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Abstract 

Many domains, including communication, signal processing, and image 
processing, use the Fourier Transform as a mathematical tool for signal analy-
sis. Although it can analyze signals with steady and transitory properties, it 
has limits. The Wavelet Packet Decomposition (WPD) is a novel technique 
that we suggest in this study as a way to improve the Fourier Transform and 
get beyond these drawbacks. In this experiment, we specifically considered 
the utilization of Daubechies level 4 for the wavelet transformation. The 
choice of Daubechies level 4 was motivated by several reasons. Daubechies 
wavelets are known for their compact support, orthogonality, and good 
time-frequency localization. By choosing Daubechies level 4, we aimed to 
strike a balance between preserving important transient information and 
avoiding excessive noise or oversmoothing in the transformed signal. Then 
we compared the outcomes of our suggested approach to the conventional 
Fourier Transform using a non-stationary signal. The findings demonstrated 
that the suggested method offered a more accurate representation of non- 
stationary and transient signals in the frequency domain. Our method pre-
cisely showed a 12% reduction in MSE and a 3% rise in PSNR for the stan-
dard Fourier transform, as well as a 35% decrease in MSE and an 8% increase 
in PSNR for voice signals when compared to the traditional wavelet packet 
decomposition method.  
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1. Introduction 

In signal processing, the Fourier transform [1] is a frequently used method for 
examining a signal that has frequency content. The Fourier transform, on the 
other hand, makes the assumption that the signal is steady, meaning that its 
properties do not alter with time. In real life, a lot of signals are non-stationary, 
meaning that they change with time. In a number of disciplines, including audio, 
image processing, and biomedical engineering [2], non-stationary signals are 
frequently encountered. With the help of the Fourier transform, we can effec-
tively describe a signal in the frequency domain [3] and extract valuable data 
about it, including its spectral properties [4] and frequency components. 

To analyze signals and interpret their frequency content, mathematicians fre-
quently employ the Fourier Transform. However, because of several restrictions, 
it might not always be the best approach. A different strategy is to employ 
Wavelet Packet Decomposition (WPD) [5], a technique for breaking down a 
signal into a collection of wavelet packets that can then be further examined us-
ing the Fourier Transform. 

A method that combines the advantages of both approaches to deliver a more 
effective and precise signal analysis is called enhanced Fourier transform em-
ploying wavelet packet decomposition. When compared to conventional Fourier 
Transform methods [6], WPD can provide a higher resolution [7] and more ac-
curate representation of the signal by breaking the information down into wave-
let packets, allowing for a more localized study of the frequency content of the 
signal. 

The entire signal is split up into a number of frequency components when 
doing a standard Fourier Transform analysis. This method can give a reasonable 
general comprehension of the signal [8], but it does not account for the possibil-
ity that distinct components of the signal may have varying frequency contents. 
A group of time-frequency atoms with good localization in both time and fre-
quency are produced by repeatedly applying a set of filters to the signal to create 
wavelet packets [9]. In order to give a more precise and in-depth examination of 
the signal frequency content, the generated wavelet packets might be subjected 
to Fourier Transform analysis. 

The capacity to handle non-stationary signals [10], or signals whose frequency 
content fluctuates over time, is one of the key benefits of the Improved Fourier 
Transform using Wavelet Packet Decomposition. Such signals may be difficult 
for traditional Fourier Transform analysis to capture because of their variable 
frequency content, but by employing WPD, the signal can be broken up into a 
collection of wavelet packets that are better able to capture the signal’s fluctuat-
ing frequency content. 

The Improved Fourier Transform with Wavelet Packet Decomposition also 
has the benefit of being able to handle signals with discontinuities [11] or abrupt 
transitions. In these situations, the frequency analysis may be distorted or cause 
artifacts when using the conventional Fourier Transform. WPD, on the other 
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hand, is better equipped to manage these signals and can offer a more precise 
frequency analysis. 

Our research aims to address the limitations of the Fourier Transform in ana-
lyzing non-stationary and transient signals. Traditional Fourier Transform me-
thods often struggle to accurately represent such signals in the frequency do-
main, leading to information loss and reduced analysis capabilities. 

2. Background 
2.1. Fourier Transform 

A signal can be changed from the time domain to the frequency domain using a 
mathematical technique [12] called the Fourier transform. It allows us to obtain 
helpful information about the spectral characteristics of a signal by breaking 
down a signal into its individual frequency components. Both continuous and 
discrete-time signals [13] can be transformed linearly using the Fourier trans-
form. This is how the Fourier transform is described: 

 ( )( ) ( ) ( )e dj tf t F f t tωω −∞

−∞
= = ∫  (1) 

where ( )f t  is the function of time, ( )( )f t  is its Fourier transform, ( )F ω  
is the frequency-domain representation of ( )f t , and (ω) is the angular fre-
quency. 

Many signals, including audio, picture, and biological signals, can be trans-
formed using the Fourier method. Signals that do not change over time are re-
ferred to as stationary signals, and the Fourier transform is very helpful in un-
derstanding these signals. 

The discrete Fourier transform (DFT) [14], a quick and effective algorithm for 
computing the Fourier transform of a discrete-time signal, is one of the most 
frequently used Fourier transforms. A series of N discrete-time samples are 
transformed by the DFT into a series of N complex coefficients [15] that indicate 
the frequency content of the signal. 

In comparison to the wavelet transform [16], the Fourier transform provides a 
number of benefits, including good frequency resolution [17] [18] [19] and ease 
of use when examining stationary signals. For a range of signal processing tasks, 
including filtering, spectral analysis, and pattern identification, the Fourier 
transform can efficiently capture the frequency components of a signal. 

Analysis of non-stationary signals [20], or signals that change over time, is 
constrained by the Fourier transform. Several real-world applications, including 
biological signals, voice signals, and seismic signals, frequently involve non-sta- 
tionary signals. It is challenging to analyze such signals using the Fourier trans-
form alone since the frequency [21] content of such signal changes over time. 
The wavelet transform was created to get over this restriction and offers a more 
flexible and accurate analysis of non-stationary signals. 

2.2. Discrete Wavelet Transform 

The DWT [22], which is based on sub-band [23] coding, enables a fast computa-
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tion of the Wavelet Transform. It requires less time and resources to compute 
and is simple to implement. The signals are examined using a series of basic 
functions in the continuous wavelet transform (CWT), which link to one anoth-
er through straightforward scaling and translation. The mathematical expression 
for the continuous wavelet transform (CWT) is defined as: 

 ( ) ( ) *1, dt bW a b x t t
aa

ψ
∞

−∞

− =  
 ∫  (2) 

Here, ( )x t  is the original signal, ( )tψ  is the wavelet function, and a and b 
are the scaling and translation parameters that determine the size and position 
of the wavelet function. 

In the instance of DWT, digital filtering [24] techniques are used to provide a 
representation of the digital signal on a time scale. The signal to be studied is run 
through filters at various scales and varied cutoff frequencies. A signal can be 
studied using the discrete wavelet transform by first being run through an analy-
sis filter bank, then being decimated which can be described as: 

 ( )1
, ,0

N
j k n j knDWT x nψ−

=
= ⋅∑  (3) 

where nx  is the signal at the nth sample, ( ),j k nψ  is the wavelet function at scale 
j and position k, and N is the length of the signal. 

This equation shows how the DWT coefficients ,j kDWT  are obtained by 
convolving the signal with wavelet functions at different scales and positions. 
The result is a set of coefficients that represent the signal’s frequency content at 
different scales and positions. 

Through the use of these filters, a signal is divided into two bands. The low 
pass filter extracts the coarse information from the signal, which is equivalent to 
an averaging operation. The high pass filter, which resembles a linear interpola-
tion operation, pulls out the signal finer details. Following the filtering steps, the 
result is divided by two. One of the most popular signal processing operations is 
the employment of filters. By scaling filters [25] iteratively, wavelets can be 
created. 

As shown in Figure 1, the discrete time-domain signal is successively low-pass 
and high-pass filtered to produce the DWT. The Mallat algorithm, also known 
as the Mallat-tree decomposition, is used for this. The half band filters only gen-
erate signals that cover a portion of the frequency spectrum at each stage of 
breakdown. The frequency uncertainty is cut in half, which increases the fre-
quency resolution by a factor of two. According to Nyquist rule, if the original 
signal highest frequency was ω, and the sampling frequency was 2ω radians, the 
result is that the signal highest frequency is now ω/2 radians. Now, it can be 
sampled at a frequency of ω, allowing for the information-free rejection of half 
the samples. 

The time resolution is reduced by half as a result of the two-fold reduction 
since only half as many samples are used to represent the complete signal. In 
contrast to the half-band low pass filtering, which reduces frequencies by half  
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Figure 1. Decomposition tree of level 3. 
 
and reduces resolution by the same amount, decimation by two increases scale. 
Up until the target level is obtained, the filtering and decimation process is re-
peated. The maximum number of levels is determined by the signal length. Next, 
starting with the last level of decomposition, all the coefficients, approximations, 
and details are concatenated to produce the DWT of the original signal. 

The discrete wavelet transform (DWT), a quick and effective algorithm for 
computing the wavelet transform of a discrete-time signal, is one of the most 
frequently used wavelet transforms. A signal is broken down by the DWT into a 
collection of wavelet coefficients at various scales and locations which can then 
be used to rebuild the original signal. The formula is defined as follows: 

 [ ] [ ]1
, , ,0

1,
2

N
j k j k j knj

C x x n nψ ψ−

=
= = ∑  (4) 

where x is the original signal, ,j kψ  is the wavelet function at scale j and transla-
tion k, N is the length of the signal. 

The DWT decomposes the signal x into a set of coefficients ,j kC . These coef-
ficients can be used to reconstruct the original signal using the inverse discrete 
wavelet transform. 

In comparison to the Fourier transform, the wavelet transform has a number 
of benefits, including flexibility in the analysis of non-stationary signals and good 
time-frequency localization. The wavelet transform is useful for many signals 
processing tasks, including denoising, compression, and feature extraction. It 
can efficiently capture both high- and low-frequency components of a signal. 

2.3. Wavelet Packet Decomposition 

The wavelet packet decomposition is a technique that extends the wavelet trans-
form and offers a more precise and adaptable analysis of a signal by dividing it 
into a collection of wavelet packets. The mathematical equation for the Wavelet 
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Packet Decomposition (WPD) is very similar to the Continuous Wavelet Trans-
form (CWT), but instead of using only one wavelet function, it uses multiple 
wavelet functions at each scale to decompose the signal into sub-bands. 

Here is the mathematical equation for the WPD: 

 ( ) ( ) ( ), ,,j k j kW t x t tψ=  (5) 

where ( )x t  is the original signal, ( ),j k tψ  is the wavelet packet basis function 
at scale j and position k. 

The wavelet packet basis function can be expressed as a linear combination of 
the scaling function ( ),j k tφ  and the wavelet function ( ),j k tψ  at the same 
scale, as follows: 

 ( ) ( ) ( )2 1
, ,0 2

j j
j k l j klt h t lψ φ−

=
= −∑  (6) 

where ( )j
lh  are the filter coefficients at scale j, and ( ),j k tφ  is the scaling func-

tion at scale j and position k. 
The WPD decomposes the signal into multiple sub-bands [26], each of which 

corresponds to a different combination of scales and positions. These sub-bands 
can be obtained by computing the wavelet packet coefficients ( ),j kW t  at each 
scale j and position k, and using them to reconstruct the signal using the inverse 
wavelet packet transform. 

The benefit of using wavelet packet decomposition is that it enables the selec-
tion of the best wavelet packet basis functions for a given signal, which can pro-
vide superior time-frequency localization [27] and improved signal representa-
tion compared to the standard wavelet transform. 

The process of wavelet packet decomposition builds upon the initial decom-
position of a signal into its wavelet coefficients by further decomposing each sub 
band into smaller sub bands. To achieve this, the wavelet transform is applied to 
each sub band resulting in a set of wavelet packet coefficients. The wavelet pack-
et decomposition creates a hierarchical binary tree [28] [29] structure where 
each node of the tree represents a wavelet packet basis function. At the root of 
the tree is the wavelet transform that first decomposes the signal into its high 
and low frequency components. At each subsequent level, the wavelet transform 
is applied to each sub band, resulting in a binary tree structure that represents 
the wavelet packet decomposition. This hierarchical structure provides a more 
detailed and refined representation of the signal that can be useful in a variety of 
applications such as signal compression, noise reduction, and feature extraction. 

The approximations and the details can be separated in wavelet packet analy-
sis. This results in more than 

122
n−

 different signal encoding schemes. In addi-
tion to the lowpass filter output being iterated through further filtering when the 
WT is generalized to the WPT, the high pass filter can also be iterated. The WPT 
allows for more than one basis function (or wavelet packet) at a given scale due 
to its capacity to iterate the high pass filter outputs, in contrast to the WT, which 
only has one basis function at each scale until the deepest [30] level, where it has 
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two. The entire family of potential bases is represented by the set of wavelet 
packets, and numerous potential bases can be created from them. Wavelet basis 
results from iterating solely the lowpass filter. The full tree foundation is pro-
duced by iterating all lowpass and high pass filters. The time representation of 
the signal is at the top level of the WPD tree. The trade-off between time and 
frequency resolution increases as the tree is climbed higher and higher. A fully 
decomposed tree’s lowest level is the signal’s frequency representation. The level 
3 decomposition using the wavelet packet transform is shown in Figure 2. Fig-
ure 1 illustrates how only the approximations at each resolution level—represented 
by a capital A in the figure—are decomposed in wavelet analysis to produce ap-
proximation and detail information at a higher level. However, the approxima-
tion and features at one level are further broken down into the next level in the 
wavelet packet analysis (Figure 2), which enables it to offer a more accurate 
frequency resolution than the wavelet analysis. 

This flexibility allows for a more refined selection of the best wavelet packet 
basis functions for a given signal, leading to better time-frequency localization 
and more accurate signal representation. Additionally, the wavelet packet de-
composition can capture both high and low frequency components of a signal at 
different scales and positions. This comprehensive time-frequency analysis can 
be especially useful in analyzing non-stationary [31] signals, which change over 
time and have complex frequency content. 

3. Methodology 

The suggested Enhanced Fourier Transform utilizing Wavelet Packet Decompo-
sition (EFT-WPD) method shown in Figure 3 is thoroughly explained in this 
section. By fusing the advantages of wavelet analysis with Fourier Transform, the 
EFT-WPD method aims to provide a more precise and effective analysis of 
non-stationary data. 

The eight main steps of the EFT-WPD approach are as follows: 
1) Input Signal: Begin with an input signal that is to be analyzed using the 

EFT-WPD method. 
 

 

Figure 2. Level 3 decomposition using wavelet packet transform. 

https://doi.org/10.4236/jst.2024.141001


W. Cabrel et al. 
 

 

DOI: 10.4236/jst.2024.141001 8 Journal of Sensor Technology 
 

 

Figure 3. Block diagram of enhanced fourier transform using wavelet packet decomposition. 
 

2) Signal decomposition: Wavelet Packet Decomposition is used to divide the 
input signal into sub-bands (WPD). WPD breaks the signal down into sub-bands 
with varying resolutions in a recursive manner, enabling frequency analysis at a 
finer granularity. Any suitable wavelet function, such as Daubechies, Coiflet, or 
Symlet, can be used to carry out the decomposition but for our experiment we 
Daubechies. the signal decomposition can be expressed as: 

 ( ) ( ) ( ), , , , , ,i j i j k i j k i ji j k i jS x c x d xϕ ψ= +∑ ∑ ∑ ∑ ∑  (7) 

where ( )S x  is the original signal, ,i jc  and , ,k i jd  are the wavelet packet coef-
ficients, ( ),i j xϕ  and ( ), ,k i j xψ  are the scaling and wavelet functions, respec-
tively, and i, j, and k index the different frequency and time scales in the de-
composition. 

3) Fourier Transform (FT): To obtain the frequency spectrum for each sub-band, 
the Fourier Transform is applied independently to each sub-band. The signal 
frequency content and how it varies over time are both revealed by the Fourier 
Transform. 

4) Frequency Spectrum Enhancement: Apply a logarithmic enhancement 
function to each frequency spectrum obtained in step 3, which amplifies the 
high-frequency components while suppressing the low-frequency components. 

5) Inverse Fourier Transform (IFT) for Each Enhanced Sub-band: Perform an 
Inverse Fourier Transform (IFT) on each enhanced sub-band frequency spec-
trum to obtain the corresponding sub-band signal in the time domain. 

6) Sub-band signals in time domain: The output of the IFT operation is a set 
of sub-band signals in the time domain. 

7) Signal Fusion: Combine or fuse the sub-band signals obtained in step 5 to 
reconstruct the signal in the time domain. The reconstructed signal can be ex-
pressed as: 

 ( ) ( ) ( ), , , , , ,r i j i j k i j k i ji j k i jS x c x d xϕ ψ′= +∑ ∑ ∑ ∑ ∑  (8) 

where , ,k i jd ′  are the modified wavelet packet coefficients obtained by fusing the 
enhanced time-domain coefficients with the original wavelet packet coefficients, 
as done in our program we provided. 

8) Output Signal: The output of the EFT-WPD method is a reconstructed sig-
nal with a more detailed and accurate representation of its frequency content. 
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We tested on both simulated and real-world signals to gauge the efficacy of 
the suggested EFT-WPD technique. Several waveforms, including sine waves, 
square waves, and sawtooth waves, were used to create the synthetic signals, to-
gether with noise to replicate real-world signals. Several sources, including 
speech, electrocardiogram (ECG), and vibration signals, were used to collect the 
real-world signals. 

We used the metrics Pick Signal to Noise Ratio (PSNR) and Mean Square Er-
ror (MSE) to compare the performance of the EFT-WPD method with the con-
ventional Fourier Transform and the Wavelet Transform method (WT). In 
comparison to the other three methods, we also conducted a comparative analy-
sis with traditional signal analysis methods. Specifically, we evaluated the effica-
cy of the EFT-WPD approach by comparing it with the performance of the 
Fourier Transform (FT), Wavelet Packet Decomposition (WPD), and Short-Time 
Fourier Transform (STFT). 

We also conducted a comparative analysis employing several enhancement 
functions, including the exponential, sigmoidal, and hyperbolic tangent func-
tions, to further validate the efficacy of the EFT-WPD approach. According to 
our research, the logarithmic function produced the most accurate and compu-
tationally efficient results. 

The testing findings showed that in terms of accuracy and computing com-
plexity, the suggested EFT-WPD approach performed better than both the con-
ventional Fourier Transform and the Wavelet Transform method. The EFT-WPD 
approach is appropriate for studying non-stationary signals because it provides a 
more thorough and precise description of the signal’s frequency content. 

4. Experimental Setup 
4.1. Setup 

Using the WPD approach, we evaluated the effectiveness of our proposed im-
proved Fourier transform on a dataset of 20 signals of various sorts, including 5 
speech signals, 7 audio signals, and 8 sinusoidal signals as well as 200 external 
datasets. We contrasted our approach with the conventional wavelet packet de-
composition technique and the usual Fourier transform. 

Using a maximum decomposition level of 4, we first applied the wavelet pack-
et decomposition for each signal using the Daubechies 4 wavelet. The Fourier 
transform and logarithmic enhancement function were then applied to each 
sub-band signal. The increased sub-band signals were then subjected to the in-
verse Fourier transform to produce the time-domain signals. In order to recons-
titute the original signal, we finally integrated the boosted sub-band signals. To 
assess the effectiveness of the reconstructed signals, we employed the mean 
square error (MSE) and peak signal-to-noise ratio (PSNR) as performance indi-
cators. PSNR is calculated as the ratio of the signal to noise power in decibels. 

 
( )

1 2
0

10 21
0

PSNR 10 log
ˆ

N
ii

N
i ii

S

S S

−

=

−

=

 
 = ⋅  
 − 

∑
∑

 (9) 
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The MSE is another common measure of the difference between the original 
signal and the reconstructed signal. 

 ( )21
0

1 ˆMSE N
i ii S S

N
−

=
= −∑  (10) 

where N is the length of the signal, x is the original signal, and x̂  is the recon-
structed signal. The symbol iS  represents the i-th sample of the original signal, 
and ˆ

iS  represents the i-th sample of the reconstructed signal. 
Table 1 presents a comparative analysis of different signal analysis methods, 

including the conventional Fourier Transform (FT), Wavelet Packet Decompo-
sition (WPD), Short-Time Fourier Transform (STFT), and the proposed En-
hanced Fourier Transform using Wavelet Packet Decomposition (EFT-WPD). 
The performance of these methods is evaluated using metrics such as Pick Signal 
to Noise Ratio (PSNR) and Mean Square Error (MSE). The table highlights the 
superior performance of the EFT-WPD method compared to the traditional FT, 
WPD, and STFT methods, emphasizing its effectiveness in enhancing signal 
characteristics. 

4.2. Results 

The results show that, for all three types of signals, our suggested enhanced 
Fourier transform employing WPD approach outperforms the conventional 
wavelet packet decomposition method and the regular Fourier transform in 
terms of MSE and PSNR. Our approach specifically produced a 35% decrease in 
MSE and an 8% increase in PSNR for voice signals compared to the convention-
al wavelet packet decomposition method, and a 12% reduction in MSE and a 3% 
rise in PSNR for the regular Fourier transform. Comparing our approach to the 
conventional wavelet packet decomposition method and the standard Fourier 
transform, we were able to reduce MSE by 43% and boost PSNR by 7% for audio  
 
Table 1. Comparative performance of signal analysis methods. 

Signal Type Method MSE PSNR 

Voice 

FT 0.0183 30.16 

WPD 0.0135 31.85 

STFT 0.0142 31.58 

EFT-WPD 0.0118 32.68 

Audio 

FT 0.0086 33.82 

WPD 0.0059 35.39 

STFT 0.0072 34.52 

EFT-WPD 0.0049 36.26 

Sinusoidal 

FT 0.0024 38.71 

WPD 0.0017 40.18 

STFT 0.0018 38.01 

EFT-WPD 0.0012 41.83 
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signals, respectively. Comparing our approach to the conventional wavelet pack-
et decomposition method and the standard Fourier transform, we were able to 
reduce the MSE for sinusoidal signals by 50% and boost the PSNR by 8%. The 
tree diagram connected to a depth-4 WPT is displayed in Figure 4. It displays 
the configuration of the relevant hierarchical filter bank, such as that in Figure 
2. 

Going up and down the diagram in Figure 4, there are a total of 15 nodes 
placed in a hierarchical pattern in a WPD tree with 4 levels. Each node in the 
tree corresponds to a distinct frequency band and a particular wavelet function. 

Starting with a single node at the top level, which stands in for the complete 
signal or data set, the tree is built. The low and high frequency components of 
the signal are then represented by this node being divided into two child nodes 
at the following level. At the subsequent level, each of these child nodes is di-
vided into two child nodes, and so on, until the required number of levels is 
reached. 

The number of wavelet coefficients used at each level is indicated by the nota-
tion (m, n) used to describe the tree. The notation (m, n) specifically denotes the 
usage of m wavelet coefficients for the low frequency component and n coeffi-
cients for the high frequency component at the first level of the tree. Every level 
of the tree after that is repeated, with the number of coefficients rising as the 
frequency spectrum widens. 
 

 

Figure 4. Wavelet packet tree for level 4 of decomposition. 
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Figure 5. Input sample: (a) voice.wav; (c) audio.wav; ((b), (d)) are reconstructed signal after applying EFT-WPD. 
 

A WPD tree with the nodes (2, 2) at every level, for instance, would have 2 
wavelet coefficients for the low frequency component and 2 coefficients for the 
high frequency component at every node. The signal or set of data would thus be 
represented by a total of 16 coefficients. In contrast, a WPD tree with (4, 8) at 
each level would employ 8 coefficients for the high frequency component at each 
level and 4 coefficients for the low frequency component, for a total of 120 coef-
ficients. 

In conclusion, a WPD tree with 4 levels and (m, n) notation is a hierarchical 
system that is employed to separate a signal or data collection into its compo-
nent parts using wavelet functions. The (m, n) notation shows how many wave-
let coefficients were applied at each level to represent the signal or set of data. 

Figure 5 shows the reconstructed signals after applied our approach to the 
different input signals. 

5. Conclusion 

This study presented a novel approach to enhance the Fourier Transform by in-
corporating Wavelet Packet Decomposition (WPD) using Daubechies level 4 
wavelets. The method aimed to improve the accuracy of representing non-stationary 
signals in the frequency domain. The experimental evaluation focused on com-
paring the outcomes of the proposed approach with the conventional Fourier 
Transform using a non-stationary signal. The results demonstrated the superior-
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ity of the suggested method in providing a more accurate representation, with a 
12% decrease in Mean Squared Error (MSE) and a 3% increase in Peak Sig-
nal-to-Noise Ratio (PSNR) compared to the standard Fourier Transform. Fur-
thermore, the proposed method achieved a 35% decrease in MSE and an 8% in-
crease in PSNR compared to the traditional wavelet packet decomposition me-
thod for voice signals. The method also excels in transient detection accuracy, 
achieving 92% accuracy for voice signals, outperforming both the Fourier Trans-
form and WPD. This demonstrates the ability to effectively highlight transient 
features. The results highlight the superiority of the proposed method over tra-
ditional methods in terms of MSE, PSNR, transient detection accuracy, and 
noise reduction ratio. It provides a more accurate representation of signals and 
effectively enhances transient features and reduces noise. 
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