
Open Journal of Social Sciences, 2022, 10, 476-486
https://www.scirp.org/journal/jss

ISSN Online: 2327-5960
ISSN Print: 2327-5952

DOI: 10.4236/jss.2022.104034 Apr. 29, 2022 476 Open Journal of Social Sciences

Unplugged Teaching: Deepening Information
Technology Learning

Reuben Dlamini, Alton Dewa

University of the Witwatersrand, Johannesburg, South Africa

Abstract

There has been a decline in the number of public schools in South Africa of-
fering information technology as a subject, yet it holds a special significance
in higher level computational courses especially at tertiary level. Learners
doing programming in information technology (IT) have difficulties during
the initial stages of learning how to design and develop programs due to the
abstract nature of the subject and the demands on the use of data structures
to establish needed heuristics to solve problems or design solutions. Through
the Semantic wave code of Legitimation Code Theory lens, this research aims
to address the cognitive aspects of deeper information technology learning
especially acquiring the appropriate knowledge structures for program design
and problem-solving. The abstract semantics are the cornerstone of informa-
tion technology as a school subject and their difficulty may cause memory
overload, hence the importance of mental structures on how computers work.
Through the semantic wave construct of the Legitimation Code Theory, we
unpacked unfamiliar settings and repacked the different settings by moving
from simpler meanings [concrete] to complex meanings [abstract]. In this
work, we discuss issues that make programming more accessible by navigat-
ing the abstract semantics using contextualised exploration giving learners’
concretized understanding while placing them in unfamiliar settings requir-
ing creativity. Importantly, this work builds on researched literature and ex-
perience as information technology subject specialists explaining how we
subject learners through various context and semantic profiles due to the
multi-level nature of abstraction in programming.

Keywords

Abstraction, Algorithmic Design, Programming, Flowchart, Legitimate Code
Theory, Semantic Wave

How to cite this paper: Dlamini, R., &
Dewa, A. (2022). Unplugged Teaching: Dee-
pening Information Technology Learning.
Open Journal of Social Sciences, 10, 476-486.
https://doi.org/10.4236/jss.2022.104034

Received: March 17, 2022
Accepted: April 26, 2022
Published: April 29, 2022

https://www.scirp.org/journal/jss
https://doi.org/10.4236/jss.2022.104034
https://www.scirp.org/
https://doi.org/10.4236/jss.2022.104034

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 477 Open Journal of Social Sciences

1. Introduction

Computer science is increasingly being taught in high schools around the world,
yet there is little research on effective teaching, and many teachers lack relevant
experience (Waite, Maton, Curzon, & Tuttiett, 2019). Different teaching ap-
proaches have emerged, with various degrees of success. During teaching and
learning, programming ideas in computer science constitute a challenge to both
educators and learners. Simple teaching approaches are necessary to aid teachers
in determining the efficacy of lesson plans and identifying strategies to enhance
them. Programming languages help students develop procedural knowledge needed
to establish good problem-solving skills gradually from one level to the next.
Many students shun studying computer science (CS) or information technology
(IT) at high school because of the presence of complexity and difficulty asso-
ciated with programming languages. In most cases, students become helpless,
unable to deal with a new language with unfamiliar syntax.

Even, contemporary approaches such as student-centred are not yielding the
desired results for disciplinary knowledge. In the effort to make the information
technology accessible to all learners, we treat the subject as a “construction of
hierarchically ordered collections of specific skills” (Fischer, 1980: p. 477). Fun-
damentally, to become an information technology, teacher must have access to
opportunities at various contexts in the sequence of information technology cur-
riculum from simpler meanings [concrete] to complex meanings [abstract].
Therefore, it is important to understand how people learn and the nature of
knowledge to be presented. It is generally accepted to have deeper understanding
of the complexity of concepts and elements of information technology; hence, in
this work, we adopted the Semantic code of the Legitimation Code Theory to
reduce complex cognitive tasks to more manageable load levels.

The Semantic Code of the Legitimation Code Theory (LCT) provides fasci-
nating insight into how to make teaching programming languages exciting for
students, as well as the ways in which information may be combined to create
meaning. LCT allows systematized thoughts to be diagrammatically depicted,
allowing for better communication. LCT may provide a conceptual framework
for delving underneath empirical manifestations to reveal epistemic and seman-
tic principles that can improve students’ enjoyment of programming languages.
In other words, LCT is a framework for interrogating what establishes and con-
firm good learning experience (Maton, 2013). In this paper, we begin by ex-
plaining what computer-programming languages are (not limited to a specific
programming language) and how they work. Various problems experienced by
the learners are highlighted including concepts such as program design and al-
gorithms. In addition, we engage the literature to bring out why learners find the
computer programming complex and challenging. Last but not least, we provide
an unplugged pedagogical approach to teaching programming concepts, in which
students are given real, tangible exercises or demonstrations to convey abstract,
intangible computing concepts while also allowing them to explore powerful

https://doi.org/10.4236/jss.2022.104034

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 478 Open Journal of Social Sciences

ideas. This method is becoming widely used in the world, while evidence of its
efficacy is equivocal.

2. Computer Programming Languages

A computer is a general-purpose machine capable of doing a wide range of
computations. In a fraction of a second, contemporary computers can do bil-
lions of computations. These machines are incapable of doing anything on their
own. In San Ahmed et al. (2018), Renumol, Jayaprakash, and Janakiram (2009)
described computer programming as “the act of writing, testing, and debugging
computer programs utilizing various programming languages” (p. 27). An in-
struction must be supplied to a computer in order for it to do a task. These in-
structions contain step by step information to perform a specific task. Comput-
ers and smart phones has some sort of code behind it telling it what to do (Ma-
lik, 2011). There are thousands of languages in the world around us and so is in
digital technologies. There are numerous types of programming languages mak-
ing up the code as powerful as that technology. A programming language is
made up of specific terms and directions used to create some kind of output
such as websites, applications (apps), or any kind of software. A programming
language, in general, is an artificial language used to send instructions to a ma-
chine. They can also be used to make programs that regulate the machine’s be-
havior (for example, computer, robot, TV rocket, etc.). A computer program is a
set of instructions expressed in a programming language that is used to control a
machine’s behavior. There are many different types of programming languages
such as Java, Python, C/C++, PhP, C#, Pearl to name a few. All of these lan-
guages are unique and operate differently from one another. For example, Web
developer may choose to use Java Script because it works well with HTLM or
CSS. A video game designer may choose C++ because it can handle more graph-
ics that are complex. Data Analysts, Engineers, Scientist, and Mathematicians
may choose Python, R or Matlab. Low level and high level programming lan-
guages are the two categories of programming languages. Low-level language,
often known as assembly or machine language, is the language that machines
understand. High-level languages are easier to use and are more similar to hu-
man language.

3. Challenges in Writing Programming Codes

Programming is a staple skill very useful for recent years and its demand is high
as new technologies are developed (Förster, Förster, & Löwe, 2020). However,
programming courses are “generally regarded as difficult, and often have the
highest dropout rates” (Robins, Rountree, & Rountree, 2003: p. 137). In addi-
tion, Papadakis & Orfanakis (2018) reiterate that “computer programing is dif-
ficult to learn and programing courses often have high drop-out rates” (p. 1).
This assertion is supported by Costa, Aparicio, & Cordeiro (2012) who also
found that even educators “face problems when teaching students programming
mainly because programming is dynamic and abstract” (p. 25). Costa et al.

https://doi.org/10.4236/jss.2022.104034

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 479 Open Journal of Social Sciences

(2012) mention that “it is quite common that students start studying program-
ming by features and variables rather than modelling” (p. 25). Despite the fact
that learners may demonstrate understanding of the programming language
syntax, they lack understanding of combing syntax and semantics of individual
statements to produce running programs (Soloway & Spohrer, 2013). Program-
ming requires a good analytical skill which is backed up by cognitive domain.
There is a need to come up with variables that will store various data of the pro-
gram. Some complexes of the programming language include interpretation of
the requirements of the problem, translating the problem statement to logic
program, designing algorithm and analyzing the program structure. The most
difficulties in programming is the result of lack of skills largely be educators.
They have certain difficulties in merging program design and comprehension
knowledge (Costa et al., 2012). Some educators struggle with deciding what
kinds of materials to use to encourage students to enjoy learning computer pro-
gramming languages and, as a result, improve learning results (San Ahmed,
Sardasht, Mahmood, Nabi, & Hussein, 2018).

Programming is considered the complex and difficult subject due to its rigidi-
ty and also needs multiple abilities and knowledge from other subject disciplines
like math, science, etc. Both educators and learners need to have declarative and
procedural knowledge (San Ahmed et al., 2018). Declarative knowledge refers to
knowing the syntax of the programming language and comprehend semantics.
While procedural knowledge is about “abstraction and logical thinking skills”
that help designing and solving program (Norvig, 2001). Learners lack logical
reasoning and abstraction due to limited mathematical problem-solving compe-
tences, which are considered essentials for any programming language (Gomes
& Mendes, 2007). In addition, new students in programming have no idea of
how programming structure works, or to implement syntax structures correctly
and detect and debug programming errors. Educators’ teaching approach can
pose challenges when teaching programming. Majority of educators still use tra-
ditional method of teaching that uses PowerPoint as a mode of teaching. Learn-
ers of the 21st century prefer learning that is interactive, making them to be con-
structors of their own knowledge not to be passive recipient of knowledge from
the teachers. Such teaching approach is considered “boring and tedious”. Yet the
role of the educators is to build and transfer the right knowledge to students
prior having understanding of programming concepts such as the ability to write
a code that can solve the problem.

4. Teaching and Learning Programming

The resurgence of computer programming at higher institutions has prompted
schools to include it in their curricula, promising to prepare students for a “fu-
ture that goes beyond learning how to code” (Popat & Starkey, 2019). Knowing
how to write programming code prepares the future workforce to supply the IT
industry and IT-compliant workers of the future (Balanskat & Engelhardt, 2014).

New roles for the people are required to bring the newly introduced technol-

https://doi.org/10.4236/jss.2022.104034

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 480 Open Journal of Social Sciences

ogy to life and maintenance. Learning the syntax of any programming language
is one of the needed skills. Different programming languages have different syn-
tax or syntactical paradigm. Other important skills include knowing algorithms
and data structures of any programming languages. This technique helps learn-
ers to convert the problem statement into a solution. Once algorithms have been
designed, they can be converted into a code as the teacher teaches the coding
live, learners can identify errors in the process, and may work together in de-
bugging the code, correcting the errors in the code so that the program can run
successfully (Raj et al., 2018). Thus, this kind of practice exposes students to
good programming skills. Schröer & Koschke (2021) concur with Raj et al. (2018)
that it is necessary for learners to observe what experts in programming do dur-
ing programming processes, i.e., they need to see what specific actions and
strategies they apply to solve a task at hand.

The other method to right path of learning the programming language is to start
with basic programming fundamental such as writing a code that output “Hello,
World”, adding and subtracting numbers. Once these concepts are mastered, they
give learners confidence to move to the next level of challenging concepts. If the
basics are not strong, there are likely to impede the progress of the learner when
dealing with advanced concepts. The student has to give himself/herself a mini-
mum of 5 to 10 days learning fundament basics of programming. Practising writ-
ing programming language is essential. The information practiced tends to be in
the memory for a long period, and this is better than memorising the syntax. From
there can start attempting challenging concepts and start doing a simple project
where they synthesise learned concept to build a software.

Programming is practical and is learnt by doing. The only thing that matters is
that the place where one starts fitting into current level of knowledge. In other
words, a programmer who really knows a person who really knows five of six
languages can learnt the seventh without having to go through all the basics.
Programming is an incredible skill needed in this 21st century. Programming
provides an opportunity to build something right (for example, an app or a
game) and express oneself clearly. However, during the process of writing codes,
mistakes occur, thus another critical area those teaching programming should
take cognisance of. They learn from the mistakes and errors that can affect the
running of the program. Generally, to program allows transmitting the idea that
is in the head and turn it into series of steps that the computer can understand
and execute. Programming languages have different syntax and different rules,
however, they achieve one purpose, to communicate something to the computer
to do something.

5. Legitimate Code Theory

Majority of learners in South Africa face challenges of understanding program-
ming as they transition from senior phase (Grades 7 - 9) to Further Education
and Training (FET) phase (Grades 10 - 12). The probability of successful transi-
tion is dependent on learners’ prior knowledge about the subject and how this

https://doi.org/10.4236/jss.2022.104034

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 481 Open Journal of Social Sciences

knowledge can be used to learn a new subject (Mouton & Archer, 2019). Pro-
gramming in South Africa formally starts at 10. At this grade, learners are clue-
less or have absolutely no knowledge what programming is and its expectations.
This paper brings deepening of teaching of the programming languages by
drawing on Legitimation Code Theory (LCT) as lens for changing of pedagogy.
Many learners especially from disadvantaged educational backgrounds find pro-
gramming a challenge resulting in massive dropout rates of the Information
Technology (IT).

LCT is a sociological framework that promises a reliable method of study, as
well as the ability to adapt and shape teaching practice, among other things
(Maton, 2013, 2014b). It is based on a variety of ideas, including Bourdieu’s field
theory and Bernstein’s coding theory (Maton, 2013, 2014b). Knowledge is viewed
as a socially created object in LCT (Mouton & Archer, 2019). Different dimen-
sions can be utilized to examine certain sets of organizing principles, as well as
underlying practices that serve as legitimation codes (Maton, 2014b). LCT is a
conceptual framework that affords interrogation of knowledge practices. It cri-
tiques what makes knowledge legitimate. LCT gives a frame of beginning to un-
derstand problems the concept through use of graph representations, which can
be used in any educational enterprise. The code part in LCT comes with bunch
of different codes, for example, specialisation code and semantic code can apply
in teaching programming languages. Specialisation code essentially means the
dynamic epistemic relationships and social relationships. Specialisation codes is
about what make someone or something special, distinct and worth of status
(Maton, 2013). Whoever controls the device establishes what knowledge is legi-
timate. It begins from a simple idea that every knowledge claim or practice is by
someone and about or oriented towards something. Therefore, any knowledge
claim or practice sets up relation to an object and to a subject

These relations are called epistemic relations between knowledge claims and
that part of the world they are about. In the case of knowledge claims, they mani-
fest as epistemic linkages between knowledge and its declared object of study, as
well as social relations between knowledge and its authors or subjects (Maton &
Chen, 2017). The practice emphasizes each of these relations in different ways,
that is, each may be more strongly or weakly emphasized. Thus, epistemic rela-
tions are about specialist knowledge such as specific skills, technique and pro-
cedures. What is being said or done is effectively known as legitimate. Social re-
lations are about attributes of knowers (Maton, 2013). It is something about who
is speaking, who is doing something and what is he/she doing. Thus, legitimacy
depends on personal experience, natural ability or being a particular kind of
person such as gender.

The degree of intricacy of activities, whether symbols, concepts, or sentences,
is referred to as semantic density. It defines how many meanings are packed into
or condensed into something (Figure 1). As a result, the higher the semantic
density (SG+), the more meanings are compressed. The lower the semantic

https://doi.org/10.4236/jss.2022.104034

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 482 Open Journal of Social Sciences

Figure 1. Semantic code quadrant: Source: Maton, Hood & Shay (2016).

gravity (SG−), the less meaning is contained in it (Maton, 2013, 2014a; Maton,
Hood, & Shay, 2016).

Semantic Wave

Semantic wave theory is a simple yet effective method for teaching concepts in
the context of learning, with an emphasis on unplugged programming activities
(Maton, Hood, & Shay, 2016). The semantic wave is interested in what makes a
good explanation or learning experience, whether textual, multimedia, or an on-
line lecture. It also helps to figure out why unplugged education works in some
circumstances and doesn’t in others. Students can utilize semantic waves to eva-
luate lesson plans, online resources, and to learn how to create clear and unders-
tandable explanations. Teachers, for example, can use learning activities or the
plan for learning activities and follow it to accomplish the goals. The abstract
principles are gradually presented through real examples and demonstrations
(Martin, Maton, & Doran, 2019). It is comparable to taking learners on a jour-
ney where they begin as novices, unsure about programming principles, but at
the end of the journey, they will have a better understanding of programming
concepts (see Figure 2).

Learning a subject entails understanding both the language and concepts, as
well as the abilities that go with them. Learners must be supplied with technical
notions in order to go from novice to master of programming subject. It is sug-
gested by semantic wave theory that explanations begin at an abstract level and
progress to a concrete level or daily language. With time, the abstract ideas or
what learners may understand are linked back to the familiar notions or language.

https://doi.org/10.4236/jss.2022.104034

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 483 Open Journal of Social Sciences

Figure 2. Semantic wave: Source: Waite, Maton, Curzon, & Tuttiett (2019).

The objective is to unpack the concept and make the concealed concept evident
in learners’ minds (Martin, Maton, & Doran, 2019). At this level, however,
learning occurs only when it is repackaged, that is, when it is related to abstract
concepts (Waite, Maton, Curzon, & Tuttiett, 2019). Teaching, according to this
view, begins with the introduction of abstract concepts. According to this idea,
education begins with the introduction of abstract concepts in technical lan-
guage that learners must understand, and is then presented in concrete (con-
necting it to abstract) concepts through the use of explanation, demonstration,
modelling, and other methods. The learners are then given the opportunity to
make connections between the concrete and abstract concepts (Maton, Hood, &
Shay, 2016). Semantic wave provides a quick and simple but powerful way of
evaluating learning activities. It gives an insight to why certain concepts worked
or not worked during teaching and learning. In other words, it supports reflec-
tive changes to improve teacher activities. Before the final repacking, learners are
encouraged to do repacking during the role play, which will help them get a
deeper understanding of the sub-concepts in the context of the role play activi-
ties.

Good learning activities are not just the single wave; there are actually lots of
waves between waves, linking onto the next wave. An instance of using a down
escalator method leaves learners down at the bottom and never re-pack the con-
cepts to abstract ideas is not ideal when teaching programming. Neither does the
flat lining at the top nor bottom is ideal in teaching programming. Flat lining at
the top emphasizes technical language or abstract ideas that will pose a challenge
to the learners to grasp. Bottom lining concentrates on the use of concrete ob-
jects without linking them to abstract ideas. Hence, such teaching will not be
complete, as it does not connects to other concepts. Teaching programming should
be accompanied by metaphors, unplugged activities, and convert them into
tangible concepts that learners can see (Martin, Maton, & Doran, 2019). For
example, when teaching the concepts of variables in programming, explain the
use of letters and what type of data type they will store. Assign data to declared
variables and display the content of the variables. Learners can then be given

https://doi.org/10.4236/jss.2022.104034

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 484 Open Journal of Social Sciences

their own activities to practice the learned concept. By doing this they become
the mastery of the concepts. Teachers are encouraged to start by outlining the
learning outcomes, for instance variables in programming. The explanation of
the variables and how they store information increases the abstraction. There is
a need to explain this concept using words learners could understand without
jargon hindrance. In this case, learners could see what is happening in each line
of the code (Curzon, McOwan, Donohue, Wright, & Mars, 2018).

When teaching, it is important to move between these semantic codes qua-
drants. Moving explicitly forward and backward between the quadrants may
help learners understand the concept taught. Use of simple language helps sig-
nificantly as learners can later explain the concepts on their own. Teaching using
semantic gravity and semantic density and moving between weak semantic grav-
ity and high semantic gravity and low semantic density and high semantic den-
sity make learners incorporate the knowledge (Curzon, McOwan, Donohue,
Wright, & Mars, 2018). The reaching is not unidirectional, meaning from real
world to abstract, but can also move bidirectional, abstract to real world and
vice-versa.

6. Summary

This work explains how we subject learners through various context and seman-
tic profiles due to the multi-level nature of abstraction in programming. Funda-
mentally, to become an information technology teacher must have access to op-
portunities at various contexts in the sequence of information technology curri-
culum from simpler meanings to complex meanings. The semantic wave allows
information technology educators to traverse the process of developing pro-
gramming concepts and elements using more and fewer details as necessary.
Thus, it is important of packing, unpacking and repacking oscillating between
different programming principles and concepts. To achieve meaningful learning
of programming as the key component of the information technology as a sub-
ject fits into the Semantic code, however teachers must be subjected to a rigorous
training and development. The rigorous training and development will allow
participants to develop deeper understanding and the knowledge structures of
programming concepts and information technology subject elements. In our
engagement with the literature, there is evidence that learning programming is a
complex cognitive process.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
Balanskat, A., & Engelhardt, K. (2014). Computing Our Future: Computer Programming

and Coding-Priorities, School Curricula and Initiatives across Europe. European
Schoolnet.

https://doi.org/10.4236/jss.2022.104034

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 485 Open Journal of Social Sciences

Costa, C. J., Aparicio, M., & Cordeiro, C. . (2012, June). A Solution to Support Student
Learning of Programming. In Proceedings of the Workshop on Open Source and De-
sign of Communication (pp. 25-29). https://doi.org/10.1145/2316936.2316942

Curzon, P., McOwan, P. W., Donohue, J., Wright, S., & Mars, D. W. (2018). Teaching
Computer Science Concepts. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Com-
puter Science Education: Perspectives on Teaching and Learning in School. London:
Bloomsbury Publishing.

Fischer, K. W. (1980). A Theory of Cognitive Development: The Control and Construc-
tion of Hierarchies of Skills. Psychological Review, 87, 477.
https://doi.org/10.1037/0033-295X.87.6.477

Förster, E. C., Förster, K. T., & Löwe, T. (2020). Teaching Programming Skills in Primary
School Mathematics Classes: An Evaluation Using Game Programming. In 2018 IEEE
Global Engineering Education Conference (EDUCON) (pp. 1504-1513). IEEE.
https://doi.org/10.1109/EDUCON.2018.8363411

Gomes, A., & Mendes, A. J. (2007, September). Learning to Program-Difficulties and So-
lutions. In International Conference on Engineering Education (Vol. 7). CEE.

Malik, D. S. (2011). JavaTM Programming: From Problem Analysis to Program Design.
Cengage Learning.

Martin, J. R., Maton, K., & Doran, Y. J. (2019). Accessing Academic Discourse: Systemic
Functional Linguistics and Legitimation Code Theory. Routledge.
https://doi.org/10.4324/9780429280726

Maton, K. (2013). Making Semantic Waves: A Key to Cumulative Knowledge Building.
Linguistics and Education, 24, 8-22. https://doi.org/10.1016/j.linged.2012.11.005

Maton, K. (2014). Knowledge and Knowers: Towards a Realist Sociology of Education.
Oxon: Routledge. https://doi.org/10.4324/9780203885734

Maton, K. (2014b). A Tall Order? Legitimation Code Theory for Academic Language and
Learning. Journal of Academic, 34-48.

Maton, K., & Chen, R. T. H. (2017). Specialization from Legitimation Code Theory: How
the Basis of Achievement Shapes Student Success.
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Specialization+codes%3
A+Knowledge%2C+knowers+and+student+success&btnG=

Maton, K., Hood, S., & Shay, S. (2016). Knowledge-Building.
https://doi.org/10.4324/9781315672342

Mouton, M., & Archer, E. (2019). Legitimation Code Theory to Facilitate Transition from
High School to First-Year Biology. Journal of Biological Education, 53, 1-20.
https://doi.org/10.1080/00219266.2017.1420681

Norvig, P. (2001). Teach Yourself Programming in Ten Years.
http://norvig.com/21-days.html#answers

Papadakis, S., & Orfanakis, V. (2018). Comparing Novice Programing Environments for
Use in Secondary Education: App Inventor for Android vs. Alice. International Journal
of Technology Enhanced Learning, 10, 44-72.
https://doi.org/10.1504/IJTEL.2018.088333

Popat, S., & Starkey, L. (2019). Learning to Code or Coding to Learn? A Systematic Re-
view. Computers & Education, 128, 365-376.
https://doi.org/10.1016/j.compedu.2018.10.005

Raj, A. G. S., Patel, J. M., Halverson, R., & Halverson, E. R. (2018, November). Role of
Live-Coding in Learning Introductory Programming. In Proceedings of the 18th Koli
Calling International Conference on Computing Education Research (pp. 1-8).

https://doi.org/10.4236/jss.2022.104034
https://doi.org/10.1145/2316936.2316942
https://doi.org/10.1037/0033-295X.87.6.477
https://doi.org/10.1109/EDUCON.2018.8363411
https://doi.org/10.4324/9780429280726
https://doi.org/10.1016/j.linged.2012.11.005
https://doi.org/10.4324/9780203885734
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Specialization+codes%3A+Knowledge%2C+knowers+and+student+success&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Specialization+codes%3A+Knowledge%2C+knowers+and+student+success&btnG=
https://doi.org/10.4324/9781315672342
https://doi.org/10.1080/00219266.2017.1420681
http://norvig.com/21-days.html#answers
https://doi.org/10.1504/IJTEL.2018.088333
https://doi.org/10.1016/j.compedu.2018.10.005

R. Dlamini, A. Dewa

DOI: 10.4236/jss.2022.104034 486 Open Journal of Social Sciences

https://doi.org/10.1145/3279720.3279725

Renumol, V., Jayaprakash, S., & Janakiram, D. (2009). Classification of Cognitive Diffi-
culties of Students to Learn Computer Programming. India: Indian Institute of Tech-
nology.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A
Review and Discussion. Computer Science Education, 13, 137-172.
https://doi.org/10.1076/csed.13.2.137.14200

San Ahmed, R. A. M., Sardasht, M., Mahmood, R., Nabi, R. M., & Hussein, D. L. (2018).
The Impact of Teaching Materials on Learning Computer Programming Languages in
Kurdistan Region Universities and Institutes. Kurdistan Journal of Applied Research, 3,
1-7. https://doi.org/10.24017/science.2018.2.3.1

Schröer, M., & Koschke, R. (2021, March). Recording, Visualising and Understanding
Developer Programming Behaviour. In 2021 IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER) (pp. 561-566). IEEE.
https://doi.org/10.1109/SANER50967.2021.00066

Soloway, E., & Spohrer, J. C. (2013). Studying the Novice Programmer. Psychology Press.
https://doi.org/10.4324/9781315808321

Waite, J., Maton, K., Curzon, P., & Tuttiett, L. (2019, September). Unplugged Computing
and Semantic Waves: Analyzing Crazy Characters. In Proceedings of the 1st UK & Irel-
and Computing Education Research Conference (pp. 1-7).
https://doi.org/10.1145/3351287.3351291

https://doi.org/10.4236/jss.2022.104034
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.24017/science.2018.2.3.1
https://doi.org/10.1109/SANER50967.2021.00066
https://doi.org/10.4324/9781315808321
https://doi.org/10.1145/3351287.3351291

	Unplugged Teaching: Deepening Information Technology Learning
	Abstract
	Keywords
	1. Introduction
	2. Computer Programming Languages
	3. Challenges in Writing Programming Codes
	4. Teaching and Learning Programming
	5. Legitimate Code Theory
	Semantic Wave

	6. Summary
	Conflicts of Interest
	References

