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Abstract 
The repeated failures of any equipment or systems are modeled as a renewal 
process. The management needs an assessment of the number of future fail-
ures to allocate the resources needed for fast repairs. Based on the idea of ex-
pectation by conditioning, special Volterra-type integral equations are de-
rived for general types of repairs, considering the length of repair and re-
duced degradation of the idle object. In addition to minimal repair and failure 
replacement, partial repairs are also discussed when the repair results in re-
duction of the number of future failures or decreases the effective age of the 
object. Numerical integration-based algorithm and simulation study are per-
formed to solve the resulting integral equation. Since the geometry degrada-
tion in different dimensions of a rail track and controlling and maintaining 
defects are of importance, a numerical example using the rail industry data is 
conducted. Expected number of failures of different failure type modes in rail 
track is calculated within a two-year interval. Results show that within a 
two-year period, anticipated occurrences of cross level failures, surface fail-
ures, and DPI failures are 2.4, 3.8, and 5.8, respectively. 
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1. Introduction 

A system may need maintenance work done to either renew or restore it to a 
predetermined condition. In the United States (US), the expected loss is esti-
mated at about a third of every dollar spent due to unnecessary maintenance ac-
tivities  [1]. In addition to the financial costs, unplanned downtime can also re-
sult in lost revenue, decreased productivity, increased maintenance and repair 
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costs, and safety risks. Renewal theory can be used to address the issue of aging 
equipment by reducing its effective age and extending its useful life. By investing 
in regular maintenance and preemptive maintenance solutions, companies can 
reduce the risk of equipment failure, minimize downtime, and maximize effi-
ciency, ultimately leading to improved profitability and competitiveness. The 
majority of comparative studies show when an item fails, it is replaced by a new 
one, meaning that it is restored to “as good as new” condition. Although this 
operation is ideal, it can result in waste and additional costs. The best way to 
deal with this issue is to perform only partial repairs when a failure occurs, al-
lowing the machinery to be used up until a catastrophic failure [2]. A system is 
returned to its “as good as new condition” with perfect repair, and to its “as bad 
as old condition” with minimal repair. A renewal process is used to mathemati-
cally model perfect repair. 

For better understanding of renewal theory, a repeated failure/repair system is 
shown in Figure 1. A process known as renewal process (RP) in which the sub-
sequent instances of a component or system failing are considered as indepen-
dently and identically distributed random variables. This is equivalent to as-
suming that the system is immediately repaired and returned to its “As good as 
new condition” state. Repairable systems can also reach “better than old but 
worse than new,” “better than new,” or “worse than old” states in addition to 
two previous mentioned states. These states are attempted to be included in the 
analysis of partial repair models  [3]. In most of the studies the repair time is 
considered instantaneous which means failure and repair happen simultaneously.  

The most important paper in this regard is by  [4] that used the concept of the 
“effective age” to model imperfect repair using the Generalized Renewal Process 
(GRP). A practical method for obtaining maintenance policies for repairable 
systems is provided by Kijima’s “effective age” models. The GRP framework is 
based on two major approaches for imperfect repair, namely arithmetic reduc-
tion of age (ARA) and arithmetic reduction of intensity (ARI)  [5]. In the ARI 
approach, the change in failure intensity before and after failure is used to de-
termine the repair effect. A decrease in the system “effective age” in ARA models 
represents the effect of repair as shown in Figure 2. Real age as compared to re-
pair effectiveness in renewal theory. The fundamental idea behind this group of  
 

 
Figure 1. Repeated Failure/Repair system for a single system considering instantaneous 
repair.  
 

 

Figure 2. Real age as compared to repair effectiveness in renewal theory. 
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models is that system renewal occurs through repair. The “effective age’ of a sys-
tem is defined as a positive function of its real age, possibly depending on pre-
vious failures while the real age of a system is its functioning time t. Kijima’s ef-
fective age models are based on the hypothesis that repair actions shorten the 
system’s age. 

We plan to study the expected number of failures of a single system using re-
newal theory specifically in imperfect repairs with two new assumptions such as 
repair time which is not noticed significantly in the literature and degradation of 
the system when the system is idle. These assumptions make the model more 
realistic and give a better understanding to develop maintenance policies needed 
for potential failures in the future. Maintenance mangers need more accurate es-
timation of failures to be able to allocate enough resources to prevent a cata-
strophic failure and keep the expenses low. Furthermore, if the number of fail-
ures within short period and cost of repairs increase, the managers can use the 
model to determine whether they need to deploy corrective maintenance rather 
preventive maintenance. 

In this paper we use the renewal theory to calculate the expected number of 
failures of a single system considering that the repair time is not negligible and 
repair mathematically results in an increase in effective age of the system be-
cause of degradation caused by environmental conditions like temperate, hu-
midity etc., while deploying partial repair make the state of the system better by, 
replacement, maintenance, and renewal which decreases the expected number of 
future failures. Time to first failure (TTFF) distribution is known, therefore 
based on the conditional expectation concept, we derive a special Volterra-type 
integral equations for general types of repairs. Since this type of integral has no 
analytical solution, we suggest a numerical integration-based algorithm to find 
the value of expected number of failures, then we apply a Mont Carlo simulation 
study to validate the model. The geometry degradation in rail track is of an im-
portance, as a Norfolk Southern train carrying hazardous materials derailed in 
Ohio, USA in February 2023, highlighting the importance of proper mainten-
ance and repair of rail systems. Renewal theory can be used to detect and esti-
mate future failures of rail systems, considering the effects of environmental 
conditions on track degradation. By minimizing failure risks and improving re-
liability, rail system safety can be improved. Therefore, we fit the proposed mod-
el to BNSF data. The defects are categorized in three failure type modes, and we 
determine how many failures we might face in a two-year interval for each fail-
ure type mode. 

This paper is structured as follows. The related works has been reviewed in 
Section 2. Section 3 introduces the general model and special cases and model 
variants and suggests a practical numerical method to find the value of M(t) for 
any future time t. Section 4 presents an illustrative case study and shows the im-
plementation of simulation study and, sensitivity analysis, and results. Conclu-
sions and future research directions are outlined in Section 5. 
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2. Literature Review 

Probability theory, as outlined in  [6] and  [7], is widely applicable in various 
fields, including engineering. In engineering, there’s a strong focus on reliability 
and quality, involving the analysis and prediction of random failures. Renewal 
theory, foundational discussions found in [8] and [9], plays a key role in study-
ing these random failures. Additional resources for reliability analysis include 
books by [10] [11] [12]. 

Since there is not a closed-form solution for the RP model  [13] and [14] pro-
pose a numerical solution using the Monte Carlo (MC) simulation technique to 
calculate the expected number of failures. Reference  [15] proposes an imperfect-
ly repairable system with restoration levels that decrease based on previous re-
pairs. They suggest that this model may reflect actual repair patterns better than 
an imperfect repair with a constant discount restoration level. The authors then 
use a Monte Carlo simulation based on cumulative hazard functions to estimate 
the number of expected failures in this new repairable system. 

Scholars study a railroad track degradation analysis for three different geome-
try failure modes. Effective degradation factors are found using the BNSF data 
set, and inspection intervals are researched to lessen the impact of hidden main-
tenance actions  [16]. A numerical method is introduced for estimating the Ex-
pected Number of Failures (ENF) and Cumulative Intensity Function (CIF). 
Examples using simulated data as well as a real-world example of locomotive 
braking grids using actual data are used to show the proposed approach’s high 
degree of accuracy  [17]. A novel approach, data and mechanics integrated ap-
proach, for analyzing the lifespan of small-radius rails considering defects and 
wear. The approach calculates the expected mean gross tonnage for rail renewal 
based on defects and wear and compares it with existing standards [18]. A valu-
able contribution to the field of rail renewal and maintenance planning is pro-
vided in  [19], with a focus on using deep reinforcement learning to optimize the 
schedule and locations of renewal and maintenance activities. The neural net-
work takes as input various factors such as track condition, traffic volume, and 
weather conditions, and outputs a schedule for renewal and maintenance activities. 

The analysis of renewal and renewal-intensity functions for various underly-
ing lifetime distributions, including Normal, Gamma, Uniform, and the notably 
important Weibull distribution is studied in  [20]. The study of [21] extends a 
mean remaining time to renewal model for failure-prone systems with minimal 
repairs, accommodating changes in operating states and age, and historical re-
pair data. It uses a bivariate approach to predict failures and quantify reliability 
indices, making it versatile for various models. The model facilitates the imple-
mentation of a preventive replacement policy based on renewal-reward argu-
ments, minimizing repair costs. Numerical examples demonstrate the model and 
optimal solution behavior with changing parameters. Researcher in  [22] propose 
an approach for predictive maintenance scheduling that considers the phase of 
the machine life cycle and its associated reliability characteristics, using the re-
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newal theory to model the machine’s life cycle and determine the optimal main-
tenance strategy based on the average reward criterion. New bounds for the re-
newal function and the variance of the renewal process is introduced in [23]. It 
presents a general lower bound for the renewal function, improving upon exist-
ing lower bounds. 

A mathematical model is provided that considers the impact of long-term 
maintenance policies in addition to short-term conditions, aiming to minimize 
preventive and corrective maintenance costs in manufacturing systems  [24]. The 
researchers emphasize the significance of robust estimation methods, such as 
M-estimators in quality control  [25]. An approach is proposed for comparing 
numerically three maintenance strategies, involving minimal repairs at failure, 
replacement with complete renewal only at the first failure, and replacement 
with complete renewal at each failure. The approach proceeds by presenting the 
mathematical models at the component level and at the system level. A novel 
asymptotic algorithm is introduced for estimating the replacements number  [2]. 
The methodology outlined in  [26] considers two different ways of improving the 
state of the object by partial repairs; reduce the failure rate (or expected number 
of future failures) and reduce the effective age of the object. The study of  [27] 
shows the imperfect maintenance effect in wind turbine technology by propos-
ing a failure rate function update model considering the effective age and failure 
intensity update factors. Based on their proposed model, they studied a periodic 
dynamic imperfect preventive maintenance decision model to minimize the 
maintenance costs using GRP. 

3. The Mathematical Method 

In this research, the mathematical method is developed in several subsections. 
The first subsection presents a general model for the problem at hand, while the 
subsequent subsections consider special cases and model variants. In the final 
subsection, the testing phase is discussed, which involves assessing the model 
parameter values to ensure their validity and effectiveness. 

3.1. General Model 

In planning future repairs, allocating parts, tools and skilled workforce, the ex-
pected number of future failures plays a crucial role. Let ( )M t  denote the ex-
pected number of failures in the interval ( )0,t , then its determination depends 
on the types of repairs being used. The most important characteristic of any 
random failure is the time when it occurs; let ( )F t  be the Cumulative Distri-
bution Function (CDF) of the time of first’ failure, ( )f t  the probability densi-
ty function (pdf), and failure rate ( ) ( ) ( )( )1t f t F tρ = − . The formal definition 
of the failure rate is as Equation (1). 

( ) ( )
0

|
lim
t

P t X t t t X
t

t
ρ

∆ →

< < + ∆ <
=

∆
                 (1) 
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where X is the time of the first failure. The numerator is the conditional proba-
bility that the object will break down during the next Δt time periods given that 
it is working at time t. The list of parameters is shown in Table 1. 

In the case of minimal repairs, it is well known that the expected number of 
failures is the solution of the Volterra-type integral equation: 

( ) ( ) ( ) ( ) ( ) ( )
0

d
t

M t M t F t F t M fτ τ τ= + − ∫               (2) 

which can be shown by substitution to be: 

( ) ( )
0

d
t

M t ρ τ τ= ∫                          (3) 

which is the cumulative failure rate. If the equipment is replaced after each fail-
ure, then: 

( ) ( ) ( ) ( )
0

d
t

M t F t M t fτ τ τ= + −∫                   (4) 

 
Table 1. List of parameters. 

Notations Definition 

( )M t  Expected number of failures in the interval ( )0, t  

( )F t  Cumulative Distribution Function (CDF) of the time of first failure 

( )f t  probability density function (pdf) 

( )tρ  Failure rate 

T Repair Time 

α  Quality of repair (shows partial repair) 

d Degradation rate when the item is idle during repair time 

1S  First time failure 

h Small grid point using in numerical integration-based algorithm 

K, L Positive integers using in numerical integration-based algorithm 

 

In the case of partial repairs, the form of the integral equation depends on the 
types of the repairs  [26]. This paper introduces a general model which generaliz-
es several earlier ones incorporating effects which were ignored in the earlier 
studies. 

The earlier models assumed instantaneous repairs. Here we assume that each 
repair takes T time periods, when the object is idle, and the degradation rate of 
the object is less than that of the working one. Mathematically it is assumed that 
a repair results in an increase of the effective age by dT ( 0 1d< < ). 

Partial repairs also make the state of equipment better by decreasing the ex-
pected number of future failures by a factor α ( 0 1α< < ). Parameter α depends 
on the actual steps of the repair process including which parts are replaced, re-
newed, maintained, etc, while the value of d is a function of conditions (like 
temperature, humidity, etc.) under which the repairment is performed. In this 
model CDF ( )F t , pdf ( )f t  and parameters α and d are assumed to be 
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known. Let t > 0 be a future time. For the value of ( )M t  we can generalize the 
integral Equations (2) and (4) based on the well-known idea of expectation by 
conditioning. Assume that the first failure occurs at time 1S , then repair is fi-
nished at time 1S T+ , when the effective age of the object becomes 1S dT+ . 
Therefore, the effective age at time t becomes t T dT− + , since during T time 
periods the effective age increases with dT instead of T. The assumptions are il-
lustrated in Figure 3. Expected number of failures and effective age of a single 
system. Assuming that the value of 1S  is fixed, then: 

( )
( ) ( )

1

1 1 1

1 1

0 if
| 1 if

1 if
t

t S
E X S S t S T

M t T dT M S dT t S Tα

 <


= ≤ < +
 + − + − + ≥ +  

    (5) 

where tX  is the true number of failures in interval ( )0,t . The first case shows 
that no other failure can occur before the first failure. In the second case the first 
failure already occurred, and repair is not finished before time 1S T+ . In the 
third case notice that in effective age interval ( )1 ,S T t T dT+ − + ), the expected 
number of failures would be the difference ( ) ( )1M t T dT M S T− + − + , which 
is multiplied by α as the result of repair. And now the expectation of this func-
tion has to be determined with respect to 1S : 

( ) ( ) ( )

( ) ( ){ } ( )
0

0 d 1 d

1 d

t t
t T

t

T
M t f s s f s s

M t T dT M s dT f s sα

∞

−

−

= +

+ + − + − +  

∫ ∫

∫
        (6) 

which can be simplified as 

( ) ( ) ( ) ( ) ( ) ( )
0

d
t T

M t F t M t T dT F t T M s dT f s sα α
−

= + − + − − +∫      (7) 

if t T≥ . Otherwise, if t T< , then only one failure may occur before time t be-
cause repair cannot be finished before or at time T. The number of failures in 
interval ( )0,t  is either 1 or 0 with probability ( )F t  or ( )1 F t− , respectively. 
Consequently ( ) ( )M t F t=  in this case. A numerical integration-based algo-
rithm can be suggested to find the value of function M in a grid between 0 and 
any 0t > . 

Trapezoidal Rule 
The trapezoidal rule calculates the area beneath a curve by subdividing it into  
 

 

Figure 3. Expected number of failures and effective age of a single system. 
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multiple trapezoidal shapes and then summing the areas of these individual tra-
pezoids. Therefore, this method is used as a numerical integration-based algo-
rithm to find the expected number of failures. 

Considering Figure 4. Trapezoidal Rule, 0, ,2 , ,h h Nh t=  be the grid points 
and assume that the small value of h is selected so that dT Kh=  and T Lh=  
with K and L being positive integers. The value of h can be selected so that dT is 
an integer multiple of h. If T is not an integer multiple of h, then select L so that 

( )1Lh T L h≤ < + . For 0,1,2, , L=   clearly ( ) ( )M h F h=   since h T≤ . 
If L> , then using the trapezoidal rule for approximating the integral in Equa-
tion (7) we get the approximation: 

( ) ( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )1
1

1
2

N L

M Nh F Nh M N L K h F N L h

h M N L K h f N L h M K h f h

α

α − −

=

= + − + −

 − − + − + + 
 

∑


 

(8) 

Notice that in the right-hand side the value of function M appears at earlier 
grid points than Nh, since L K> . So given the initial values of M at poins h , 

0,1,2, , L=  , the further values of M(lh) can be obtained by using equation (8) 
in the order of 1, 2, ,L L N= + +  . 

Any other integral approximation can be used similarly. The most popular 
formulas is discussed in [28]. 

3.2. Special Cases and Model Variants 

Assume first that there is no degradation during repair, when 0d = . Then Equ-
ation (7) reduces to  

( ) ( ) ( ) ( ) ( ) ( )
0

d
t T

M t F t M t T F t T M s f s sα α
−

= + − − − ∫          (9) 

and if minimal repair is assumed, then 1α = , so in this simpler case: 

( ) ( ) ( ) ( ) ( ) ( )
0

d
t T

M t F t M t T F t T M s f s s
−

= + − − − ∫          (10) 

which is the same as given in [26]. If this model is further simplified by 
 

 

Figure 4. Trapezoidal rule. 
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assuming instantaneous repairs with 0T = , then the well-known model in Eq-
uation (2) is obtained. 

Assume next failure replacement. A similar model to Equation (7) can be de-
rived similarly. Using the earlier notation: 

( )
( )1

1

1 11

1

0 if
1 if|
1 if

t

t S T

t S
S t S TE X S

E X t S T− −

<
 ≤ < += 
 + ≥ +

            (11) 

since after repair 1t S T− −  periods are needed to reach t. So 

( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( )
0

0

0 d 1 d 1 d

d

t t T

t t T
t T

M t f s s f s s M t s T f s s

F t M t s T f s s

−

−

∞

−

= + + + − −

+ − −

∫ ∫ ∫

∫
    (12) 

for t T≥ . If t T< ,, then ( ) ( )M t F t= . Assume again instantaneous repairs 
with 0T = , then the equation reduces to Equation (4) as it should. 

Assume next that the partial repairs decrease the effective age of the object by 
a fixed factor 1α <  as is shown in Figure 5. 1S  be the time of the first failure, 
then at time 1S  the effective age is clearly 1S , at time 1S T+  it is 1S dT+  
and as the result of repair it decreases to ( )1S dTα + . Without failure and repair 
it would be 1S T+ , so the effective age is decreased by ( )1 1S T S dTα+ − +  in 
comparison to the no failure case. 

So, the effective age at time t has to be  

( )( ) ( )1 1 11t S T S dT t S T dTα α α− + − + = − − − +            (13) 

implying that 

( )

( )( ) ( )( )

1

1

1 1

1 1 1

|

0 if
1 if

1 1 if

tE X S

t S
S t S T

M t S T dT M S dT t S Tα α α

<
 ≤ < += 
  + − − − + − + ≥ + 

 (14) 

so  

( ) ( ) ( )( ) ( )( ) ( )
0

1 d
t T

M t F t M t s T dT M s dT f s sα α α
−
 = + − − − + − + ∫  (15) 

Assuming minimal repair with 1α = , then Equation (15) becomes 
 

 

Figure 5. Expected number of failures and effective age of a single system. 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

0

d

d

t T

t T

M t F t M t T dT M s dT f s s

F t M t T dT F t T M s dT f s s

−

−

= + − + − +  

= + − + − − +

∫

∫
     (16) 

which is identical to Equation (7) with 1α = . 
In the further specialized case when 0d =  we have a simpler Equation: 

( ) ( ) ( ) ( ) ( ) ( )
0

d
t T

M t F t M t T F t T M s f s s
−

= + − − − ∫         (17) 

which gives back Equation (2) in the case of instantaneous repairs with 0T = . 
If 0T > , then the integral terms have t T−  as the upper bound for the interval. 
Therefore, a similar algorithm to Equation (8) can be developed, since in the 
right-hand sides only earlier values of function M are used. However, if 0T = , 
then the right-hand side also has the value of ( )M t  so the same successive 
method cannot be used. Formulating the approximations of the integral equa-
tions for all ( )M h  values for 1L N+ ≤ ≤ , a system of linear algebraic equa-
tions is obtained for the unknown ( )M h  which can be then easily determined 
as follows. The equation for 1L= +  has only one unknown ( )1M L + , so it 
can be solved for this unknown. After ( )1M L +  is determined the equation for 

( )2M L +   gives the value of ( )2M L + , and so on.  
In very special cases, like for equation (4), Laplace transforms can be used. Let 
*F , *f  and *M  denote the Laplace transforms of F, f and M, respectively, 

then from Equation (4), 

( ) ( ) ( ) ( )* * * *M s F s M s f s= +                    (18) 

so ( )*M s  is now given and ( )M t  is determined by using inverse Laplace 
transforms.  

3.3. Testing Assessed Model Parameter Value 

The CDF of first failures ( )F t  can be obtained from the first failures data. Af-
ter each repair the failure rate as well as the CDF changes. We can however 
transform the later failure times into effective ages of the object if ( )F t  would 
not change. A successive algorithm can be offered to find the ( )( )F t −  effec-
tive ages at each later failure. 

Let 1t  denote the time of first failure, and before this event ( )F t  is the 
CDF. Before repair the effective age is 1 1t t= , which becomes 1 1t t dT= +  at 
calendar time 1t T+ .  

Consider now the kth failure of an object, which occurs at time kt  and ( )kF t  
is the CDF before this failure occurs. Repair is finished at time kt T+ . If kt  is 
the ( )( )F t −  effective age at the time of failure, then at the time kt T+  it be-
comes kt dT+ . If ( )k tρ  is the failure rate before breakdown, then after re-
pairing it becomes ( )k tαρ , since 

( ) ( )0 d1 e
t

k
kF t ρ τ τ−∫= −                        (19) 

after repair the CDF becomes 

( ) ( )0 d
1 1 e

t
ka

kF t ρ τ τ−
+

∫= −                       (20) 
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so, the corresponding reliability functions are as follows: 

( ) ( ) ( ) ( ) ( )0 0d d
1e , e

t t

k k kR t R t R t
αρ τ τ α ρ τ τ− −

+
∫ ∫= = =               (21) 

So 

( ) ( ) ( )1 11 1 1k k kF t R t F t
α

+ += − = − −                   (22) 

Under ( )1kF t+  object is working from effective age kt dT+  at calendar age 

kt T+  to calendar age 1kt + , so the ( )( )1kF t+ −  effective age of the object is 

1k kt dT t t T++ + − − , and if the ( )( )F t −  effective age is 1kt + , then  

( ) ( )1 1k k k k kF t dT t t T F t+ ++ + − − =                  (23) 

which always has a unique solution in ( )F t  is strictly increasing. The solution 

1kt +  gives the ( )( )F t −  effective age at time 1kt + . 
The repeated application of this process gives the ( )( )F t −  effective ages 

1 2, ,t t   of the subsequent failure times. If several identical objects are observed 
then for each of them the procedure can be repeated, so a set of failure ( )( )F t −  
effective ages become available. To test if the assessed parameter values α and d 
are acceptable we can use a hypothesis test to see if the obtained data set is ho-
mogeneous, or data of the first failures and that of the later failures belong to the 
same statistical family, that is, have the same distribution. 

4. Numerical Experiment 

In this section, we present the results of our numerical experiment. The experi-
ment consists of five subsections: the first subsection concludes numerical ex-
ample, the second subsection focuses on a rail application, where we evaluate the 
performance of our model on BNSF data set. In the third subsection, we conduct 
a simulation study to further validate our model’s effectiveness. The fourth sub-
section involves a sensitivity analysis, where we investigate how the model’s 
performance varies under different input conditions. Finally, in the last subsec-
tion, we consider multiple failure modes. 

4.1. Numerical Example 

Assume Weibull distribution for time to failure with parameters 2kλ = = , so 

( ) ( )
2 21
4 41 e 1 e e e

2
,

k kt tkt tk t tF t f tλ λ

λ λ

−   − −− −   
    = − = − = = 

 
        (24) 

The parameter values 0.9α = , 0.1d =  and 1T =  are chosen. The grid step 
size was selected as 0.01h = . We considered interval (0, 10). Therefore 10K = , 

100L =  and t Nh=   with 1000N = . Equation (8) was used to find the values 
of ( )M T  for t h=   for 0,1,2, ,1000=  . Table 2 shows the computer re-
sults for integer values of t and Figure 6. The expected number of failures in 
the time interval (0,10) shows the expected number of failures within the time 
interval. 
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Table 2. Function values of M(t). 

t 0 1 2 3 4 5 6 7 8 9 10 

M(t) 0 0.221 0.496 1.138 2.043 3.084 4.154 5.191 6.168 7.069 7.891 

 

 

Figure 6. The expected number of failures in the time interval (0,10). 
 

( ) ( )0.01 0.01M t F= =  
( ) ( )0.02 0.02M t F= =  

  
( ) ( )1 1M t F= =  
( ) ( ) ( ) ( ) ( ) ( )( )1.1 1.1 0.11 0.01 0.11 0.1 2 01M t F M F h M fα α= = + −  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
1.2 1.2 0.12 0.02

0.12 0.02 0.11 0.011 2

M t F M F

h M f M f

α

α

= = +

− +
 

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))

1.3 1.3 0.13 0.03 0.13 0.03

0.11 0.01 0.12 0.02

1 2M t F M F h M f

M f M f

α α= = + −

+ +
 

  
( ) ( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ))
10 10 9.11 9 9.11 9

0.11 0.01 9.

1

.

2

1 8 99

M t F M F h M f

M f M f

α α= = + −

+ + +

 

The expected time to failure is 
1 1 11 2 1

2 2k
λ      Γ + = Γ + = Γ = π     

     
 which is 

approximated by 1.772. So, if after each repair brand new object would start 
working, then we might think that: 

10 1.772 5.643≈  

is the expected number of failures. Since in time the object’s degradation speeds up, 
it is clear that for larger values of t, the value of M(t) becomes larger than this ratio. 

4.2. Rail Application 

BNSF railway is a significant North American network of freight railroads. The 
data set from BNFS 2007 to 2013 is used in this study. In the data set, a track can 
fail geometrically in one of three ways as follows [16]: 
 The first is cross level failure mode, which assesses the variation in top sur-

face elevation between two rails at any particular location along the railroad 
track. Since the rails can move up or down when under load, the cross-level 
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measurement is typically done while they are in motion (Figure 7). 
 The second is the surface failure mode, which assesses any irregularities in a 

rail’s top surface. When there is a hump or a dip, the surface measurement 
can be positive or negative (Figure 8). 

 DIP, which measures a decrease or increase in the track’s centerline, is the 
third failure mode (Figure 9). 

To model the time to failure for each failure mode, we use the Weibull distri-
bution. The Weibull distribution as one of the most flexible and powerful dis-
tributions can be used to model both increasing and decreasing failure. The 
Weibull distribution has been used in [29] to model rail geometry defect time to 
failure. Equations (6) and (7) show the Weibull CDF and PDF for the failure at 
time t, respectively. The k and λ show shape and scale parameter of Weibull dis-
tribution parameters. For each failure mode the Weibull parameters (shape and 
scale) has been estimated and their standard deviation has been calculated based 
on the BNSF data and the result is illustrated in Table 3. 
 

 

Figure 7. Graphical presentation of cross level defect. 
 

 

Figure 8. Graphical presentation of surface defect. 
 

 

Figure 9. Graphical presentation of DIP defect. 
 
Table 3. Estimated Weibull parameters for different modes of failure in railway [16]. 

Defect type Estimate. Shape Estimate. Scale sd.shape sd.scale 

Cross level 1.3 238 0.085 16 

DIP 1.5 146 0.12 12 

Surface 1.2 212 0.131 27 
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parameter values 0.8α = , 0.1d =  and 1T =  are chosen. The grid step size 
is selected as 0.01h = . We consider an interval of two years or (0, 730) days to 
study the number of failures within the selected interval for each of failure mode. 
Therefore 1K = , 10L =  and t Nh=  with 7300N = . The proposed algo-
rithm is used to find the values of ( )M T  for t h=   for 0,1,2, ,7300=  . 
Figure 10 shows the computer results for ( )M t  for different type of failures. 

4.3. Simulation Study 

To evaluate our model, we conduct a Monte Carlo (MC) simulation study to 
examine different failure modes. We take inspiration from [14] particularly sec-
tions 5.1 and 5.3. 

Step 1: Generating Random Values  
In this step, we assume a Weibull distribution for inter-arrival failures. To 

represent ( )iF t , we generate random values from a uniform distribution 
ranging between 0 and 1. 

Step 2: Accumulating Time Intervals 
As part of the simulation process, we repeatedly generate random it  values. 

Each generated it  is cumulatively added to the sum of previously generated it  
values. 

Step 3: Comparing with Time Interval 
We compare the cumulative sum of these generated it  values with a prede-

fined time interval. In our study, this time interval is set at 2 years (730 days). 
Step 4: Determining Simulation Outcome 
If the cumulative sum of all generated st  equal or exceed 730 days, the simu-

lation algorithm terminates. At this point, we calculate the average number of 
failures generated at each step. This average represents the expected number of 
failures based on 10,000 simulation runs. 

Step 5: Continuing Simulation 
Conversely, if the cumulative sum of generated st  is still less than the study 

time interval (730 days), we continue generating additional it  values. 
Step 6: Result Presentation 
Finally, the result of this MC simulation is used to determine the number of 

failures occurring within a two-year timeframe, which is presented in Table 4. 
 

 

Figure 10. Expected number of failures within two years in different Failure modes. 
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Table 4. Number of failures within two years using simulation method. 

Failure Mode Cross level failure Surface failure DIP failure 

M(t) 2.4150 3.8074 5.881 

 
The findings indicate that, within a two-year timeframe, the anticipated oc-

currences of cross level failures, surface failures, and DPI failures are 2.4, 3.8, 
and 5.8, respectively. 

4.4. Sensitivity Analysis 

In this part the sensitivity of parameters regarding expected number of failures is 
discussed and cross level mode is selected as the failure analysis. Three parame-
ters are considered to analyze the results. First, the shape parameter of Weibull 
distribution (i.e., k) is selected. As it is shown in Figure 11, by increasing value 
of k in range (0.5, 4.5) and keeping other parameters constant, the expected 
number of failures is increased dramatically. The next two parameters have im-
pacts on the effective age of the system. Figure 12 shows by decreasing the value 
of α, the expected number of failures is dropped since the value of 0α =  shows 
the quality of repair is as good as new, while 1α =  shows the quality of repair 
is bad as old. Also, the effect of degradation when the system is idle (d) is stu-
died. By increasing the value of d, the expected number of failures increased but 
not significantly. Therefore, we can conclude the effect of d on M(t) is negligible  
 

 

Figure 11. Sensitivity analysis on shape parameter of Weibull distribution (i.e., k). 
 

 

Figure 12. Sensitivity analysis on quality of repair parameter (α). 
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in this case. When the degradation rate increases, the effective age of the system 
increases and consequently, the system gets old more than the other modes and 
the chance of facing the failure increases. 

5. Conclusions and Future Research 

Any system, process, equipment and parts are subject to random failures, which 
have to be then repaired. The appropriate planning of repairs needs an assess-
ment of number of future failures in any given time intervals in order to secure 
the needed parts, material and qualified manpower. This central problem of re-
liability theory is considered, and algorithms are offered for its solution. Special 
renewal processes are used to model the repeated failures of any equipment or 
system. When estimating the expected number of failures within an interval (0, 
t), it is important to consider that repair time is not negligible, despite most stu-
dies assuming that failure and repair occur simultaneously. Instead, failures and 
repairs occur sequentially, making it necessary to account for repair time when 
modeling the expected number of failures. Also, quality of repair and degrada-
tion of the single system when the system is idle is noticed. The Volterra-type 
integral equations are used in the modeling the mentioned problem. A numeri-
cal integration-based algorithm is also suggested to solve the general model and 
some special cases is discussed subsequently. 

A numerical example illustrates the methodology, the trapezoidal rule is used 
for illustration. The distribution of time to the first failure is a Weibull distribu-
tion, which is known. So, the expected number of failures is equal to CDF of the 
Weibull function and for the other failures that happen after the first failure the 
distribution is unknown since partial repair is used. The algorithm uses a nu-
merical integration-based method to solve the proposed model. The BNSF data 
for rail track defects is used for numerical experiments. A simulation study and 
sensitivity analysis have implemented using the proposed model. Sensitivity 
study shows when partial repair α rate increase, the expected number of failures 
increase. The degradation d rate also shows slight increase in the expected num-
ber of failures which is negligible. The result shows the expected number of fu-
ture failures for each failure type mode within a two-year maintenance interval. 
Therefore, the expected number of future failures provides valuable insight for 
management to determine the most appropriate course of action, whether it be 
partial repairs or investing in a new system. By considering this key factor, 
management can make an informed decision that aligns with their organization-
al goals and priorities. 

There are several ways to expand the research reported in this paper. Two 
types of partial repairs are considered: reducing the number of future failures or 
decreasing the effective age of the object by a factor. However other types are al-
so discussed in the literature: decreasing the effective age by a constant term, 
reducing the failure rate, etc. In this study, the length of repair (parameter α) 
were deterministic, however in reality they are uncertain. So, stochasticity could 
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be included in the models, as well. These models could be also embedded in an 
optimal resources allocation problem of using material, equipment, and man-
power for repairments as effectively as possible. 
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