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Abstract 
Rolling element bearings are commonly used in rotary mechanical and elec-
trical equipment. According to investigation, more than half of rotating ma-
chinery defects are related to bearing faults. However, reliable bearing fault 
detection still remains a challenging task, especially in industrial applications. 
The objective of this work is to propose an adaptive variational mode decom-
position (AVMD) technique for non-stationary signal analysis and bearing fault 
detection. The AVMD includes several steps in processing: 1) Signal charac-
teristics are analyzed to determine the signal center frequency and the related 
parameters. 2) The ensemble-kurtosis index is suggested to decompose the tar-
get signal and select the most representative intrinsic mode functions (IMFs). 
3) The envelope spectrum analysis is performed using the selected IMFs to iden-
tify the characteristic features for bearing fault detection. The effectiveness of 
the proposed AVMD technique is examined by experimental tests under dif-
ferent bearing conditions, with the comparison of other related bearing fault 
techniques. 
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1. Introduction 

Rotating machines are commonly used in almost every aspect of people’s daily 
lives such as vehicles, motors, turbines, and robots. Failures of a rotating ma-
chine may result in reduced production quality, degraded safety, increased costs 
in repairs and maintenance, or even potential risk of loss of life [1]. Rolling ele-
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ment bearings, which are referred to as bearings thereafter, are essential compo-
nents in rotating machinery to support rotating shafts and reduce frictions. Based 
on investigation [2], up to 75% of imperfections in small- and medium-size ro-
tating machines, and 50% of imperfections in large-size rotating machines, are 
related to bearing faults. Therefore, a reliable and effective bearing fault detec-
tion technology is critically needed in industries to identify a bearing defect at its 
earliest stage so as to prevent machine performance degradation, increase safe and 
productivity, and reduce maintenance costs. 

Reliable bearing fault detection still remains a challenging task in this research, 
in real-world applications. Different from a gear or a shaft, a rolling element bear-
ing is a system consisting of components such as the rotating ring, fixed ring, roll-
ing elements, and a cage. Signal characteristics could be non-stationary especial-
ly when faults occur in rolling elements or rotating races of bearings [1]. Anoth-
er challenge lies in signal modulation. Bearing signals are relatively weak and are 
usually modulated by other strong vibrations generated by gear meshing, which 
makes it more difficult to identify the characteristic frequencies associated with a 
bearing fault [3]. Moreover, bearing fault symptoms can vary widely depending 
on the specifics of the fault type, defect location, and operating conditions such 
as bearing load and speed. These limitations present a significant challenge in de-
veloping a reliable and robust bearing detection technique especially for real-world 
industrial applications. 

The most common method used in bearing fault detection is based on Fourier 
transform (FT) spectral analysis. If the geometric parameters of a bearing are 
known, theoretical characteristic frequencies of bearing faults can be calculated, 
with fault detection performed by examining health-related characteristic fre-
quency components on the spectrogram [3]. To address non-stationary in sig-
nals, time-frequency analysis methods have been commonly used. These methods 
can decompose the complex structure of signals and provide direct information 
about the frequency components occurring over time [4]. Common time-frequency 
analysis methods include the short-time FT [5], Wigner-Ville distribution [6], 
wavelet transform [7], wavelet packet analysis, and Hilbert-Huang transform 
(HHT) [8]. However, each method has its own advantages and limitations in 
practical processing applications. For instance, the short-time FT may not provide 
valid information including simultaneous time and frequency localization. The 
Wigner-Ville and other bilinear time-frequency distributions in bearing fault de-
tection are limited due to potential cross-interference items [9]. The wavelet trans-
form is inefficient for processing signals whose energy is not well concentrated 
in the frequency domain [10]. On the other hand, in HHT analysis, empirical 
mode decomposition (EMD) is a self-adaptive method for non-stationary signal 
analysis [11], but it has limitations in mode mixing, over envelope, or under 
envelope, which can affect the processing accuracy [12]. 

Variational mode decomposition (VMD) is a relatively new method of signal 
decomposition, which has been studied and applied in the field of signal processing 
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in recent years [13]. The VMD decomposes the original signal into several sub- 
signals with different center frequencies in the framework of a variational model. 
Its essence can be seen as a set of adaptive Wiener filters [14]. Although VMD 
has been used in the extraction of fault signal features [15] [16] [17], it still has 
some clear drawback, or it requires setting up the number of modes and the 
bandwidth control parameters in advance. Most of the research works have fo-
cused on how to improve its adaptability and parameter optimization. For ex-
ample, a prediction test method is proposed in [18] to make the decomposition 
prediction by adaptively changing the related algorithm parameters; however, it 
is an empirical method and could be difficult to be implemented in bearing fault 
detection applications [18]. Li et al. have proposed an independence-oriented 
VMD on the basis of the spectrum distribution to detect wheel set-bearing faults 
[19]. However, this method is limited by the complexity of the signal and suffers 
from possible over-decomposition. Moreover, the particle swarm optimization is 
used in [20] to optimize the VMD parameters, but the inappropriate ratio be-
tween the average value and the variance could generate the loss of impact com-
ponent information in the original signal. In addition, several optimization algo-
rithms have been proposed in [21] [22] [23] to optimize the number of modes 
for VMD analysis in specific engineering scenarios. However, these optimization 
algorithms still have some problems, including complex optimization model, 
slow convergence of parameter determination, and easy falling into local opti-
mization. 

To tackle the aforementioned challenge in the available VMD methods, an 
adaptive VMD (i.e., AVMD in short) technique is proposed in this paper for 
signal property analysis and bearing fault detection. Firstly, the intrinsic mode 
functions (IMFs) are decomposed from the original signal, and IMF number is 
determined under a certain target setting and the close correlation between each 
IMF and the original input signal. Secondly, the ensemble-kurtosis index is sug-
gested to select the most representative IMFs to decompose the target signal. 
Thirdly, the envelope spectrum analysis is performed using the selected IMFs to 
recognize the representative features for bearing fault detection. 

The remainder of the paper is organized as follows: Firstly the general VMD 
method is briefly discussed in Section 2. The proposed AVMD technique and its 
implementation are discussed in Section 3. The AVMD effectiveness is examined 
in Section 4 by experimental tests. The conclusions of this paper are summarized 
in Section 5. 

2. Discussion of the VMD Method 

In VMD analysis, it is assumed that the original signal can be decomposed into 
several modes, and each mode is a signal with a narrow-band and located around 
a center frequency [14]. The IMF, uk(t), represents an amplitude-modulated and 
frequency-modulated signal, which can be expressed as: 

( ) ( ) ( )( )cosk k ku t A t tφ= ×                     (1) 
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where k represents the k-th IMF; Ak(t) denotes the instantaneous amplitude; 
ϕk(t) denotes the phase. 

The fundamental operation of VMD can be expressed by solving the con-
strained variational problem in Equation (2): 
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where K is the number of IMFs; uk and ωk denote the k-th IMF and its corres-
ponding center frequency; ∂t denotes the partial derivative of time; δ(t) is the 
Dirac delta distribution; f(t) is the original input signal; j is the complex number; 
* is the convolution operator. 

To solve the constrained variation problem of Equation (2), the augmented 
Lagrangian method [24] can be used to covert Equation (2) into an uncon-
strained optimization problem, which can be rewritten as: 
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where α is the quadratic penalty factor and λ is Lagrangian multiplier coefficient. 
In order to obtain an optimal solution to the unconstrained problem in Equa-

tion (3), an alternated direction method of multipliers can be used for analysis 
[24]. The unconstrained problem in Equation (3) can be transferred into two 
equivalent minimization problems based on alternated direction method of mul-
tipliers. Thus, modes uk and their corresponding center frequency ωk can be up-
dated (i.e., from step n to step n + 1) as: 

{ } { } { }( )1 1arg min , , ,
k

n n n n n
k i k i k i

u
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< ≥←                (4) 
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Based on Equation (4), the equivalent minimization problem can be represented 
as: 
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Using Parseval/Plancherel Fourier isometry under the L2 norm and the Her-
mitian symmetry of the FT of the signal, Equation (6) can be solved in the spec-
trum domain, such that: 
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After the first variation of the positive frequency vanishes, the solution to this 
quadratic optimization problem becomes: 
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which can be considered as a Wiener filter to process current residual [25]. 
In addition, from Equation (5), the updated reconstruction term of center 

frequency ωk becomes: 
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Similarly, the optimization of the center frequency can also be performed in 
the frequency domain, by optimization the following function: 
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This quadratic optimization problem can be solved by: 
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Moreover, the Lagrangian multiplier λ(t) can be updated by: 
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∑               (12) 

where τ is the iteration step size. 
The iteration will be completed until the accuracy meets the following con-

vergence criterion: 
2 21

2 2
ˆ ˆ ˆn n n

k k k
k

u u u ε+ − <∑                     (13) 

where ε is the convergence threshold used to control the reconstruction of each 
mode. 

In processing, the steps of the VMD algorithm are summarized as follows: 
Step 1: Initialize { }1ˆku , { }1

kω , 1λ̂ , and n = 1. 
Step 2: Calculate ˆku  and kω  using Equations (8) and (11), respectively, 

1,2, ,k K= � . 
Step 3: Update λ̂  in Equation (12). 
Step 4: Repeat Steps 2 - 3 until the iteration meets the criterion in Equation 

(13). 
Step 5: Compute the K mode components uk. 
The parameters K, α, τ, and ε need to be selected based on applications 

through error and trial procedures. τ = 0, ε = 1 are can be selected in this case for 
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general processing applications. 

3. The Proposed AVMD Technique 

The proposed AVMD aims to solve the problem of VMD parameter adaption 
and further expand its application in bearing fault diagnosis. First, the details of 
the relevant methods for determining the VMD parameters will be presented in 
this section. Then, the process of AVMD will be discussed. 

3.1. Cross-Correlation 

Before VMD decomposition, the parameter K (i.e., IMF number) needs to be se-
lected properly. If K is too small, extra signal components may appear in one 
mode at the same time or some components become unpredictable. Conversely, 
if K is too large, some components will appear in more than one mode and the 
frequencies of the modal centers will overlap [26]. Therefore, choosing a suitable 
K value is important in VMD processing to improve the accuracy of the decom-
posed modes. The K value is usually selected by experience or by trial and error. 

In proposed AVMD, K will be determined by the correlation between the in-
put signal and decomposed modes. In signal processing, cross-correlation is a 
measure of similarity between two or more time series data sets. Accordingly, 
the correlation between the original input signal and sum of the decomposed 
modes can be calculated by 

xy
xy

x y

C
ρ

σ σ
=                          (14) 

where x is the sum of the modes; y is the original signal; Cxy is the cross-covariance 
function; σx and σy are the standard deviations of x and y, respectively. The 
cross-correlation ρxy represents the correlation between the integration of the 
decomposed modes and the original signal; the larger ρxy, the higher the correla-
tion between two signals. 

3.2. Determination of the Penalty Factor 

Based on the discussion in Section 2 and literature [14], the function of the pe-
nalty factor α can be used to determine the bandwidth of mode component. In 
general, a constant penalty factor can be selected and used in VMD mode de-
composition. Generally, a larger penalty factor will generate the narrower band-
width of the mode component; conversely, a smaller penalty factor will result in 
a wider the bandwidth of the mode component. According to the characteristics 
of the spectrum distribution of a vibration signal, most bearing fault characteris-
tic frequencies and their harmonics are located over the low and medium fre-
quency region [25]. Therefore, in the proposed AVMD technique, the characte-
ristics of the signal’s center frequency will be used to determine the penalty fac-
tor corresponding to each mode so as to determine the penalty factor adaptively. 
The detail of how to adaptively select penalty factors will be discussed below. 

When the center frequency of the decomposed mode is low, the mode com-
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ponents are mainly harmonics in the low and medium frequency bandwidths; 
then a larger penalty factor will be chosen, and vice versa [27]. Equation (15) is 
an empirical formula that can be used to adaptively determine the penalty factor: 
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where αk is the penalty factor and fkc is the center frequency of the k-th mode 
component, respectively; fs is the sampling frequency. fkc can be calculated by 
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where N is the length of the original signal, and Uk is the discrete FT of k-th 
mode component uk. 

By using Equation (16), the penalty factor αk can be adaptively adjusted ac-
cording to the frequency characteristics of each decomposed mode. 

3.3. Ensemble Kurtosis 

In the proposed AVMD, after mode decomposition, the next step is to select 
proper IMFs for signal analysis. In bearing fault detection, fault characteristic 
frequencies, harmonics, impulses, and noise have different probability densities 
and statistical properties. Kurtosis is a measure of the tails of the probability dis-
tribution function [25]. In literature, kurtosis-based methods tend to focus on 
the frequency band of individual pulses only, rather than on the defect impulses, 
because these methods mainly emphasize impulsivity but ignore the cyclicity. 
Envelope spectral kurtosis can measure and evaluate the cyclicity [25], which 
will be adopted in bearing fault diagnosis in this work such that: 
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where EK is the ensemble kurtosis; EKS is envelope spectrum kurtosis; Ku is the 
kurtosis; SE is the envelope spectrum of signal and P is the sampling number of 
envelope spectrum. From our primary investigation, it is shown that EK index is 
sensitive to impulses, which will be used in this work for the selection of IMFs 
for signal analysis and bearing fault detection. 

3.4. Implementation of the Proposed AVMD 

The proposed AVMD technique will be used to extract the impulsive features for 
bearing fault detection. Its processing flowchart is presented in Figure 1. The 
main steps of the AVMD are summarized as follows: 

Step 1: Initialize system parameters: K = 1 and α = 100. 
Step 2: Run the VMD decomposition and compute the correlation using  
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Figure 1. The flowchart of proposed AVMD technique. 

 
Equation (14). If the correlation is over 99%, proceed to Step 3. Otherwise, let K: 
= K + 1 and repeat Step 2. 

Step 3: Compute the penalty factor using Equation (15) for each mode. 
Step 4: Re-run VMD decomposition using the updated K and α; compute EK 

using Equation (17) for each mode. 
Step 5: Analyze the largest EK mode by the envelope analysis and do bearing 

fault detection. 

4. Experimental Tests and Results Analysis 

The effectiveness of the proposed AVMD technique is examined experimentally 
in this section. Figure 2 shows the experimental setup used in this test. It is dri-
ven by a 3 HP induction motor with a speed range of 100 - 4200 rpm, controlled 
by a frequency converter (VFD022B21A). An elastic coupler is applied to elimi-
nate high frequency vibrations generated by the motor. An optical sensor is used 
to provide a signal of one pulse per revolution to measure shaft speed. The acce-
lerometer (ICP-603C01) is mounted on top of the bearing to measure the vibra-
tion signal along the vertical axis. The tested bearing (MBER-10K) located on 
the left side of the housing is used for the test. The static bearing load is provided 
by two heavy mass discs and dynamic load is provided by a break system through 
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a belt-drive. 
In this experiment, four bearing health conditions are considered for testing: a 

healthy bearing, a bearing with outer race fault, a bearing with inner race fault, 
and a bearing with rolling element defect. The tested bearings have the following 
parameters: the number of rolling elements: 8, rolling element diameter: 7.938 
mm, pitch diameter: 33.503 mm, and the angle of contact: 0 degree. A set of 
processing results from tests with 1800 rpm motor speed (or fr = 30 Hz) and me-
dium load level are used for illustration. The sampling frequency is 32,000 Hz, 
and the length of the signal is 100,000. Table 1 summarizes the characteristic 
frequencies in terms of shaft speed fr Hz. For comparison, the test results of 
proposed AVMD method will compare the Hilbert-Huang transform (HHT) [8] 
and the Teager-Huang transform (THT) [28]. All the techniques are imple-
mented in MATLAB 2022a. 

Figure 3 shows processing results using the related techniques, for the health 
bearing with characteristic frequency fH = 30 Hz. The AVMD is applied with K = 
4 and penalty factor αk = 1216 calculated using Equation (15). 

In this case, although all the related techniques can recognize the healthy 
bearing characteristic frequency and its few harmonics, the AVMD technique 
can provide the most noticeable diagnostic results with the highest magnitude 
compared with other two techniques. 

Figure 4 shows the processing results for a bearing with outer-race damage 
 

 
Figure 2. Experimental setup: (1) speed control; (2) encoder display; (3) drive motor; (4) 
optical encoder; (5) ICP accelerometer; (6) misalignment adjustor; (7) adjustable rig; (8) 
variable load system; (9) belt drive. 

 
Table 1. Experiment setup bearing fault frequency in terms of shaft speed fr Hz. 

Bearing Health Condition Characteristic Frequency (Hz) 

Healthy bearing fH = fr 

Outer race fault fod = 3.052 × fr 

Inner race fault fid = 4.947 × fr 

Rolling element fault fbd = 3.983 × fr 
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Figure 3. Processing results for a healthy bearing using the related techniques: (a) HHT, 
(b) THT, (c) AVMD. fH = 30 Hz. Arrows specify characteristic frequency and its har-
monics. 

 
with a characteristic frequency fod = 90.9 Hz. In this case, the AVMD technique 
uses K = 5 and penalty factor αk = 1216. 

In this case, all the related techniques can recognize the outer race bearing 
fault characteristic frequency fod = 90.9 Hz and its first few harmonics. This is 
because when the bearing outer race is damaged; the generated impulses and 
features are time-invariant, which are relatively easy to determine using general 
vibration-based fault detection techniques. In this case, however, the fundamen-
tal characteristic frequency (fod = 90.9 Hz) using the HHT in Figure 4(a) and the 
THT in Figure 4(b) is lower than an adjacent component in magnitude, which 
may generate false diagnostic result especially in automatic bearing health mon-
itoring. On the other hand, the proposed AVMD technique can effectively sup-
press noise and predict the occurrence of outer race defect as demonstrated in 
Figure 4(c). 

Figure 5 shows the processing results using the related techniques for a bear-
ing with inner race defect, with the characteristic frequency fid = 147.9 Hz. In  
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Figure 4. Processing results for an outer-race damaged bearing using the related tech-
niques: (a) HHT, (b) THT, (c) AVMD. fod = 90.9 Hz. Arrows specify characteristic fre-
quency and its harmonics. 

 
this case, the AVMD uses K = 5 and penalty factor αk = 1304. 

In comparison of the HHT in Figure 5(a), the THT technique in Figure 5(b) 
provides better performance with clear fault detection with the domain fault 
characteristic frequency (fid = 147.9 Hz) due to the advantage of Teager operator 
in signal demodulation. On the other hand, the proposed AVMD technique in 
Figure 5(c) outperforms even the THT with a higher resolution, and can pro-
vide better fault diagnostic accuracy due to its efficient frequency suppression. 

Figure 6 depicts the processing results for a bearing with the rolling element 
damage. The theoretical characteristic frequency is fbd = 91.57 Hz. The AVMD 
has parameters of K = 5 and penalty factor αk = 284. 

In this case, none of these three techniques can provide clear fault detection 
results. In general, fault detection in a rolling element is a challenging task as the 
representative features could be time-varying. Both the HHT in Figure 6(a) and 
THT in Figure 6(b) have failed to identify the characteristic fault frequency (fbd  
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Figure 5. Processing results for an inner-race damaged bearing using the related tech-
niques: (a) HHT, (b) THT, (c) AVMD. fid = 147.9 Hz. Arrows specify characteristic fre-
quency and its harmonics. 

 
= 91.57 Hz). The AVMD is the only technique that can recognize the funda-
mental fault characteristic frequency in Figure 6(c) in this case, even though it is 
not the dominant frequency component in the spectral map. 

5. Conclusion 

A new AVMD technique has been proposed in this work for nonlinear signal 
analysis and bearing fault detection. The AVMD takes several procedures in 
signal processing: 1) The VMD decomposition is undertaken to compute the 
correlation between the original signal and the synthesis of the decomposed 
modes. 2) The penalty factor is determined analytically for each mode. 3) En-
semble kurtosis is computed for each mode. 4) The most representative modes 
are selected, and the corresponding envelope analysis is undertaken for bearing 
fault detection. The effectiveness of the proposed AVMD technique is verified by  
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Figure 6. Processing results for a rolling-element damaged bearing using the related 
techniques: (a) HHT, (b) THT, (c) AVMD. fbd = 91.57 Hz. Arrows specify characteristic 
frequency and its harmonics. 

 
experimental tests under different bearing health and operating conditions. The 
test results have shown that the proposed AVMD technique can properly de-
noise the signal and highlight the fault-related features for bearing fault detec-
tion. It outperforms the related techniques under these controlled testing condi-
tions. It has the potential to be applied for fault detection of bearings in rotating 
machines. Advanced research is undertaken to adaptively optimize the related 
parameters in the AVMD algorithm and to improve its accuracy to predict the 
defects occurring on the inner ring and rolling elements. 
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