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Abstract 
As an important part of railway lines, the healthy service status of track fas-
teners was very important to ensure the safety of trains. The application of 
deep learning algorithms was becoming an important method to realize its 
state detection. However, there was often a deficiency that the detection ac-
curacy and calculation speed of model were difficult to balance, when the tra-
ditional deep learning model is used to detect the service state of track fas-
teners. Targeting this issue, an improved Yolov4 model for detecting the ser-
vice status of track fasteners was proposed. Firstly, the Mixup data augmenta-
tion technology was introduced into Yolov4 model to enhance the generaliza-
tion ability of model. Secondly, the MobileNet-V2 lightweight network was 
employed in lieu of the CSPDarknet53 network as the backbone, thereby re-
ducing the number of algorithm parameters and improving the model’s 
computational efficiency. Finally, the SE attention mechanism was incorpo-
rated to boost the importance of rail fastener identification by emphasizing 
relevant image features, ensuring that the network’s focus was primarily on 
the fasteners being inspected. The algorithm achieved both high precision 
and high speed operation of the rail fastener service state detection, while rea-
lizing the lightweight of model. The experimental results revealed that, the 
MAP value of the rail fastener service state detection algorithm based on the 
improved Yolov4 model reaches 83.2%, which is 2.83% higher than that of 
the traditional Yolov4 model, and the calculation speed was improved by 
67.39%. Compared with the traditional Yolov4 model, the proposed method 
achieved the collaborative optimization of detection accuracy and calculation 
speed. 
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1. Introduction 

During the manufacturing, transportation and installation of sleepers, it is easy 
for the pre-embedded rail shoulder to be damaged, resulting in issues such as 
looseness and falling of track fasteners after a period of operation; Also due to 
the long-term repeated load imposed on them, the track fasteners can be in ab-
normal service states such as fracture, displacement and insufficient fastening 
pressure. Such abnormal service states of these fasteners will seriously affect the 
operation safety of the train and easily bring potential safety hazards to railway 
transportation. It is of great significance to detect and identify whether the track 
fasteners are healthy in service to ensure the safety of railway transportation. 

Therefore, establishing advanced detection methods to identify the service 
status of track fasteners has always been a research hot spot for scholars at home 
and abroad. For example, Zhao Shanshan et al. [1] [2] proposed a fastener detec-
tion algorithm based on scale-invariant feature transform (SIFT). It classified the 
track fasteners by normalizing SIFT features into Fisher vectors of the same 
length, so that the track fasteners were detected and identified. Wang Qiang et 
al. [3] provided a fastener identification method with improved characteristics of 
LBP (local binary pattern) operator. It could detection and identify the track 
fasteners under different weather conditions and achieve better detection stabil-
ity to a certain extent. Kalal et al. [4] carried out a study on the feature recogni-
tion of track fasteners by using support vector machine for classification. It ex-
tracted the features by integrating the pyramidal gradient direction histogram 
with macroscopic local binary pattern features. Gibert et al. [5] [6] adopted a 
track fastener detection algorithm based on the Bayesian framework, which ef-
fectively improved the accuracy of fastener detection and identification. It is 
worth mentioning that these methods require a large amount of prior know-
ledge, their performance of feature extraction and expression for track fasteners 
is just general, and with to-be-improved identification accuracy. 

In recent years, computer vision methods based on deep learning have shown 
good performance in the field of surface defect recognition [7], therefore at-
tracted scholars' attention and been more and more widely used for the service 
status detection and identification of track fasteners. For example, Xu Guiyang 
et al. [8] improved the region proposal network in Mask R-CNN with the K- 
means clustering algorithm, and further proposed a track fastener status detec-
tion method based on this Mask R-CNN, which is proved to be with higher de-
tection accuracy; Liu Yuting et al. [9] proposed a track fastener service status 
detection method based on Faster R-CNN with optimized original network op-
erator. It achieved a fastener status identification of high accuracy. However, 
both of the above methods are two-stage algorithms. They have low false detec-
tion rate and high accuracy, however, they are slow in detection and not able to 
detect in real-time. In order to speed up the training, Gao Jialin et al. [10] pro-
posed a railway fastener detection method based on an improved Yolov4 model. 
By adding an output end and a head structure, it was more effective in detecting 
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the fasteners, and with increased accuracy and detection rate; Zhang Zening et 
al. [11] applied a fast clip method for track fasteners service status detection 
based on the SSD convolutional neural network. By using the transfer learning 
method to pre-train the data set, the training speed of the model was effectively 
improved. As one-stage algorithms for target detection, the above discussed 
methods are fast in detection, however, they are easy to be disturbed by irrele-
vant image information, resulting in reduced detection accuracy. To sum up, 
both one-stage and two-stage target detection algorithms have achieved initial 
success in the detection and identification of track fastener service status, but 
none of them can balance the detection accuracy and calculation speed well. 

In response to this problem, this paper conducts an in-depth study on the 
Yolov4 model [12] and proposes a track fastener service status detection method 
based on an improved Yolov4 model. In this method, the Mixup data augmenta-
tion method is introduced to enrich the data information of the model, as well as 
to improve the generalization ability of the model; The MobilenetV2 network is 
used to replace the backbone part of the Yolov4 model, so that model is 
lightweighted, and the computing ability can be greatly improved; Finally, the SE 
attention mechanism is introduced to enable the network model to automatical-
ly learn the feature weight according to the loss function. In this way, the identi-
fication weight of track fasteners is improved and an accurate detection can be 
realized. By these three alternations, the target detection capability of the tradi-
tional Yolov4 model is improved, which is conducive to for the collaborative op-
timization of the detection accuracy and the calculation speed of track fasteners. 

2. Algorithm Principle 
2.1. Basic Architecture of Yolov4 Model 

As the advanced version of Yolov3 [13], the target detection algorithm Yolov4 
mainly consists of three parts: backbone, neck network and Yolo head network. 
Among them, the backbone adopts the CSP Darknet53 network. The latter is 
improved from Darknet53 by referencing CSPNet to achieve greater network 
input resolution, deeper network layers, and more parameters. The neck net-
work takes the SPP module as the additional module, while the PANet as the 
feature fusion module. The input arbitrary-size feature map is pooled with fixed 
size, and the features obtained from each pooling are combined to obtain the 
number of fixed-length features, which are finally input into the fully connected 
layer for training the network. The PANet is applied to replace FPN for parame-
ter aggregation, so as for the target detection at different levels. Meanwhile, the 
fusion method is changed from addition to concatenation. The Yolo head net-
work still uses the detection head of the Yolov3 algorithm. Hence, the architec-
ture diagram of Yolov4 is as shown in Figure 1. 

2.2. Loss Function 

In order to guide the Yolov4 network model to autonomously learn relevant  
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Figure 1. Yolov4 architecture diagram. 
 

features, a joint loss function [14] composed of three parts is designed, i.e. 
bounding box regression prediction error Lloc, confidence prediction error Lconf 
and classification prediction error Lclc, as shown in Equation (1). 

loc conf clsL L L L= + + .                        (1) 

The bounding box regression prediction error Lloc adopts the CIOU loss func-
tion (as shown in Equation (2)). On the basis of IOU, it considers the scale in-
formation such as the boundary overlapping score, boundary center distance, 
and the boundary height ratio, so that the weakness of MSE function caused by 
using the boundary center distance and the boundary height as independent va-
riables can be made up. 

( ) ( )2

2

,
1 , ctr ctr

loc IOU

M N
L M N

m
ρ

η αυ= − + + .              (2) 

( )1 ,IOU M N
υα

η υ
=

− +  
.                     (3) 

2

2

4 arctan arctan
π

gt

gt hh
ω ωυ

 
= − 

 
.                   (4) 

In the formula, α is the trade-off factor; υ  is the rating factor for detecting 
the uniformity of the boundary aspect ratio; ( ),IOU M Nη  indicates the inter-
section over union of the predicted box to the actual box; ( )2 ,ctr ctrM Nρ  is the 
Euclidean distance between the center point of the prediction box and that of the 
actual box; ωgt and hgt represent the width and height of the actual box, while ω 
and h are the width and height of the prediction box. 

In order to independently evaluate the confidence of the prediction, the model 
proposed in this paper is constrained with the confidence prediction error 
shown in Equation (5). 
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where, B is the number of priori boxes in a single grid; S2 is the number of grids; 
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obj
ijI  is an indication that the prediction bounding box contains the target; 
noobj
ijI  is an indication that the prediction bounding box does not contain a tar-

get; j
iC  is the prediction confidence; j

iC  is the actual confidence; λnoobj is the 
set parameter value. 

The classification prediction error of the model is calculated by Equation (6). 

( ) ( ) ( ) ( ){ }
2

0
log 1 log 1

S
obj j j j j

cls ij i i i i
i c C

L I P c P c P c P c
′= ∈

    = − + − −    ∑ ∑      (6) 

where, c is the number of detection target types; C' represents the total number 
of defect categories; ( )j

iP c  is the prediction probability; ( )j
iP c  is the actual 

probability. 

3. Improvement of YOLOv4 Algorithm 

In order to more effectively detect and identify the service status of track fasten-
ers, this paper introduces data augmentation, network lightweight, and attention 
mechanism into the Yolov4 architecture for improvement, and a new fastener 
service status detection algorithm based on the improved Yolov4 model is estab-
lished. 

3.1. Mixup Data Augmentation 

Data augmentation can effectively improve the generalization ability of the 
model, however, the augmentation process depends on the expansion of the data 
set. The conventional data augmentation does not model and analyze the do-
main relationship between different samples of different categories. As a simple 
and data-independent mixed-category augmentation method, the Mixup me-
thod uses the beta distribution shown in Equation (7) to (9) to calculate the 
mixed weight. Its mixing considers the domain relationship of different samples 
of different categories, so that the expansion of the training data set can be rea-
lized. 

( ),Beatλ α β= .                          (7) 

( )1i ix x xλ λ= + − .                         (8) 

( )1i iy y yλ λ= + − .                         (9) 

where, Beat refers to the beta distribution; λ is the mixing weight calculated from 
the beta distribution with parameters α and β; x  and y  are the mixed sam-
ples and the labels corresponding to them, respectively; xi and yi are the original 
sample and the corresponding labels, respectively. 

Referencing the experimental settings in Reference [15], this paper conducts 
an experimental analysis of the value of the hyperparameter α. As shown in Fig-
ure 2, when α is 0.5, the test performance of the model is optimal; In addition, 
when adjusting parameters for multiple groups of experiments, the weight λ will 
be randomly generated in each batch of samples, and the expectation value of 
the weight in the N batches of samples throughout the training process is ap-
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proximately 0.5, thus, no matter how the values of α and β are set, the expecta-
tion value of α/(α + β) is always approximately 0.5. In consequence, the beta dis-
tribution hyperparameter of the mixing weight λ in this paper is set as α = β = 
0.5, so that the algorithm performance can be relatively optimal. 

3.2. Lightweighting of MobileNet-V2 Network 

In order to improve the computational efficiency of the model, the backbone 
network structure of the Yolov4 model is chosen to be MobileNet-V2 network 
instead of the original CSPDarknet53 (as shown in Figure 3) to lightweight the 
model network. 

The CSPDarknet53 network structure used in the traditional Yolov4 model un-
folds the input image data into a 3 × 3 ordinary convolution calculation, performs  
 

 

Figure 2. Test accuracy with different α. 
 

 

Figure 3. Lightweight network structure. 
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channel compression, and then inputs it into the Resblock1 module. The Res-
Block1 module downsamples the input feature map first, and then conducts 1 × 
1 ordinary convolution to divide the output feature map into two branches. The 
feature map of one branch is input to the residual convolution block for further 
unfolding and calculation, after which a 1 × 1 ordinary convolution is performed 
to integrate the channel features. Finally, the two output feature maps are 
stacked on the channel dimension. After stacking, an ordinary convolution is 
performed to fuse the channel information to obtain the final feature map out-
put. 

The MobileNet-V2 network introduces an inverted residual bottleneck struc-
ture based on a depthwise separable convolution “DW-Conv” into the backbone 
part (as shown in Figure 4). For the input, 1 × 1 ordinary convolution is first 
conducted to increase the dimensionality, then a DW convolution in a 3 × 3 
depthwise separable convolution is used to extract the image features. Finally, a 
1 × 1 ordinary convolution is performed to reduce dimensionality to obtain fea-
ture map output, so as to lightweight the model network and effectively reduce 
model calculation. 

In these convolution operations, the calculation amount of ordinary convolu-
tion FLOPsN is shown in Equation (10), and the calculation amount of depth-
wise separable convolution FLOPsDW is shown in Equation (11). 

[ ] [ ]{ }1 1i w h i w h oNFLOPs C K K C K K W H C= × × + × × − + × × × .      (10) 

w h iDWFLOPs K K C W H= × × × × .                 (11) 

where, Ci and Co are the number of input and output channels respectively, Kw 
and Kh are the width and height of the input image data, while W and H are the 
width and height of the convolution kernel. 

From the above equations, it can be known that when CSPDarknet53 and 
MobileNet-V2 are used as the backbone network for unfolding respectively to 
process the same image of size (224 × 224 × 3), the model calculation amount is 
716.37 M and 121.26 M accordingly. It means that with the same input, the cal-
culation amount of the model lightweighted by MobileNet-V2 network is only 
about 1/6 of that of the original Yolov4 model. The model computational effi-
ciency is significantly improved. 
 

 

Figure 4. Inverted residual bottleneck structure. 
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3.3. SE Attention Mechanism 

While the model network is lightweighted by MobileNet-V2, a certain degree of 
reduction in detection accuracy is inevitably caused. In order to compensate the 
descend of accuracy, the SE Block module is also introduced into the proposed 
model. By exploring the weighted mapping relationship between the feature 
channel and the feature map in the convolutional layer, different weights are 
given to different positions of the image from the perspective of the channel 
domain, so as to highlight the feature information of track fasteners, and to real-
ize the adaptive attention weighting of the model. In this way, the model training 
can further focus on valid information such as the status of the track fastener, 
leading to accuracy improvement. 

The SE Block module is mainly composed of Squeeze, Excitation and Scale. Its 
calculation process is shown in Figure 5. 

In this calculation process, the convolution operation Ftr that organizes the 
input features is first carried out on the input feature map “X” to generate the 
feature map “U”; At the same time, the Squeeze (Fsq) operation is used to per-
form global average pooling on the feature map “U” to generate a 1 × 1 × C vec-
tor to obtain the weight feature z indicating the channel importance informa-
tion; Each element zc in z is expressed as Equation (12). 

( ) ( )
1 1

1 ,
H W

c sq c c
i j

z F u u i j
H W = =

= =
× ∑∑ .                 (12) 

where, Fsq represents the global average pooling operation. 
Then the Excitation (Fex) is operated. By parameter learning through two fully 

connected layer, the corresponding weight sc of each feature channel is updated, 
and a weight array s with a dimension of 1 × 1 × C is obtained, as shown in Equ-
ation (13) 

( ) ( )( )2 1,exs F z W W W zσ δ= = .                  (13) 

where, Fex represents the excitation operation; δ and σ indicate Relu and Sigmo-

id activation functions, respectively; 1

C C
rW
×

∈ , 2

CC
rW

×
∈ , and r is the scal-

ing factor. 
Finally, the dot product operation Scale (Fscale) is performed for the one-di- 

mensional weight array s obtained after the excitation operation by combining 
and the feature map “U”, so that the feature channel is weighted: 
 

 

Figure 5. SE Block calculation flow chart. 
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( ), , H W C
scaleX F U s U s X × ×= = ⋅ ∈ 

 .                (14) 

where, Fscale represents the dot product operation; X  is output of SE Block 
module with weighted attention. 

Based on this attention mechanism of attention weighted output, the network 
training of the proposed model can focus on the state characteristics of track fas-
teners. Other information regarding such as tracks and sleepers can be effectively 
filtered out. In this way, the detection accuracy of the algorithm is improved. 

4. Experiment Results and Analysis 

This paper proposes a track fastener service state detection method based on an 
improved Yolov4 model by introducing in Mixup data augmentation, Mobile-
Net-V2 network lightweight, and SE attention mechanism. In order to verify the 
effectiveness of these three alternations, training and tests were carried out on 
the proposed method with the data collected from the track fasteners. The re-
sults were compared with those of traditional Yolov4 model. 

4.1. Test Description 
4.1.1. Experiment Setup 
The operating environment of the experiment simulation in this paper was Py-
torch, with a configuration as: 1) CPU: Intel I7-8700, 3.2 GHz; 2) operating 
memory: 16 GB; 3) GPU: NVIDIA GeForce RTX3080, video memory 12 GB, 
computing power 8.6; 4) code operating environment: Torch = 1.9, Python = 
3.7; 5) CUDA version: CUDA11.1. The optimizer adopted SGD, with a weight 
decay 0.0005, a momentum coefficient 0.9. The learning rate decay mode was 
cosine decay, the batch-size was 10, and the number of training iterations 
(Epoch) was 70. 

4.1.2. Brief Introduction of Data Set 
The data sets of track fasteners used in this experiment were from the track in-
spection car of Zhuzhou CRRC Times Electric Co., Ltd.. They were collected by 
CCD camera on a metro line in a city with a unified standard. A total 3334 im-
ages were included. The image data format was PNG, and the resolution of each 
image was 3072 × 1024. The data is divided into a training set, a validation set 
and a test set according to the ratio 8:1:1. The training set was used to train the 
model and fit the weight parameters; The validation set was used for adjusting 
the model parameters to obtain the optimal model; While the test set was used to 
test the final model and evaluate the final output. 

The open source software Labelmg was utilized for data annotation to labeling 
the status and position information of track fasteners in the image data. Figure 6 
demonstrates the service status data of some track fasteners. 

4.2. Experiment Results and Analysis 

First, model training and validation were carried out with the training and vali-
dation data sets. This is to verify the detection effectiveness of the improved Yolov4 
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model proposed in this paper for the service state of track fasteners. The calcula-
tion curve of the model is shown in Figure 7. It can be seen that the loss values 
of both the training set and the validation set converge to 0.36 in advance and 
the final convergence values are basically the same. This indicates that the para-
meter settings and prediction results of the track fastening detection model 
proposed in this paper are basically reasonable. 

Then, with the test data set, the traditional Yolov4 model and the improved 
Yolov4 model proposed in this paper were respectively used to detection the fas-
tener service state, and the results were compared. Table 1 gives the result com-
parison of two models based on the test data set. 

According to the experiment results, compared with the traditional Yolov4 
model, the improved Yolov4 model with Mixup data augmentation, MobileNet-V2 
 

 
(a) Missing      (b) Displacement       (c) Fracture        (d) Normal 

Figure 6. Presentation of partial data. 
 

 

Figure 7. Loss ratio. 
 
Table 1. Performance comparison of models. 

Model Mixup Mobilenet-V2 SE Block MAP (%) FPS (Hz) 

Yolov4    80.37 46 

Proposed algorithm √ √ √ 83.20 77 
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network lightweight, and SE attention mechanism has a higher detection accu-
racy (MAP), which is increased by 2.83%, as well as has a faster processing 
speed. The processing frame rate (FPS) increased by 31 frames per second, i.e. 
the model calculation speed is increased by 67.39%. 

5. Conclusion 

Aiming to solve the issue in the current service state detection methods for track 
fasteners, i.e. the detection accuracy and the calculation speed are not well ba-
lanced, this paper proposes a new detection method based on improved the Yo-
lov4 model for a collaborative optimization of detection accuracy and calcula-
tion speed. By introducing in the Mixup data augmentation, the generalization 
ability of the Yolov4 model is enhanced; By using the MobileNet-V2 network as 
the backbone network instead of CSPDarknet53, the model is lightweighted; Fi-
nally, the SE attention mechanism is introduced, so that the detection of the 
proposed model focuses on the service state characteristics of track fasteners, i.e. 
the detection accuracy of the model is further improved. The comparison of ex-
periment results of the traditional and the improved Yolov4 models verifies that 
the detection algorithm proposed in this paper provides a certain substantial 
improvement in detection accuracy and detection speed, achieving a collabora-
tive optimization of model detection accuracy and calculation speed. 
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