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Abstract 
Most reports on the fabrication of high-quality Gallium nitride (GaN) are 
typically based on physical techniques that require very expensive equipment. 
Therefore, the electrodeposition was adopted and examined to develop a 
simple and economical method for GaN synthesis. GaN films are synthesized 
on aluminum substrates that are heat-treated at various temperatures using a 
low-cost and low-temperature electrochemical deposition technique. The 
electrochemical behavior of source ions in aqueous solutions is examined by 
cyclic voltammetry (CV). In the solution at pH 1.5 containing 0.1M 
Ga(NO3)3, 2.5 M NH4NO3 and 0.6 M H3BO3, reduction of gallium and nitrate 
ions are observed in CV. The presence of hexagonal GaN and gallium oxide 
(Ga2O3) phases is detected for the films deposited on Al substrates at −3.5 
mA∙cm-2 for 3 h. The energy dispersive X-ray and mapping results reveal that 
Ga, O, and N coexist in these films. Raman analysis shows hexagonal GaN 
formation on Al substrates. The changes in the morphology and preferred 
orientation of GaN were found, which was caused by the reactivity of alumi-
num surface and the aluminum oxide layer formed by the heat treatment.  
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1. Introduction 

Gallium nitride (GaN) is one of the most promising III-V semiconductor mate-
rials that use nitrogen as a group V element [1] [2] [3] [4] [5]. In particular, GaN 
has been recognized to be the most important material for blue and ultraviolet 
optoelectronic devices and has recently attracted considerable attention after the 
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successful fabrication of high-efficiency blue light-emitting diodes [6] [7] [8] [9]. 
During the last two decades, numerous studies have been conducted on GaN 
semiconductors, and several reports have been published on the synthesis tech-
nology of these semiconductors [10]-[19]. Various dry plating methods, such as 
metal-organic chemical vapor deposition (MOCVD) [20] [21], molecular beam 
epitaxy (MBE) [22] [23] [24], thermal ammoniation [25], physical vapor deposi-
tion [26], and chemical vapor deposition [27] [28] [29], have been adopted and 
used in many researches. However, the high cost of these equipments is one of 
the major challenges to be overcome for commercialization and widespread ap-
plication. Moreover, the use of high-temperature systems and ultra-pure gases 
for GaN fabrication entails considerable complexity and additional manufactur-
ing cost [30].  

Therefore, the electrodeposition has recently been proposed as one of low 
temperature and low-cost synthesis methods of semiconductor materials, and 
has been studied by some researchers as an alternative for GaN synthesis. Several 
reports have also confirmed the possibility of GaN synthesis by electrodeposition 
[31]-[37]. Most low-temperature GaN syntheses have been conducted on silicon 
(Si) substrate because of their high quality, large size, and low cost. However, Si 
and deposited metal usually exhibit a weak interaction that leads to 
three-dimensional island-like growth or Volmer-Weber mechanism [38] [39]. 
This is because the rate of electrochemical reaction on Si is slower than on met-
als [40]. 

The substrate effect of various aluminum compounds, such as aluminum ni-
tride (AlN) [41] [42], aluminum gallium nitride (AlGaN) [43] [44] and alumi-
num oxide (γ–Al2O3) [45], which can improve the crystallinity of GaN, has been 
studied and reported by many researchers [46] [47]. High-quality GaN have 
been grown on Al-based intermediate layers. It can be considered that Al plays 
an important role in GaN growth. In particular, it can be expected to be more 
suitable as substrate material for fabrication of GaN film in wet processes since 
Al has better conductivity than Si. 

Therefore, the synthesis of GaN film was performed on Al substrate in this 
study. In addition, the effect of heat treatment of Al substrate on the GaN for-
mation was investigated. 

2. Experimental Details 
2.1. Materials and Reagents 

For electrodeposition, a commercial Al plate (99.9% purity) and Pt coil (99.99% 
purity) are purchased and used as working and counter electrodes, respectively. 
Gallium nitrate hydrate (Ga(NO3)3·xH2O, ≥99.9%, Sigma Aldrich) and ammo-
nium nitrate (NH4NO3, ≥98%, Sigma Aldrich) are used as sources of Ga and N, 
respectively. Boric acid (H3BO3, ≥99.5%, Sigma Aldrich) is purchased and em-
ployed to prepare the electroplating electrolyte as a surfactant and a buffer. 
Concentrated nitric acid (HNO3, 70.0%, Nacalai Tesque) is used to adjust the pH 
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level of each solution. Deionized water with a resistivity of 18.2 MΩ∙cm is used 
in all the experiments. 

2.2. Electrode Preparation 

The working electrodes are 1.0 × 1.0 cm2 Al plates with a 99.9% purity, and a Pt 
coil is used as counter electrode. An Ag|AgCl|sat’d–KCl electrode is employed as 
reference electrode. The Al substrates are prepared by polishing using emery 
paper to a grade of 2000. They are ultrasonically cleaned with ethanol for 10 
min, followed by deionized water for another 10 min. The Pt coil is immersed in 
hydrochloric acid (HCl, 35%, Nacalai Tesque) to clean the surface and is the-
reafter washed with distilled water. Finally, all electrodes are washed with dis-
tilled water and dried under atmospheric conditions. Prior to electrodeposition, 
the Al plate is covered with a Nitoflon adhesive tape (Nitto Denko) to yield an 
electrode area of 0.5 × 0.5 cm2.  

2.3. Heat Treatment of Al Substrates 

The influence of electrode conditions, such as the composition and crystallinity 
of various electrodes, on material synthesis has been widely investigated [48]. 
Here, the Al substrates are prepared to examine the influence of Al oxide layer 
on the synthesis of GaN film by electrodeposition. Since Al can form gamma 
phase alumina at 500˚C or higher, heat treatment was performed at 200˚C and 
500˚C for 1 h. The Al substrates, referred to as Al200HT and Al500HT, are 
heat-treated at 200˚C and 500˚C for 1 h, respectively, in an atmospheric electric 
furnace according to the commercial Al plate used. The oxide formation and 
crystallinity of each Al substrate are characterized by SEM and XRD. 

2.4. Electrodeposition Process 

All the electrochemical depositions are performed using a potentiostat (Hokuto 
Denko, HA3003A) in a three-electrode cell configuration at atmospheric pres-
sure and temperature of 25˚C. As shown by the E-pH diagram of Ga in Figure 
1(a) [49], gallium ion (Ga3+) exists in the form of passivated gallium oxide 
(Ga2O3) or gallium hydroxide (Ga(OH)3) in a solution with a pH level of 3 or 
more. Thus, all electrochemical experiments are performed from acidic solutions 
at pH 1.5. The electrodeposition is conducted in acidic solutions composed of 
0.1 M of Ga(NO3)3, 2.5 M of NH4NO3, and 0.6 M of H3BO3. To prevent the ab-
rupt change in the pH level of the solution by hydrogen ion (H+) depletion near 
the electrode surface during the electrodeposition process, H3BO3 is used as buf-
fer. The electrodepositions are attempted using the galvanostatic method at a 
current density of 3.5 mA∙cm−2 for 3 h. In our previous study, the best results 
were obtained at this current density [50]. The working and counter electrodes 
are separated by a distance of approximately 1.0 cm, and the electrolyte is vigo-
rously stirred during the electrodeposition process. After deposition, the speci-
mens are immediately rinsed thoroughly with distilled water. 
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Figure 1. Potential vs. pH equilibrium diagrams of (a) gallium and (b) nitrogen in 
aqueous solution at 25˚C [modified from ref. 49 and 50, respectively]. 

2.5. Characterization and Tests 

The cyclic voltammetry experiments are performed to confirm the electrochem-
ical behavior of each ion on the Al surface. The current response is recorded 
against the applied voltage (V vs. Ag/AgCl), which is scanned in a triangular 
waveform. 

The surface morphology is characterized with scanning electron microscopy 
(SEM, Hitachi, S-4800), and the chemical composition is analyzed by energy 
dispersive X-ray spectroscopy (EDX, HORIBA, EMAX ENERGY, EX-350). The 
SEM measurement is performed at 10 kV, and the EDX analysis is conducted at 
an acceleration voltage of 12 kV and current of 10 μA. The crystalline quality 
and the lattice parameter of the samples are characterized by X-ray diffraction 
(XRD, Rigaku, Ultima IV) with a Cu–Kα1 radiation source (λ = 1.541 Å). To 
examine the chemical bonding states, X-ray photoelectron spectroscopy (XPS) 
measurements are performed with a PerkinElmer PH1 ESCA system. Monoch-
romatic Mg–Kα ionizing radiation (1254 eV) is used with the X-ray source op-
erating at 300 W (15 kV and 20 mA). Raman measurements are performed using 
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Horiba Jobin Yvon HR system, and an argon ion laser (514.5 nm) is utilized as 
an excitation source. The Raman scattering experiment is implemented in the z 
(x, unpolarized) z  scattering configuration. The resolution of this system is 1 
cm−1, and the integral time is 3000 ms.  

3. Results and Discussion 
3.1. Electrochemical Behavior of Gallium and Nitrogen Ions 

The CV experiments are performed for aqueous solutions containing several 
chemicals to examine the electrochemical behavior of ions. The pH level of all 
solutions is adjusted by HNO3. Table 1 lists the conditions of solutions used in 
the CV experiment. The CVs are recorded at a scan rate of 20 mV∙s−1 between 
−2.0 and 2.0 V vs. Ag/AgCl, start from rest potential to negative direction and 
repeated 5 cycles.  

Figure 2 shows the CV results of 5th cycle. In order to easily compare each 
cathodic curve, the expanded graphs in the range of −2.0 to 0 V is displayed in 
the graph below. In the solution at pH 1.5 containing only HNO3 shown in 
graph (a), a slight reduction current is observed starting from approximately 
−0.6 V, and then a small curve appears at ca. −1.0 V. From the HNO3 solution, 
the first curve seems to correspond to hydrogen evolution reaction (HER), and 
second curve can be regarded as the reduction of nitrate ( 3NO− ) ion. As con-
firmed from E–pH diagram of nitrogen (N) in Figure 1(b) [51], 3NO−  ion can 
be reduced through the following cathodic reactions. 

3 2 2NO 2H 2e NO H O− + − −+ + → +                    (1) 

2 4 2NO 8H 6e NH 2H O− + − ++ + → +                   (2) 

Although the reduction potential of 3NO−  ion is very positive than HER, it 
can be seen that the 3NO−  ion does not reduce easily before HER. And if the 
reaction continues, N species ion may change to most stable ammonium ( 4NH+ ) 
ion. 

In the graph of Figure 2(b) obtained from the solution containing NH4NO3, 
cathodic curves starts at −0.7 and shows two peaks at −1.3 and −1.7 V. Addi-
tional curve compared to the graph obtained in the only HNO3 solution can be 
expected to the reaction to other nitrogen species by the influence of ammonium  
 
Table 1. Bath conditions for cyclic voltammetry measurement. 

Concentration of ion (M) 

Bath Ga(NO3)3 NH4NO3 H3BO3 HNO3 pH 

(a) - - - 0.032 1.50 

(b) - 2.50 - 0.032 1.50 

(c) 0.10 - - 0.031 1.50 

(d) 0.10 2.50 - 0.031 1.50 

(e) 0.10 2.50 0.60 0.029 1.50 
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Figure 2. Comparison of CVs from (a)-(e) aqueous solutions in Table 1. The CVs are 
recorded at a scan rate of 20 mV∙s−1 between −2.0 and 2.0 V, start from rest potential to 
negative direction and repeated 5 cycles. The graph below shows the cathodic current 
curves corresponding to a potential region of −2 to 0 V. 
 
ion. The electrochemical reactions of 3NO−  is known to be complex [52].. 
However, a previous report on the electrodeposited Cr in the solution containing 
nitrogen element by N. Ryan et al. found that 3NO−  ion forms adsorbed nitro-
gen (Nads) in aqueous solutions during the electrodeposition process [53]. In 
particular, the large amount of 4NH+  ion present in this solution may accelerate 
the formation of Nads through a comproportionation reaction with 2NO−  ion, as 
follows: 

2 4 ads 2NO NH N 2H O− ++ → +                    (3) 

In a solution containing 0.1 M Ga(NO3)3 (graph (c)), the current flow starts at 
−0.8 V, and a current hill appears at −1.1 V. This start point is close to the po-
tential corresponds to reduction from Ga3+ to solid gallium (Ga) in Figure 1(a), 
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and a current hill can be considered as a result of the consumption of Ga3+ at the 
electrode surface. Therefore, the precipitation of Ga may occur on the Al elec-
trode. 

3
adsGa 3e Ga+ −+ →                        (4) 

It is generally known that hydrogen discharge is preferred for Ga deposition, 
thus the reduction reaction of Ga3+ can therefore occur after the HER on the ca-
thode surface [54]. The curve appearing at −1.7 V thereafter corresponds to the 
reduction reaction of 3NO−  of Equation (1) and Equation (2). That is, even if 
Ga is adsorbed on the Al substrate, the reduction reaction of 3NO−  ion can oc-
cur, and it can be expected that the reaction of 3NO−  ion occurs at a more neg-
ative potential under the influence of the adsorbed gallium (Gaads).  

In the graph (d) obtained from a solution containing Ga3+, 3NO−  and 4NH+  
ions, three clearly separated cathodic peaks appear. After the large current peak 
corresponding to the precipitation of Ga, Ga

ci , a distinct reduction peak is found 
at the potential region corresponding to the formation of Nads, adsN

ci , confirmed 
from graph (b). In addition, the increased and separated current peak with the 
addition of Ga3+ ion indicates the formation of new phase precipitates on the Al 
substrate. During the reactions of Equations (3) and (4) on the Al surface, Nads 
can be combined with Gaads and finally forms clusters to form GaN layer. 

ads adsGa N GaN+ →                      (5) 

Clusters of critical sizes are formed, subsequently leading to the growth of 
continuous films. These Ga-N bonds cause Ga and N to have electronic states of 
trivalent Ga cations (Ga3+) and trivalent N anions (N3−), respectively, resulting in 
secondary growth of GaN with Ga3+ and 4NH+  ions in the solution. 

3
4 2Ga NH 4e GaN 2H+ + −+ + → +                (6) 

3 3Ga N GaN+ −+ →                      (7) 

The third current may be considered to correspond to the reduction of H+ ion 
caused by the consumption of 4NH+  ion, 

H
ci + .  

When H3BO3 is added (graph (e)), the current density decreases, and the 
amount of hydrogen gas bubbles generated on the Al surface is reduced, and also 
the bubble size becomes smaller. Boric acid thus acts as a surface agent and may 
be expected to function as a buffer to retard the generation rate of hydrogen ion 
(H+) as well as prevent hydrogen adsorption, which can interfere with the per-
meation of N source ion on the Al surface [54].  

3.2. Heat Treatment of Al Substrates 

Figure 3 shows the XRD spectra of Al samples heat-treated at different temper-
atures. Four main diffraction peaks are observed at 2θ values of 38.5, 44.8, 65.1, 
and 78.3 degrees, corresponding to the reflections of Al (111), Al (200), Al (220), 
and Al (311) in the Al plate (Figure 3(a)). In the XRD results of heat-treated Al 
samples (Figure 3(b) and Figure 3(c)), the diffraction patterns indicate the ex-
istence of gibbsite (Al(OH)3) and gamma (γ) phase of alumina (Al2O3) on the Al  
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Figure 3. XRD spectra of Al plates heat-treated at different temperature; (a) Free; (b) 
200˚C for 1 h; (c) 500˚C for 1 h. 
 
surface. In the Al200HT sample, a peak corresponding to Al(OH)3 and very 
small peaks due to γ-Al2O3 are detected at 2θ = 24.3 and 29.6 degrees, respec-
tively. The peaks caused by the reflection of γ-Al2O3 are strongly observed at 2θ 
= 29.6, 39.8, and 47.7 degrees, and the small peaks due to the reflection of 
α-Al2O3 are observed at 2θ = 26.8, 35.6, 48.6, and 50.3 degrees for the Al500HT 
sample. The XRD pattern also confirms that no additional contamination exists 
on the Al samples. 

Figure 4 shows SEM images of three Al sample surfaces. On the surface of the 
Al plate before heat treatment, oxide-form particles do not appear, but large 
plate-like particles are observed on the Al200HT sample. In the Al500HT sam-
ple, it is found that the spherical particles with an average diameter of 1.2 µm, 
which are generally observed from γ-Al2O3 are distributed [55].  

3.3. Electrodeposition and Characterization 

The electrodeposition of GaN film in an aqueous solution is attempted on Al 
substrates, and their morphology and composition are characterized by SEM 
and EDX. Figure 5 shows the SEM images of GaN films deposited with a current 
density of −3.5 mA cm−2 for 3 h in the solution corresponds to Table 1(e). And 
the corresponding EDX analysis data are summarized in Table 2. The films ob-
tained from Table 1(c) solution without 4NH+  ion, N was not detected, and 
more than 40 mol% O was detected in the films electrodeposited from Table 
1(d) solution via EDX. Therefore, this paper describes the films electrodeposited 
from Table 1(e) solution. 
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Figure 4. SEM images of the surface of Al samples heat-treated at different temperature; 
(a) Free; (b) 200˚C for 1 h; (c) 500˚C for 1 h. 
 

 
Figure 5. SEM images of the films deposited at 3.5 mA∙cm−2 for 3 h on (a) Al plate; (b) 
Al200HT; (c) Al500HT. And the enlarged images are shown on the right. 
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Table 2. EDX results of the films deposited on Al substrates at −3.5 mA∙cm−2 for 3 h. 

Element 
Al plate Al200HT Al500HT 

mass% mol% mass% mol% mass% mol% 

Ga 68.48 35.02 69.17 33.99 36.73 14.28 

N 14.87 37.85 13.60 33.27 14.67 28.40 

O 5..64 12.58 12.47 26.70 20.88 20.88 

Al 11.01 14.55 4.76 6.05 36.27 36.44 

 
As shown in Figure 5, the film formed on the Al plate exhibit an island-like 

morphology. And the island-like particles are connected and grow in the form of 
a thick plate for the film deposited on Al200HT (Figure 5(b)). In the film depo-
sited on Al500HT, a cauliflower-like structure, which was found in the γ-Al2O3 
or β-Ga2O3 samples, is further formed [55] [56].  

The EDX results summarized in Table 2 clearly reveal that more than 35 
mol% of N and Ga are present with O in the GaN film grown on the Al sub-
strate. This indicates that the GaN compound film is formed according to Equa-
tion (6). The mapping micrographs of Figure 6 clearly reveal the presence of Ga 
and N on the Al substrate. These elements are uniformly dispersed in the depo-
sited films. Similarly, the N content is more than 28 mol% at any given position 
in the films that form on Al200HT and Al500HT. On the other hand, oxygen 
increases by more than 20 mol%, which can be attributed to γ-Al2O3. The map-
ping results in Figure 6 also show that the films containing a large amount of N 
are formed on the Al substrates, and Ga, N and O coexist.  

Figure 7 shows the XRD spectra of GaN films that are prepared by electrode-
position. Two peaks that correspond to the reflection of h-GaN are observed at 
2θ = 32.7˚ and 36.8˚; these peaks are caused by reflections from the (1100 ) and 
(1011) planes for the film deposited on the Al plate, respectively [57] [58]. In 
contrast, a strong peak corresponding to the reflection of (0002) plane is de-
tected at 2θ = 34.4˚ in the diffraction result for the film deposited on Al200HT 
(Figure 7(b)). In the film formed on Al500HT (Figure 7(c)), the peaks caused 
by the reflection of h-GaN at the three aforementioned positions are detected, 
and the peak corresponding to the reflection of the h-GaN (1100 ) plane appears 
to be the strongest. The strong peaks at 2θ = 38.1˚ and 2θ = 45.4˚ are caused by 
reflections from Al (111) and (200), respectively, and a peak at 2θ = 29.3˚ is 
caused by the reflection of γ–Al2O3. The weak intensity peaks corresponding to 
Ga and β-Ga2O3 are also confirmed. Based on the XRD measurement of all sam-
ples, it can be observed that the h-GaN film is formed under the experimental 
conditions used in this study.  

The surface of the as-deposited material is characterized by XPS studies. Fig-
ure 8 shows the evolution of XPS spectra of Ga 3d and N 1s on the surface of the 
films. All spectra are deconvoluted using a Gaussian-Lorentzian function with 
background subtraction. Three main peaks are detected in the spectra of Ga 3d 
at 18.1, 22.4, and 26.4 eV corresponding to Ga, GaN, and Ga2O3, respectively, as  
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Figure 6. SEM micrographs along with elemental mapping via EDX for Ga, O, N and Al 
for the surface of films deposited on (a) Al plate; (b) Al200HT; (c) Al500HT. 
 

 
Figure 7. XRD spectra of the films deposited at 3.5 mA∙cm−2 for 3 h on (a) Al plate; (b) 
Al200HT; (c) Al500HT. 
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Figure 8. XPS spectra of Ga 3d photoelectron peak of GaN films deposited on (a) Al 
plate; (b) Al200HT; (c) Al500HT, and the graphs on the right side show N 1s photoelec-
tron peak for the same samples; (d)-(f). (a)-(c) Ga 3d; (d)-(f) N 1s. 
 
shown in Figures 8(a)-(c) [59]. These peaks are higher than those observed in 
GaN (Ga 3d at 19.6 eV), but three separated peaks corresponding to each chem-
ical bonding are clearly observed [60] [61]. The binding energy of N 1s at 399.7 
eV clearly shows the presence of nitride (N3−) (Figures 8(e)-(f)), and peaks cor-
responding to N-O bonds appear at a binding energy of 408.6 eV [62]. In the 
deposited film on the Al plate without Al2O3 layer (Figure 8(d)), only peaks 
corresponding to N-Ga-O bonds appear, and there are no peaks corresponding 
to Ga-N bonds. Despite the inclusion of H3BO3 in the electrodeposition solution, 
there is no detected peak caused by boron in all samples. 

Figure 9 shows the Raman spectrum of films deposited on Al substrates. 
Three Raman active optical phonon modes corresponding to h-GaN have been 
observed from GaN film deposited on the Al plate. One mode is at 144 cm−1 be-
cause of E2 (LO), and two bands are at 518 and 718 cm−1 of modes A1 (TO) and 
E1 (LO), respectively [63]. In the film formed on Al200HT, the band that cor-
responds to A1 (TO) is intensified, and the signal at 570 cm−1 that corresponds to 
E1 (TO) is also detected. In contrast, weak bands are detected from the film de-
posited on Al500HT because of the influence of a thick oxide layer. As can be 
observed from Figure 9(b) and Figure 9(c), strong bands corresponding to  
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Figure 9. Raman spectroscopy of GaN films deposited at 3.5 mA for 3 h on (a) Al plate; 
(b) Al200HT; (c) Al500HT. 
 
Al2O3 are also detected in the films deposited on heat-treated Al substrates. The 
small bands that appear at 359 and 427 cm−1 may be caused by the acoustic 
phonons of Al2O3. 

3.4. Effect of Heat Treatment of Al on GaN Formation 

The effects of the Al substrate on GaN formation by electrodeposition are con-
sidered. It is confirmed that Al(OH)3 and γ-Al2O3 are detected on the 
heat-treated Al samples. The SEM photographs of GaN films on the aforemen-
tioned Al substrates show that the film formed on Al200HT substrate has the 
densest structure. It can be considered that the slight increase in surface energy 
and oxide formation by heat treatment make it easy to generate the Ga-N com-
bining reaction. However, the formation of a thick γ-Al2O3 layer does not make 
to improve the crystallinity of the GaN film and causes Ga-O-Al bonding. The 
XRD results shown in Figure 7 reveal that there is a difference in the orientation 
of the GaN film formed on the three Al substrates. In other words, it can be seen 
that the growth of GaN film is affected by the properties of the surface condition 
and Al2O3 layer. 
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4. Conclusions 

The GaN films are synthesized on Al substrates heat-treated different tempera-
tures by electrodeposition under ambient temperatures. The CV analysis reveals 
that starting from a potential value that approaches the Ga reduction potential, 

3NO−  ion could be combined by adsorbing Ga and O during the deposition 
process, resulting in the formation of GaN films.  

The GaN films are prepared by applying a current density of –3.5 mA∙cm−2 for 
3 h on Al substrates heat-treated at different temperatures. The deposited GaN 
films contain a mixture of h-GaN and Ga2O3 phases. The GaN film formed on 
the Al substrate is found to grow in a different structure depending on the sub-
strate composition. Through EDX analysis, it is confirmed that Ga, N, and O are 
uniformly distributed in the film. Raman analysis, XRD, and XPS are also re-
vealed the presence of h-GaN. The GaN film grown on Al200HT having a very 
thin Al oxide exhibits the property closest to that of the single crystal h-GaN. 
The grown GaN films exhibit different growth characteristics depending on the 
composition and surface energies of Al substrates. 

The GaN films produced in this work contain a considerable amount of O and 
exhibit insufficient crystallinity compared to single-crystal GaN. After the for-
mation of GaN, additional processing, such as annealing at a high temperature 
in the presence of ammonia, may be required, because the addition of O to the 
GaN film may cause lattice deformation or diminish material properties. Never-
theless, the possibility of synthesizing GaN on Al substrate using a low-cost 
temperature method that can replace the current expensive process has been 
confirmed. The fact that GaN films can be formed on metals other than semi-
conductors will have many advantages for various potential applications. 
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