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Abstract 
Setting: Four decentralised sites are located in rural areas and one centralised 
hospital in KwaZulu-Natal province, South Africa. Objective: To analyse risk 
factors associated with multidrug-resistant tuberculosis (MDR-TB) using com-
peting risks analysis. Understanding factors associated with MDR-TB and 
obtaining valid parameter estimates could help in designing control and in-
tervention strategies to lower TB mortality. Method: A prospective study was 
performed using a competing risk analysis in patients receiving treatment for 
MDR-TB. The study focused on 1542 patients (aged 18 years and older) who 
were diagnosed of MDR-TB between July 2008 and June 2010. Time to cure 
MDR-TB was used as the dependent variable and time to death was the com-
peting risk event. Results: The Fine-Gray regression model indicated that base-
line weight was highly significant with sub-distribution hazard ration (SHR) 
= 1.02, 95% CI: 1.01 - 1.02. This means that weight gain in a month increased 
chances of curing MDR-TB by 2%. Results show that lower chances to cure 
MDR-TB were among patients between 41 to 50 years compared to those pa-
tients who were between 18 to 30 years old (SHR = 0.80, 95% CI: 0.61 - 1.06). 
The chances of curing MDR-TB in female patients were low compared to 
male patients (SHR = 0.84, 95% CI = 0.68 - 1.03), however this was not sig-
nificant. Furthermore, HIV negative patients had higher chances to cure 
MDR-TB (SHR = 1.07, 95% CI: 0.85 - 1.35) compared to HIV positive pa-
tients. Patients who were treated in the decentralised sites had lower chances 
to be cured of MDR-TB (SHR = 0.19, 95% CI: 0.07 - 0.54) as compared to pa-
tients who were treated in the centralised hospital. Conclusion: Identifying 
key factors associated with TB and specifying strategies to prevent them can 
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reduce mortality of patients due to TB disease, hence positive treatment out-
comes leading to the goal of reducing or end TB deaths. Urgent action is re-
quired to improve the coverage and quality of diagnosis, treatment and care 
for people with drug-resistant TB. 
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1. Introduction 

Tuberculosis (TB) remains the ninth leading cause of death in the world and the 
leading cause of death among infectious diseases [1], including among persons 
living with human immunodeficiency virus (HIV) infection [2]. TB is tradition-
ally known as a “disease of poverty”. Poverty is associated with several causal 
and risks factors, for example overcrowding, malnutrition, immigration, HIV, 
alcohol, or drug use and other factors are widely acknowledged to be risk factors 
for the TB disease [3]. In 2018, 1.2 million deaths from TB among seronegative 
individuals and 251,000 deaths among human immunodeficiency virus (HIV) 
positive people were estimated [1]. The World Health Organisation (WHO) sta-
tistics give an estimated incidence of 301,000 cases of active TB in 2018. This is a 
rate of 520 per 100,000 people. It is estimated that 11,000 people became ill with 
multidrug resistant tuberculosis (MDR-TB) in 2018 [1]. 

MDR-TB is a form of TB infection which is resistant to treatment with at least 
two of the most powerful first-line anti-TB drugs, namely isoniazid and rifampi-
cin and is a growing public health and clinical problem worldwide. Globally, 
160,684 cases of MDR-TB were detected and notified in 2017 (a small increase 
from 153,119 in 2016). Of these, a total of 139,114 people (87%) were enrolled 
on treatment with a second-line regimen, up from 129,689 in 2016 but still 25% 
of the estimated 558,000 people developed MDR-TB in 2017 [1]. 

Africa is home to over 1 billion people and is disproportionately affected by 
TB with 2.6 million of the 10.4 million global TB cases [4], making the continent 
a key geographical area for health interventions. Sub-Saharan Africa, in particu-
lar, saw rates rapidly escalate in the early 1990s due to a delayed response to the 
emergent HIV epidemic at the time [5] [6]. These failures resulted in incidence 
rates that are the highest in the world and have made the task to end TB even 
more challenging. Nevertheless, the tide has changed with the rapid expansion of 
anti-retroviral therapy resulting in sharp declines in HIV-associated TB inci-
dence in countries in sub-Saharan Africa, thus offering a window of hope [7] [8] 
[9]. 

The priorities including public health care workers should be identifying risk 
factors associated with TB disease. This is essential for assessing programmatic 
needs and has the potential to contribute to the targeting of interventions and 
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improvement of treatment monitoring, thus contributing to the End TB Strategy 
and to reduce TB mortality by 95% [1]. Thus, identifying and understanding 
most risk factors, if not all, associated with TB may help in developing strategies 
to assist healthcare workers to reduce or end TB mortality. 

Risk factors associate with TB have received much attention in the literature 
dating back to the past two decades [10]-[15]. In South Africa, studies on the 
risk factors associated with TB were identified. In the study done between 2008 
and 2012 in KwaZulu-Natal, the association between outcomes in patients co- 
infected with TB/HIV, and health systems performance was strong. The results 
were found using Pearson product moment correlation coefficients [16]. 

Results revealed a significant interaction between HIV infection and other risk 
factors for death during TB treatment in the study done by [17] using a data set 
collected in Cape Town City between 2009 and 2012. [17] used a Binomial log- 
linear regression model to obtain results. Results also showed the association 
between HIV infection and death among young people aged 15 - 24 years. Ex-
isting literature is generally addressing risk factors related with TB mortality and 
does not address specific time to cure MDR-TB after treatment is initiated, tak-
ing into account other competing risk factors that can delay or stop the event of 
interest which is cure MDR-TB. Therefore, this study aimed to analyse factors 
that delay/stop the curing of MDR-TB taking into account other competing risk, 
using a competing risks model in a cohort of patients receiving treatment for 
MDR-TB from 2008 to 2012 in KwaZulu-Natal, South Africa. The study reports 
the importance of using right statistical method to  

This paper is organised as follows: The next section describes the data set used 
in this paper. Section 3 describes the methods used to analyse the data set. Sec-
tion 4 reports on the results obtained using a Cox proportional hazards model 
and a Fine-Gray regression model. The last section discusses findings and con-
clusion. 

2. Data Description 

Study Population 
This was a prospective health systems study including all patients with con-

firmed diagnosis of MDR-TB, and who commenced treatment between 1 July 
2008 and 30 June 2010. Data were sourced from five sites: The Greytown, Man-
guzi, Murchison, Thulasizwe (Decentralised sites) and King George (Centralised 
hospital). 

The data set consists of 1542 patients, aged 18 years and older, diagnosed with 
MDR-TB. The target population was defined as all MDR-TB patients diagnosed 
and treated in the TB centres during the study period. Patients receiving care at 
more than one site were excluded in order to guarantee the quality of informa-
tion on MDR-TB treatment episodes. An automatic monitoring method adopted 
by [18] sought to eliminate duplicates and correct classification errors of differ-
ent treatment episodes from the same patient. Inclusion criteria for the compar-
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ison study required that patients reside within the catchment area of the site. No 
data was collected after 1 October 2012 as the study period was from 1 July 2008 
to 30 June 2012. 

Each participant was examined and followed through regular culture smear 
sputum tests for MDR-TB outcomes. Conversion of sputum culture from posi-
tive to negative was considered a useful early indicator of programme effective-
ness, as treatment outcomes were only available 18 - 24 months after treatment 
started. Culture conversion was defined as two consecutive negative sputum 
cultures taken at least one month apart [19] [20] [21]. These patients were fol-
lowed from the date of MDR-TB diagnosis until they became MDR-TB free or 
until the last follow-up date. 

Study Approvals 
The study protocol was approved by the University of KwaZulu-Natal Bio-

medical Research Ethics Committee (Ref: BF052/09), and by the KwaZulu-Natal 
Department of Health. Only secondary data, the data routinely collected by 
health workers for clinical care was used in this study. To protect patient confi-
dentiality and anonymity the data bases were de-identified and access strictly li-
mited. Informed consent was waived by the ethics committee, since all patient 
data used were previously collected during the course of routine medical care 
and did not pose any additional risks to the patients. 

Data Collection 
Medical records were reviewed to collect patient-related demographic, clinical, 

pharmaceutical and laboratory data. All data, was collected prospectively, prior 
to knowledge of patient treatment outcomes. Health system data was collected 
from different components of the health system—laboratory, pharmaceutical 
and transport services and human resources using existing records and databas-
es, structured questionnaires, observation and interviews. An iterative approach 
was used which enabled team to identify new health system data required and 
develop appropriate data collection methodologies. Over the four-year study pe-
riod each site was visited once monthly. During each visit data from each health 
system component was collected, the functioning of the MDR-TB unit observed 
and informal discussions held with the nurse-in-charge of the MDR-TB unit, the 
clinician responsible for MDR-TB and the hospital pharmacist. Through a 
process of ongoing reflection, feedback and discussion with facility and district 
level staff problems were investigated to determine their origin and cause and 
possible solutions identified. Field notes detailing the visit and documenting ob-
servations and discussions with staff were written up after returning from the 
site. Notes were also made of concerns, opinions and issues which needed follow 
up. 

2.1. Baseline Characteristics of Study Participants 

A descriptive analysis was performed to find the summary measures of the va-
riables of interest. In this study, survival time was measured in days between 
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date of diagnosis and the date of the event of interest (cure MDR-TB), death, 
defaulted or censoring (end of follow-up period). 

During the study period, a total of 1542 patients met the inclusion criteria, in-
cluding 245 (15.9%) who died during the follow-up period. The median fol-
low-up time of the study period was 26.8 months (IQR: 26.59 - 27.01). The mean 
baseline weight was 53.12 kg with a standard deviation of 17.01 kg. The majority 
of patients (35.5% and 35.7%) in this study were in the age groups 18 - 30 and 31 
- 40 respectively (Table 1). The proportion of males was small compared to fe-
males (48.3% vs. 51.7%). Most of the patients (95.7%) in the study had no pre-
vious MDR-TB episodes. The type of TB was a pulmonary TB in almost all pa-
tients (97.9%). Seventy-four point seven percent (74.7%) of the patients were 
HIV positive and 25.3% were HIV negative. About (93.6%) of the patients in the 
study had no other diseases or conditions. The result showed that 56% of pa-
tients were cured of MDR-TB disease, and 21.7% were defaulted (Table 1). 

2.2. Methodology 

The Kaplan-Meier estimate 
A traditional approach to describe time to event data and estimation of the 

survival function in the presence of incomplete follow-up, is a Kaplan-Meier 
(KM) estimate. This statistical method was originally developed to describe mor-
tality in the presence of incomplete follow-up from unrelated causes like study 
dropout [22]. The KM approach provides a non-parametric estimate of the overall 
survival probability of an event of interest. Economists, engineers, and scientists 
have since widely adopted it to describe event-free survival, or time to event, for 
a number of different outcomes. An important assumption of KM survival anal-
ysis is that subjects who have not experienced the primary outcome and cannot 
be followed to study completion for any reason are censored. Censored subjects 
are considered “at risk” for the primary outcome for the duration of the study 
regardless of the reason why they were censored. Every patient in the data set 
has a follow-up time and status (event or censored). The follow-up times where 
an event has occurred are ordered from the smallest to the largest (noting that 
there can be ties since more than one patient may have the event at the same 
follow-up time). Consider consecutive event times 1jt −  and jt . The Kaplan- 
Meier estimate of the overall survival probability up to event time jt  proceeds 
as follows. Let jn  be the number of event-free individuals up to time jt . Sup-
pose jd  events have occurred at time jt . The estimated survival probability at 
time jt  is given by the ratio ( )j j jn d n− . The overall survival probability up 
to time jt , denoted ( )jS t , is the probability of surviving up to and including 
time jt . Therefore, the overall survival probability up to jt  is estimated as the 
product of the probabilities of survival in all the previous times:  

( ) ( ) ( ) ( )1j j j j j j j jS t n d n S t n d n= − = − × −∏ , where the product is over  
1,2, ,i j=  . The overall survival probability for any time between 1jt −  and jt  

is the same as ( )1jS t − , the survival probability up to, but not including jt . 
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Table 1. Baseline characteristics of study participants, KwaZulu-Natal, South Africa, 2008 
to 2012 (N = 1542). 

Factors Categories 
Centralised 

hospital 
Decentralised 

sites 
Total 

P-value 
No % No % No % 

 812 52.7 730 47.3 1 542 100  

Follow-up time in months 26.8 (26.6 - 27.0) 

Baseline weight (SD) 53.12 (17.0) 

Age, mean (SD) 35.7 (10.8) 

Age at diagnosis 
       

18 - 30 303 19.7 245 15.9 548 35.5 0.247 

31 - 40 292 18.9 258 16.7 550 35.7 
 

41 - 50 145 9.4 153 9.9 298 19.3 
 

51 or more 72 4.7 74 4.8 146 9.5 
 

Gender 
       

Male 399 25.9 346 22.4 745 48.3 0.264 

Female 413 26.8 384 24.9 797 51.7 
 

Previous MDR-TB episodes 
       

No previous MDR-TB episodes 802 52.0 673 43.6 1 475 95.7 <0.001* 

1 previous MDR-TB episode 9 0.6 55 3.6 64 4.2 
 

2 or more previous MDR-TB 
episodes 

1 0.1 2 0.1 3 0.2 
 

Type of TB 
       

Pulmonary TB 804 52.1 706 45.8 1 510 97.9 0.001* 

Extra-pulmonary TB 8 0.5 24 1.6 32 2.1 
 

Comorbidities Conditions 
       

No other diseases or conditions 780 92.5 9 1.1 789 93.6 <0.001* 

Diabetes 10 1.2 10 1.2 20 2.4 
 

Epilepsy 4 0.5 8 1.0 12 1.4 
 

Hearing loss prior to start 
treatment 

1 0.1 10 1.2 11 1.3 
 

Renal problems 0 0 3 0.4 3 0.4 
 

Substance abuse 0 0 4 0.5 4 0.5 
 

Psychiatric problems 4 0.5 0 0 4 0.5 
 

HIV status 
       

Positive 576 39.1 524 35.6 1 100 74.7 0.089** 

Negative 211 14.3 162 11.0 373 25.3 
 

Status 
       

Cured 439 28.5 425 27.5 864 56.0 <0.001* 

Died 113 7.3 132 8.6 245 15.9 
 

Defaulted 229 14.9 105 6.8 334 21.7  

Lost to follow-up 31 2.0 68 4.4 99 6.4  
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Kaplan-Meier Analysis for MDR-TB 
The KM survival estimate for the MDR-TB data is described in the next para-

graph. Before analysis, the observed survival times were first sorted in ascending 
order, starting with the patient with the shortest event time. The estimation of 
the overall MDR-TB probabilities is illustrated in Table 2. For example, the 
overall probability estimate of MDR-TB patients not yet cured up to 20 months 
is ( ) 0.9510jS t =  and the overall probability estimate of MDR-TB patients not 
yet cured up to 24 months is ( ) 0.5069jS t = . 

The cumulative incidence of curing MDR-TB by time 1jt +  is one minus the 
probability that MDR-TB is not yet cured, that is, ( )11 jS t +− . This can be seen 
in the last column of Table 2. For example, the probability that MDR-TB is not 
yet cured up to 20 months from diagnosis date is 0.9822. This is equivalent to 
1 0.9822 0.0178− =  (the probability of curing MDR-TB by this time).  

The Fine and Gray regression method 
Statistical analysis needs to take into consideration the competing risks. [23] 

[24] developed competing risk regression (CRR) model, which considers the ef-
fect of predictors on the cumulative incidence function (CIF) accounting for the 
presence of competing risks. This model considers a proportional risk model for 
the sub-distribution of competing risk, where the covariates directly affect the 
CIF. That is, for participants in our study that died due to MDR-TB or other 
diseases, the model considers these risks but with decreasing weight to take into 
account the reduction of the observations [23].  

 
Table 2. Kaplan-Meier MDR-TB probability estimates, KwaZulu-Natal, South Africa, 
2008 to 2012 (N = 1542). 

Time in 
Months 

Number  
at risk 

Cured 
Cumulative  
survival S(tj) 

Incidence = 1 − S(tj) 

0 1542 0 1 0 

11 846 2 0.9977 0.0023 

17 794 1 0.9964 0.0036 

18 779 2 0.9939 0.0061 

19 744 9 0.9822 0.0178 

20 690 23 0.9510 0.0490 

21 642 29 0.9104 0.0896 

22 590 42 0.8500 0.1500 

23 512 60 0.7608 0.2392 

24 309 160 0.5069 0.4931 

25 110 162 0.2155 0.7845 

26 38 58 0.0877 0.9123 

27 14 16 0.0447 0.9553 

28 8 5 0.0275 0.9725 

29 4 4 0.0118 0.9882 

30 3 2 0.0039 0.9961 
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Table 3. Endpoints for the study. 

Endpoint Measurement Event of interest Possible competing risks 

Survival cure MDR-TB time to cure MDR-TB Death 

 
In the absence of competing risks, survival data are usually presented as a bi-

variate random variable or pair ( ),T C . The censoring variable, C, is 1 if the 
event of interest was observed, and is 0 if the observation was censored. When 

1C =  the first member of the pair, T, is the time at which the event occurred 
and when 0C = , T is the time at which the observation was censored. This de-
finition can be extended to the competing risks situation where 2p ≥  types of 
failures or events are possible. The data are again represented as a pair ( ),T C , 
and the censoring indicator C will again be defined as 0 if the observation is 
censored. In the event that the observation is not censored, though, C will take 
on the value i, where i is the type of the first failure/event observed  
( 1,2, ,i p=  ). If C i=  then T is the time at which the event of type i occurred; 
otherwise it is the time to censoring [25] [26]. Table 3 above illustrates the case 
of competing risks situation. 

The CIF, or sub-distribution, for an event of type ( )1,2, ,i i p=   is defined 
as the joint probability 

( ) ( ),iF t P T t C i= ≤ =  

In other words, the CIF is the probability that an event of type i occurs at or 
before time t. The overall distribution function is the probability that an event of 
any type occurs at or before time t. The overall distribution function is equal to 
the sum of CIFs, for all event types. Hence, 

( ) ( ) ( ) ( )
1 1

,
p p

i
i i

F t P T t P T t C i F t
= =

= ≤ = ≤ = =∑ ∑  

The sub-survivor function is the probability that an event of type i does not 
occur by time t and is defined as ( ) ( ),iS t P T t C i= > = . Note here that when 
the competing risks are not present the overall distribution function spans the 
interval [ ]0,1 . In contrast, in the competing risks environment the CIF can take 
values only up to ( )P C i=  because 

( ) ( )lim it
F t P C i

→∞
= =  

Therefore, ( )iF t  is not a proper distribution, hence the term “sub-distribution”. 
Also note that 

( ) ( ) ( )i iF t S t P C i+ = =  

In addition to the CIF and the sub-survivor function, the sub-density function 
for events of type i is defined as 

( ) ( )i
i

F t
f t

t
∂

=
∂

 

As in the general setting of survival analysis, the sub-hazard function can be 
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defined in mathematical terms as 

( ) ( )
0

, |
limi

P t T t C i T t
h t

δ

δ
δ→

< ≤ + = >  =  
  

  

The sub-hazard has the same interpretation as the hazard in the non-competing 
risks setting—the instantaneous event rate. The overall hazard of an event of any 
type can be found by summing over all sub-hazards: 

( ) ( )
1

p

i
i

h t h t
=

= ∑   

It is worth pointing out that because the CIF is a joint probability, some of the 
relationships among the various sub-functions may not be as expected. Based on 
the definition of the classical approach, one would expect that  
( ) ( ) ( )i i ih t f t S t= . However, 

( ) ( )

( )
( )

( ){ } ( )

( )
( )

0

0

1

0

, |
lim

,
lim

,
lim

i

i

P t T t C i T t
h t

P t T t C i
P T t

P t T t C i
P T t

f t
S t

δ

δ

δ

δ
δ

δ
δ

δ
δ

→

→

−

→

< ≤ + = >  =  
  
 < ≤ + = =  

× >  
< ≤ + =  = >  

  

=



 

In contrast, the hazard function of the sub-distribution [23] is defined as 

( )
( )( )

0

, | or and
limi

P t T t C i T t T t C i
h t

δ

δ
δ→

 < ≤ + = > ≤ ≠ =  
  

 

The relationship between ( )ih t  and the sub-density and the sub-distribution 
can be expressed as 

( ) ( )
( )1

i
i

i

f t
h t

F t
=

−
 

The cumulative sub-hazard function is defined as 

( ) ( ) ( ) ( ){ }
0 0

d d
t t

i i iH t h t x f x S x x= =∫ ∫  

To analyse the cause specific hazard one can employ a traditional approach for 
the time to event analysis. Thus, the observed time is the time to the first event and 
the censored variable takes the value 1 when an event of interest occurred and 0 
when either the observation is censored or a competing risk event occurred. 

The Cox proportional hazard model (which ignores competing risks) was em-
ployed to identify factors associated with MDR-TB. The results from the Cox 
model were then compared with the results obtained using the Fine-Gray sub- 
distribution hazard model. The Fine-Gray sub-distribution hazard method is al-
so based on the Cox proportional hazards model [27], and it allows for the in-
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clusion of time-varying covariates and it takes into account competing risks. 
Programming for CRR is publicly available using the statistical software R, cmprsk 
package, STATA or other statistical software. 

The CIF was used to describe the probability of curing MDR-TB in the pres-
ence of competing event (death) and the Gray’s test was used to compare the 
differences between the groups. We tested each of the selected covariates shown 
in Table 1. A p-value < 0.05 is considered to indicate a statistically significant 
result. The proportionality assumption of the Fine-Gray model was initially 
checked for CIF and Schoenfeld residuals tests. 

2.3. Software Used 

The Statistical Package for the Social Sciences 25 (SPSS) was used to organise the 
data set. We conducted the statistical analysis in STATA software, College Sta-
tion, TX, USA [28], and free software R version 4.0.3 (R Foundation for Statis-
tical Computing, Vienna, Austria) in the “Survival” [29]. 

3. Results 

In this section, we apply the above methods to the MDR-TB cohort study, which 
is described in more detail in section 3. 

The cumulative incidence functions for the sub-distribution hazard ratio 
(SHR) of curing MDR-TB disease and death due to MDR-TB or other diseases, 
in a competing risk structure are presented in Figure 1. The CIF of death was 
higher than that of curing MDR-TB disease from the beginning of the study fol-
low-up period until about 23 months. Immediately after 24 months, we observe 
a gradual increase of the CIF of curing MDR-TB becoming higher than that of 
death. 

The cumulative incidence curves [23] give an overall idea about the survival 
distribution. Figure 1 summarizes the cumulative incidence estimates for the two 
possible events, taking competing risks into account. The probability of death 
was significantly high in decentralised sites than in the centralised hospital (Figure 
2). Gray’s test showed a significant difference between the sites (decentralised 
and centralised) in curing MDR-TB. Patients treated in the centralised hospital 
had a higher probability of becoming MDR-TB free compared to those patients 
who were treated in the decentralised sites (Figure 3). 

Table 4 shows results obtained using the Cox proportional hazard model and 
Fine-Gray regression model with 95% confidence interval (95% CI) for the 
covariates which could be factors that affect the probability of being cured 
from MDR-TB. The Cox model reported baseline weight, age group, comorbidi-
ties conditions and study sites as significant covariates. The Cox results show 
that an increase in weight in one month results in an increase chances of curing 
MDR-TB by 0.8%. The results also show that patients between 41 to 50 years of 
age had lower chances of curing MDR-TB compared to those between 18 to 30 
years (HR = 0.739, 95% CI: 1.541 - 3.009). Furthermore, the result showed that  
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Figure 1. Survival curves estimated by the Cumulative Incidence Functions (CIF) of 
the sub-distribution of risks proposed by Fine and Gray. 

 

 
Figure 2. Cumulative incidence functions for death (Competing risk). 

 

 

Figure 3. Cumulative incidence for curing MDR-TB disease in patients by sites. 
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Table 4. Cox Proportional Hazard Model with hazard ratios (HR) and Fine-Gray Regression Model with the sub-distribution 
hazard ratio (SHR) and confidence interval (95% CI) of reported cases of MDR-TB, KwaZulu-Natal, South Africa, 2008 to 2012 
(N = 1542). 

Variables 
 Cox Proportional Hazard Method  Competing Risk Regression Method 

Coef. Std.error HR P-value 95% CI Coef. Std.error SHR P-value 95% CI 

Baseline weight (kg) 0.008 0.754 1.008 0.026* 1.001 - 2.014 0.015 0.328 1.015 <0.001* 1.009 - 3.021 

Age group (years)  
 

 
 

18 to 30 (Ref)  
 

 
 

31 to 40 −0.021 0.912 0.979 0.868 0.760 - 1.260 0.599 0.522 1.821 0.111 0.643 - 1.046 

41 to 50 −0.303 0.763 0.739 0.057* 1.541 - 3.009 -0.219 0.337 0.803 0.035* 1.606 - 2.063 

>50 −0.101 0.744 0.904 0.622 0.603 - 1.353 0.582 0.461 1.790 0.244 0.531 - 2.175 

Gender  
 

 
 

Male (Ref)  
 

 
 

Female 0.052 0.865 1.053 0.638 0.849 - 1.307 -0.175 0.246 0.840 0.098 0.683 - 1.033 

Previous MDR-TB  
 

 
 

No (Ref)  
 

 
 

Yes 0.751 0.559 2.118 0.319 0.575 - 7.802 0.667 0.295 1.949 0.223 0.326 - 2.758 

Comorbidities conditions  
 

 
 

No (Ref)  
 

 
 

Yes −0.229 0.831 0.795 0.015* 1.225 - 6.378 −0.144 0.362 0.866 0.004* 1.400 - 5.865 

HIV status 
 

 
  

      

Positive (Ref)           

Negative 0.096 0.750 1.100 0.045* 1.859 - 2.410 0.068 0.278 1.070 0.041* 1.851 - 2.346 

Study sites           

Centralised hospital (Ref)           

Decentralised sites −1.290 0.924 0.275 0.024* 1.090 - 4.842 −1.667 0.499 0.189 0.002* 1.067 - 4.536 

*Significance at the 95% level. 
 

patients with other comorbidities had lower chances to cure MDR-TB (HR = 
0.795, 95% CI: 1.225 - 6.378) than those with no other comorbidities. HIV nega-
tive patients had higher chances of being cured of MDR-TB than those patients 
who were HIV positive (HR = 1.100, 95% CI: 1.859 - 2.410). The Cox regression 
model also reported that patients treated in decentralised sites had lower chances 
(HR = 0.275, 95% CI: 1.090 - 4.842) of curing MDR-TB compared to those pa-
tients who were treated in the centralised hospital. 

The Fine-Gray regression model indicated that baseline weight was highly 
significant with sub-distribution hazard ration (SHR) = 1.015, 95% CI: 1.009 - 
3.021. This means that weight gain in a month increased chances of curing 
MDR-TB by almost 2%. Results shows that lower chances to cure MDR-TB was 
among patients between 41 to 50 years compared to those patients who were 
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between 18 to 30 years old (SHR = 0.803, 95% CI: 1.606 - 2.063). The chances of 
curing MDR-TB in female patients was low compared to male patients (SHR = 
0.840, 95% CI = 0.683 - 1.033), however this was not significant. The result 
showed that patients with other comorbidities had lower chances to cure MDR- 
TB (SHR = 0.866, 95% CI: 1.400 - 5.865) than those with no other comorbidities. 
Furthermore, HIV negative patients had higher chances to cure MDR-TB (SHR 
= 1.070, 95% CI: 1.851 - 2.346) compared to HIV positive patients. Patients who 
were treated in the decentralised sites had lower chances to be cured of MDR-TB 
(SHR = 0.189, 95% CI: 1.067 - 4.536) as compared to patients who were treated 
in the centralised hospital. 

The signs of the regression coefficients differed for the effect of age group 31 - 
40, >50 and the effect of female in the Cox Proportional regression model and 
the Fine and Gray model as can be seen in Table 4. Even though these effects are 
not statistically significant, this opposite effect would not be detected by fitting a 
standard Cox model. This is because the standard Cox model is not designed to 
answer risk factors in the presence of the competing risks. We further noticed 
that the standard errors of the estimates in the Fine and Gray model were small 
compared to those in the Cox regression model.  

4. Discussion and Conclusions 

Competing risks occur frequently in clinical studies even though their presence 
may not always be recognized at the time of analysis. In the analysis of compet-
ing risk data, it is important to present both the results of the event of interest 
and the results of competing risks. Competing risk regression analysis is used to 
analyse the factors that affect the probability of the event of interest to occur. A 
number of surprising results were found in this study. Standard errors of the re-
gression estimates turned to be small in the Fine and Gray model. We further 
observed parameter estimates striking in opposite directions indicating that Cox 
regression model did not take into account competing risk event. 

Using a Cox regression model may give incorrect estimates because it ignores 
competing risks and treats them as censored. Fitting a competing risk regression 
model is important to confirm whether the difference seen in the cumulative in-
cidence curves is true or confounded by other risk factors. It is important when 
analysing survival data to first recognise that competing risks are present. Fol-
lowing this, the analysis should include a calculation of cumulative incidence of 
an event of interest in the presence of competing risks, a proper test for cumula-
tive incidence curves of an event, and competing risk regression analyses. 

In this paper, we have presented two methods of analysing survival data: 1) 
analysis of the event of interest ignoring competing risks, 2) analysis of compet-
ing risks. We have noticed that the effect of other risk factors changed signifi-
cantly. The first approach may lead to insufficient or erroneous results. The 
magnitude of the error could be large if the incidence of competing risk is high, 
or could be minimal if the incidence of competing risk is low. However, one 
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could not know the effect of competing risks prior unless a competing risk anal-
ysis is done. The second approach is more preferable because it caters for com-
peting risks and gives unbiased results. Future research is needed to include 
analysis of joint events as a single end point. 

Conclusion, in survival analysis, it is important to assume that there are two 
or more failure types in addition to censoring. Fitting models separately (not 
jointly) for each type of failure, treating other failure types as censored data could 
result in difficulties in comparing parameter estimates corresponding to differ-
ent failure types. 
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