amount of trips being Deadheading 
(Dead-mileage). This constitutes the period between drop-off and pick-up and is 
associated with increased costs [10]. Surge pricing i.e. where prices are adjusted 
upwards to meet acute driver shortage is viewed a disincentive to many riders, 
leading to lost revenue. 

Solving the problem 
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In order to combat the problems above, it is necessary to develop a sound 
driver deployment strategy. Collective Intelligence (COIN) [11] was first sug-
gested as a way of solving Braess paradox. This involves all networks users acting 
centrally for the benefit of all. [12], Observed that strategic repositioning is key 
to maximizing driver earnings as against surge chasing which increases Dead- 
mileage. First and foremost will be to be able to predict and deploy vehicles ac-
cordingly. [13], conclude that centralized fleet coordination offers substantial 
benefits towards sustainable growth and market share. 

Research Purpose and Objective 
The objective is to develop a city-wide prediction algorithm capable of pre-

dicting trip pick-up and drop-off points, as well as potential pick-up locations 
after each drop-off based on historical data using Data mining Techniques. 

Case study: City of Chicago, Illinois.  

3. Related Works 

The growth of demand for ride-hailing services has disrupted urban transporta-
tion and is changing the way in which people travel. Modern ride-hailing servic-
es require the development of efficient recommendation systems in order to im-
prove both riders and driver experience. In response, many researchers have 
conducted various experiments to help predict ride hailing demand in order to 
improve effective ride-hailing vehicle deployment.  

In attempting to optimize the number of pick-ups whilst minimizing waiting 
time for taxi services, [14] developed a ride-hailing recommendation system. 
This is completed in 3 phases. The model starts by first effectively estimating fu-
ture customer demand in different clusters within the area of interest. This is 
followed up with a taxi-to-region matching according to preset rules and con-
ditions including driver preference and finally concluded with the design of an 
optimized geo-routing algorithm to help drivers minimize dead-mileage. The 
problem with this mainly lies with the instability of driver preference which 
changes frequently, making the approach difficult to deploy in real world situa-
tions. 

Dead-mileage comprises a significant share of total travel covered by drivers 
within the ride-hailing industry in terms of miles travelled and number of trips 
overall. Accurate demand prediction within the ride-hailing industry can greatly 
improve vehicle utilization whilst reducing waiting time. Customers mainly de-
sire minimization of waiting time whilst drivers on the other hand aim to mi-
nimize deadheading and idle time after trips. This subsection of the industry 
comprises another area of strong research interest.  

[15], is one of the first to study this emerging field. He develops a model which 
predicts the gap between rider demand and driver supply within a given time 
period and specific geographic area using Point of Interest (POI), Traffic, Weather 
data as well as data from Car sharing orders. A data sampling techniques is used 
to determine patterns and generalizations which can be applied in real case sce-
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narios forming the basis for future work. This concept of finding the supply and 
demand gap is important as it allows for the deployment of drivers to improve 
the level of service 

Time based demand prediction is another research area fast gaining ground. 
This is based on the premise of predicting ride-hailing vehicle demand in the 
next hour.  

3.1. Operational Research Mobility Optimization 

The vast majority of human interaction takes place in one of two areas; home or 
work. In order to further understand mobility patterns of users of ridesharing 
services across home and work locations, as well as social ties between users, [16] 
developed an algorithm for matching users with similar mobility patterns under 
constraints and concluded, a decrease in social distance of as much as 31% when 
users shared rides with others. These findings indicate the importance of the 
study of mobility patterns and the benefits which can be derived from optimiz-
ing ride-hailing services at an operational level. Using a more flexible yet ex-
tendible mobility model representing ride-sharing users movement and habits, 
[17] deploy a Variable-Order Markov Model (VOMM) underplayed with a Par-
tial Matching (PPM) algorithm for next location prediction, with a prediction 
accuracy ranging from 60% - 81%. A major limitation of the usage of the PPM 
algorithm hovers around the compression process which tends to limit perfor-
mance over time. In comparing the use of privately owned vehicles and two Au-
tonomous Mobility on-Demand (AMoD) simulated on a real transport network 
based on current situation, under different scenarios, [18] found the deployment 
of AMoD system resulted in a major decrease in both number of vehicles re-
quired in order to meet transport needs (that is, 43% in AMoD1 and 88% in 
AMoD2) and street parking space required (58% in AMoD1 and 83% in AMoD2). 
[19], also cite effective road utilization as another advantage of designing the 
matching algorithm. Comparing the use of privately owned vehicles and two 
autonomous mobility on-demand (AMoD) simulated on a real transport net-
work based on current situation, under different scenarios. Autonomous Mobil-
ity on-Demand vehicles are viewed by many as the future of transport, however 
their effectiveness hinders largely on the ability to coordinate their movement 
and predict demand as accurately as possible using the vast quantity of data we 
have available at our disposal, for which this paper seeks to pursue further. 

In an attempt to resolve the surge of homeward-bound persons during the 
holiday seasons, [20] proposed a large-scale ridesharing system called Country-
Roads® using an online greedy matching algorithm to match drivers and passen-
gers, recording a success rate of 23.2%. Online Greedy matching algorithms have 
a comparatively low performance threshold when applied in complex systems 
such as ride-hailing services as experienced by the authors this is largely due to 
the level of rigidity of process making it not ideal for location prediction. Based 
on the concept of space-time windows, [21], develop a unique approach based 
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on Lagrangian relaxation, and conclude that the adoption of flexible pickup and 
delivery will evidently reduce system-wide cost whilst improving service quality. 
This hypothesis although found to be true, defeats the purpose of ride hailing 
services. Flexible pickup and delivery have not been widely accepted even within 
the carpooling sphere as centralized pick-up location is yet to gather wide ac-
ceptance. 

3.2. Linear Programming & Statistical Methods 

In implementing optimization solutions based on linear programming, [22] 
deploy a Tabubased meta-heuristic algorithm with the aim of solving the mixed 
integer linear program (MILP) under differing scenarios. The algorithm is ob-
served to have a higher computational accuracy than control, the introduction of 
meet points to the ridesharing system reduces total travel time by 2.7% - 3.8% 
for scaled tests. With meet-points not having been widely accepted within the 
ride-hailing and carpooling industry, the benefits of reduced travel time, and 
reduced travel costs associated with it cannot be fully quantified. Especially given 
Covid-19 social distancing protocols. This demonstrates the need to improve 
location prediction as a lasting solution. 

From the domain of probability and statistics, [23] having collected data of 
taxi trips in New York, Singapore, San Francisco and Vienna compute shareabil-
ity curves for each city, then through natural rescaling collapse them into a uni-
versal curve which is used to predict the potential of ridesharing in any given 
city based on a few qualities and parameters. The statistical methods employed 
here demonstrate the general overview of the potential of the growth of ride- 
hailing services in any given city. This is to help with city planning purposes and 
fails to examine rider-driver interaction. 

Examining the relationship between the frequency and probability of ride-
sharing usage, and frequency of public transit usage, [24], develop a Zero-inflated 
negative binomial regression model.  

Results show a positive relationship between ridesharing and public transit 
use particularly for people living in areas of high population density and com-
paratively fewer vehicles. The significance of this is to allow the measurement of 
ride-hailing service utilization across population densities across any given city 
taking into consideration anticipated demand and in the selection of the research 
Case study.  

4. Research Framework and Design 

To reduce the number of vehicles, alleviate traffic jams and curb pollution in 
transporting people in office hubs in Poland, [25] collected a representative sample 
of the population and used spatial data mining techniques to develop a set of 
parameters for the multi-agent system. Using the distributed model-free, system 
DeepPool® based on deep Q-network (DQN) techniques, [26] develop an algo-
rithm able to learn the optimal dispatch policy through interaction with the en-
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vironment, incorporating travel demand statistics and a dataset of taxi trips in 
New York to dispatch vehicles and anticipate future demand. Deploying a con-
volutional neural network (CNN) based on deep learning for multi-step ride-hai- 
ling demand prediction using trip request data in Chengdu, [27] showcase faster 
training and prediction of CNN models compared to the use of Long Short 
Term Memory (LSTM) models. 

4.1. Data 

In conducting this research, a large scale dataset of rideshare and taxi trips span-
ning 2018/2019 in Chicago is collected, as shown in Table 1, with each observa-
tion consisting of the following elements: 

The data is processed and cleaned. As a first step, a comprehensive under-
standing of the individual features within the dataset is required, as well as 
knowledge of trip distribution across the city, from origin (O) to Destination 
(D). Numerous studies have demonstrated the importance of regional partition-
ing in location prediction. Research and experiments by [28] demonstrated that 
regional partitioning led to better forecast and demand prediction of geospatial 
data.  

This is followed up with followed by scenario development. Figure 1 shows a 
color-coded layout of the City of Chicago, detailing its community areas as well 
as census tracts. 

 

 
Figure 1. Map of City of Chicago including its community Areas and Census tracts. Visuali-
zation of potential pick-up and drop-off points across the city. 
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Table 1. Data points used for data mining and the development of the predictive algorithms. 

Trip ID DATA FEATURES AND ATTRIBUTES PER OBSERVATION 

Trip Start Timestamp Drop-off Census Tract Pickup Census Tract Fare 

Trip End Timestamp Drop-off Community Area Pickup Community Area Shared Trip Authorized 

Trip Seconds Drop-off Centroid Longitude Pickup Centroid Longitude Additional Charges 

Trip Miles Drop-off Centroid Latitude Pickup Centroid Latitude Trips Pooled 

Trip Total Drop-off Centroid Location Pickup Centroid Location Tip 

4.2. Research Framework and Scope 

Multidimensional Scenario Formulation 
Scenario performance analysis allows for measuring performance under va-

ried rider privacy limitations. 
Scenario 1 
Location prediction with no information i.e. drop-off community area (desti-

nation) prediction with only pick-up (origin) data, and vice versa. This is in or-
der to allow for riders with strict privacy concerns in information release, mea-
suring ability to predict trip start and end points given rider privacy restrictions.  

Scenario 2 
Location prediction with partial information. That is, drop-off community area 

(destination) prediction with pick-up data and Census Tract (destination zone) 
information, vice versa. It is based on the idea of being able to predict trip start 
and end points under rider uncertainty. 

Steps and Methodological process 
 

 
Figure 2. Step by step methodological process in designing and evaluating predictive 
models used. 

 
Figure 2 shows the steps taken in the design, evaluation and interpretation of 

the research framework employed in carrying out this work. 
1) Perform Principal Component Analysis (PCA) on trip dataset. Record and 

analyze results against degree of variance covered by each principal component. 
2) Perform feature scoring and ranking using Relief metrics. Record and ana-

lyze results. 
3) Reevaluate steps 1 and 2. Determine features and variables with largest 

https://doi.org/10.4236/jtts.2021.112016


D. Carson-Bell et al. 
 

 

DOI: 10.4236/jtts.2021.112016 257 Journal of Transportation Technologies 
 

weight in designing and building the model. 
4) Evaluation and scoring of prediction accuracy and error tolerance (MAE, 

MSE, and R2) under both scenario 1 and 2.  
5) In-depth scenario analysis of both scenario 1 and 2, firstly on drop-off 

community area prediction and pick-up community area prediction. 
6) Analyzing implications on surge pricing policy and ridesharing efficiency. 
Principal Component Analysis (PCA) 
Principal component analysis (PCA) is based on the use of an orthogonal trans- 

formation to convert a set of observations with possibly correlated variables in a 
set of linearly uncorrelated principal components using eigenvalues to measure 
the total degree of variance explained by each factor.  

FEATURE RANK USING RRELIEFF 
The RReliefF algorithm estimates the quality of an attribute according to the 

degree with which it discriminates between instances near each other. Here, an 
instance R is randomly selected, then the K-nearest instances with respect to 
class value are selected. The difference between the value of A of R as well as the 
value of the same attribute for one of the K-instances is then compared with re-
spect to the difference of their class values. This process is repeated and ulti-
mately yields a weight for each attribute ranging between −1 and 1. 

Cross Validation Model Evaluation and Scoring 
The Leave-P-Out Cross Validation (CV) approach leaves “p” data points out 

of the training data, with a sample size of n-p being used as the validation set. 
This process is repeated for all possible combinations, with error being averaged 
for all trials in order to determine overall effectiveness. 

To measure the degree of error of the developed models, error metrics will 
then be used to judge model quality and compare the different regression mod-
els. The Mean Average Error (MAE), Mean Squared Error (MSE), and R-Squared 
(R2) will be used for evaluation.  
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where, 
SSEM is the sum of Squared Errors by Mean line and 
SSER is the sum of Squared Errors by Regression Line 
Predictive Modelling using Ensemble Learning 
Generally, ensemble learning is the term used to describe meta-algorithms that 

makes predictions based on inputs from different models, thus, by combining 
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multiple individual models, the ensemble model tends to have less bias, variance, 
and avoids overfitting culminating in improved predictions.  

Adaboost and Random Forest are the most commonly used.  

5. Framework and Results 
5.1. Principal Component Analysis (PCA)  

In analyzing the weights of the individual features within the data sample col-
lected, PCA analysis is performed, measuring the degree of variance covered by 
each principal component within the data set.  

Analysis of PCA results reveals an increase in the degree of variance explained 
by each of the data attributes within the dataset.  

Figure 3 describes the results obtained from PCA analysis. Results show that 
certain attributes within the dataset are able to explain 55.9% of the recorded va-
riance, with 5 attributes able to explain 73.7% of the variance and so on. This 
aids in selecting the most important data attributes which will effectively im-
prove the models prediction accuracy. Analysis reveals that 9 attributes to be the 
optimal number of features to incorporate in building the models. 

Feature Scoring and Rank 
After PCA analysis, the features within the dataset are then ranked in order 

according to feature influence on prediction output. Figure 4 details the weight 
associated with each attribute used in designing the model, with some attributes 
being more critical to predictive performance than others. 

RreliefF is used to rank and measure individual features by level of impor-
tance as shown above.  

5.2. Re-Evaluation and Model Calibration 

Scenario 1 
Predicting drop-off community area (destination) with only pick-up (origin) 

data. Model results show an ability of linear regression models to predict poten-
tial Drop-off areas within a radius of 13 blocks (community area). This is in the 
absence of any information other than pick-up point (origin).  

The results are shown in Figure 5: 
 

 
Figure 3. PCA analysis displaying the level of variance covered by each of the inputs. 
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Figure 4. Feature rank displaying the weight of each Data point in predic-
tion performance and drop-off Community area distribution graph. 

 

 
Figure 5. Evaluation results of predictive accuracy of algo-
rithms and results comparison under scenario 1. 
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This figure is divided into 2 parts, with the first part (Top) displaying results 
from model evaluation whilst the 2nd displays location predictive results against 
actual. The dark column above displays actual drop-off community areas as 
against predicted values on its left. 

Scenario 2 
Predicting drop-off community area (destination) with partial information, 

that is, (destination zone) information  
Model results show an ability of ensemble learning models such as Adaboost 

and Random Forest to predict potential Drop-off areas precisely with error un-
der 1 block (community area).  

This is in the absence of any information other than pick-up point (origin). 
The results are shown below.  

Figure 6 is divided into 2 parts, with the first part (Top) displaying results 
from model evaluation whilst the 2nd displays location predictive results against 
actual. The dark column above displays actual drop-off community areas as 
against predicted values on its left. 

 

 
Figure 6. Evaluation results of predictive accuracy of algorithms 
and results comparison under scenario 2. 
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Pick-up point Prediction after Drop-off 
This part focuses on predicting demand centers within the city after the any 

given drop-off. The aim is to predict rideshare demand centers, anticipating de-
mand and price surge before they happen.  

In an effort to optimize rideshare vehicle distribution, it is imperative to be 
able to predict where demand will occur ahead of time, taking advantage of im-
balance of supply and demand as well as revenue per trip, with the results dis-
played in Figure 7 below. 

This figure is divided into 2 parts, with the first part (Top) displaying results 
from model evaluation whilst the 2nd part displays location predictive results 
against actual. The dark column above displays actual drop-off community areas 
as against predicted values on its left. 

5.3. Discussion  

Research into the field of mobility remains a hot topic amongst many research-
ers. Mobility-As-A-Service (MAAS) where vehicle trips are used to render ser-
vices has come to stay in the era where we’ve experienced a boom in ride-hailing  

 

 
Figure 7. Evaluation results of predictive accuracy of algorithms 
and results comparison under scenario. 
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services. The need to optimize the operations of these services remains of utmost 
importance. The results show neural network algorithms perform best in gene-
ralizing pick-up and drop-off points when provided with only starting point in-
formation. The significance of this is to allow for trip generalization in pooled 
trips, where riders are most likely to have a common drop-off point, e.g. co-
worker’s trip to work or trips to work or shared trip to a sporting event. Ensem-
ble learning methods, Adaboost and Random forest algorithm are able to predict 
both drop-off and pick-up points with a MAE of 1 community area knowing 
rider pick-up point and Census Tract information only and in reverse predict 
potential pick-up points using the Drop-off point as the new starting point. This 
allows the algorithm to confidently predict the most likely pick-up point of po-
tential riders following a drop-off in in so doing increasing supply of drivers into 
potential surge zones and thus being less reactive, more proactive in trip dep-
loyment. Here, it can be seen that the introduction of more data and ensemble 
learning techniques greatly increases the precision accuracy of the model. This 
demonstrates the influence of data management within the ride-hailing industry, 
especially in a time when privacy concerns and right to privacy have become a 
matter of safety and security, of which varies from rider to rider. Direct impacts 
on the ride-hailing industry and operations include: 

Implications on ride-hailing Industry includes: 
1) Improved vehicle utilization, and time efficiency.  
2) Reduced dead-mileage and idle time after trips. 
3) Improvement riders and driver experience. 

6. Conclusions  

In conclusion, results from the research indicate the ability to use predictive 
modelling and analytics to adequately maximize driver positioning and deploy-
ment by predicting surge zones before they occur irrespective of rider privacy 
settings.  

The implications of these results on the transport industry includes:  
 Reduced incidence of the surge and increasing rider satisfaction. 
 Reduced transport costs.  
 Increase in the ease of parking particularly in high-demand (downtown) areas. 
 From a social and environmental point of view for fewer wasted miles would 

translate into less emissions overall. 
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