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Abstract 
This paper proposes a novel model fusion approach to enhance predictive 
capabilities of vision and language models by strategically integrating object 
detection and large language models. We have named this multimodal inte-
gration approach as VOLTRON (Vision Object Linguistic Translation for 
Responsive Observation and Narration). VOLTRON is aimed at improving 
responses for self-driving vehicles in detecting small objects crossing roads 
and identifying merged or narrower lanes. The models are fused using a sin-
gle layer to provide LLaMA2 (Large Language Model Meta AI) with object 
detection probabilities from YoloV8-n (You Only Look Once) translated into 
sentences. Experiments using specialized datasets showed accuracy improve-
ments up to 88.16%. We provide a comprehensive exploration of the theoret-
ical aspects that inform our model fusion approach, detailing the fundamen-
tal principles upon which it is built. Moreover, we elucidate the intricacies of 
the methodologies employed for merging these two disparate models, shed-
ding light on the techniques and strategies used. 
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1. Introduction 

The fusion of vision and language models represents a crucial and swiftly ad-
vancing area within the realm of artificial intelligence. This convergence holds 
great importance as it enables machines to grasp and produce content that en-
compasses both visual and textual data, emulating the natural way in which hu-
mans perceive and communicate in reality. Vision-Language models focus on 
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the simple goal of (image, text) → text. 
Often, the real-world data consists of inputs or multiple modalities, such as 

text and images. RCNNs [1] introduced the world to the field of enabling ma-
chines to understand and perceive images. Existing methods typically involve 
solving tasks independently using a single large vision model. This approach al-
lows the model to have a holistic understanding of the data, leading to more co-
herent and contextually relevant responses. However, it also increases the com-
plexity and execution time, making the outputs highly dependent on each other. 

Our approach suggests a different strategy by combining two dedicated dis-
joint models to integrate information from both images and text into a single 
model pipeline. We have named this multimodal integration approach as 
VOLTRON (Vision Object Linguistic Translation for Responsive Observation 
and Narration). VOLTRON allows for a more seamless understanding and gen-
eration of content that incorporates both modalities effectively. The primary fo-
cus of this approach is on improving the way prompts are generated, harnessing 
the powerful approach to Large Language Model (LLM), ultimately enhancing 
the quality of the responses it generates. 

While approaches like LLaVA (Large Language and Vision Assistant) [2] that 
use CLIP (Contrastive Language-Image Pre-training) as a visual encoder and 
LLaMA [3] as the language decoder, and later fine-tune on generated data, apply 
a more complex foundational architecture. CLIP encodes visual and textual in-
formation into a multimodal embedding space while maximizing the cosine si-
milarity scores of the embeddings. However, it performs well only within the 
training dataset domain and weakly generalizes to out-of-training examples. In 
response to the specific use case where CLIP falls short, the approach takes into 
consideration the integration of an object detection model—YoloV8-n [4]. The 
probability of YoloV8-n’s predictions, along with the simplicity of the architec-
ture, becomes a crucial factor for providing suggestions through LLaMA2 [3]. 
This enhances the multimodal model’s ability to handle situations where tradi-
tional methods may not work effectively. 

We present a novel and simplified model fusion approach without complex 
architectures for enhancing predictive capabilities in self-driving vehicles. The 
key research contributions and novel approaches of our work (VOLTRON) are 
as follows:  
• Proposes a new model fusion approach to enhance predictive capabilities of 

vision and language models by integrating YoloV8-n and LLaMA2 
• Utilizes YoloV8-n for object detection to identify small objects like cats 

crossing the road 
• Translates YoloV8-n detection probabilities into sentences to provide con-

textual information to LLaMA2 
• Employs LLaMA2 to generate natural language responses and recommenda-

tions 
• Fuses models using a simple single layer rather than complex vision encoders 
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or transformers 
• Demonstrates accuracy improvements up to 88.16% on specialized test data-

sets for self-driving vehicle use cases 
• Adopts computational efficiency methods like LoRA, mixed precision train-

ing, quantization and batching 
• Suggests future vehicular communication protocols for real-time road condi-

tion updates between vehicles  

2. Related Work  

There is growing interest in combining large language models with computer vi-
sion across a variety of settings to enhance multimodal understanding and gen-
eration. In this section, we provide a study of the related work, categorized into 
five different areas as follows: 

1) Multimodal Instruction-Following: Current research in computer vision 
pursues two main methodologies by either developing an end-to-end trained 
models capable of autonomously handling vision-language tasks using instruc-
tions, or by creating systems that use multiple single models using frameworks 
like LangChain [5], as seen in Visual ChatGPT [6] and X-GPT [7]. Additionally, 
some approaches hybridize these two strategies, focusing on crafting end-to-end 
trained multimodal models to address various tasks concurrently, as exemplified 
by methodologies like LLaVA [2]. 

2) Instruction Tuning: In the realm of NLP, the capability of LLMs to under-
stand natural language instructions and complete real-world tasks has proven to 
be a significant advancement. Implementations such as Flamingo [8] have bor-
rowed ideas from NLP to Vision, resulting in remarkable performance in ze-
ro-shot task transfer and in-context learning. OpenFlamingo [9] and LLaMA- 
Adapter [10] are open-source implementations that allow LLaMA [3] to process 
image inputs, thus enabling the development of open-source multimodal LLMs. 
It is worth noting that these models demonstrate promising task transfer per-
formance, even without explicit instruction tuning using vision-language instruc-
tion data. 

3) Autoregressive Vision-Language models: Generative vision-language 
models generate texts based on an image-text sequence, which is a feature of 
numerous architectures such as BLIP2 [11] and LLaVa [2]. Unlike architectures 
that are limited to a single image in their context, autoregressive vision-language 
models embrace interleaved image-text sequences, facilitating contextual learn-
ing. 

4) VisionLLM: Large Language Model is also an Open-Ended Decoder for 
Vision-Centric Tasks—It utilizes a large language model as an open-ended de-
coder for vision-centric tasks. In this context, the language model is not just used 
for generating text but is employed as a decoder for processing and interpreting 
visual information. The paper explores how this unique approach can be applied 
to various tasks in computer vision, making it a versatile tool for tasks like image 

https://doi.org/10.4236/jsea.2023.1612034


Z. M. Wase et al. 
 

 

DOI: 10.4236/jsea.2023.1612034 675 Journal of Software Engineering and Applications 
 

captioning, object recognition, and more. It likely discusses the potential benefits 
and applications of combining language models with visual data for improved 
performance in vision-related tasks. [12] 

5) Drive Like a Human—Rethinking Autonomous Driving with Large 
Language Models: It explores a new perspective on autonomous driving by le-
veraging large language models. It suggests that incorporating these models can 
lead to more human-like and context-aware driving behaviors in autonomous 
vehicles. The paper likely discusses the integration of natural language under-
standing and generation to enhance communication between autonomous ve-
hicles and human passengers or other road users. This approach aims to im-
prove the safety and acceptability of autonomous driving technology by making 
it more understandable and predictable for humans. [13]  

3. Statement of the Problem 

After reviewing various existing methodologies, we observed that none of them 
employed an object detection model as a baseline. VOLTRON distinguishes it-
self by opting for a comprehensive approach without integrating transformers 
for model fusion, showcasing a unique strength in our strategy. 

Existing solutions, such as Bootstrapping Language-Image Pre-training with 
Frozen Image Encoders and Large Language Models (BLIP2) (Figure 1) and An 
Open-Source Framework for Training Large Autoregressive Vision-Language 
Models (OpenFlamingo), delve deeper into the intricacies of image description, 
striving to provide comprehensive insights. Whereas, OpenFlamingo focuses on 
creating multiple interleaved, web-scraped datasets, taking into consideration all  
 

 
Figure 1. BLIP-2 architecture with model fusion [11]. 
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the previous texts and the last preceding image to increase the performance and 
the complexity. On the other hand, BLIP2 takes a simpler approach, although it 
is not very robust with more complex tasks. In contrast, the latter, exemplified 
by LLaVA (Figure 2) and GPT4, prioritize generating outputs that are influ-
enced by specific instructions and context (See Table 1). 

VOLTRON (Figure 3) seeks to position itself at the intersection of these two 
approaches. We aim to take into consideration the significance of accommodat-
ing diverse needs and preferences when it comes to generating descriptions for 
images. Hence, we adopt a versatile approach that encompasses two fundamental  
 

 
Figure 2. LLaVA architecture with model fusion [2]. 
 

 
Figure 3. VOLTRON architecture with model fusion. 
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Table 1. Comparison of approaches. 

VOLTRON LLaVA BLIP-2 

1). VOLTRON  
combines the strengths 
of the Pretrained LLM 
model (LLaMA2) and  
Vision-object detection 
Model (YoloV8-n). 
2). Integration of the  
two models into a  
unified pipeline  
involves converting 
object probabilities to 
sentences, passing 
them through a  
single/simple linear 
layer, and  
transforming them 
into embeddings using 
the LLaMA  
architecture, thus  
reducing complexity 
without the use of  
transformers. 

1). LLaVA’s architecture 
combines LLaMA for  
language tasks and CLIP  
visual encoder ViT-L/14 for 
visual understanding,  
enhancing multimodal  
interactions. It can  
fine-tune LLaMA using  
machine-generated  
instruction-following data. 
For visual content processing, 
LLaVA relies on the 
pre-trained CLIP visual  
encoder ViT-L/14, which 
excels in visual  
comprehension. The  
encoder connects visual  
features to language embed-
dings, bridging the  
gap between text and images. 
2). Emphasis on generating 
instruction-oriented  
responses. 

1). BLIP-2 effectively 
combines frozen 
pre-trained image models 
and language models for 
outstanding performance 
on various  
vision-language tasks. To 
bridge the modality gap, 
BLIP-2 employs a 
Q-Former model 
pre-trained in two stages: 
representation learning 
and generative learning. It 
extracts a fixed number of 
output features from the 
image encoder, regardless 
of input image resolution. 
2). Focus on describing 
the image, prioritizing 
image understanding over 
specific user-generated 
instructions. 

 
aspects. Firstly, we utilize a much simpler architecture and achieve results with 
fewer complexities for our use case. Secondly, we facilitate the generation of 
plain prompts that simply describe the scene depicted in the image. Additional-
ly, we provide prompts to the system that not only describe the scene but also 
incorporate complex reasoning through in-depth analysis. This dual-pronged 
approach empowers users to tailor their interactions with our system according 
to their requirements. By offering this flexibility, we aim to ensure that our ap-
proach can be tested and utilized in a broad spectrum of scenarios. Whether one 
seeks concise scene descriptions or detailed explanations with intricate analysis, 
our approach can cater to their needs. 

4. Methodology 
4.1. Architecture  

Our aim is to introduce a simplified approach by merging an object detection 
model and a Large Language Model for particular scenarios. This integration 
streamlines complex tasks, harnessing the strengths of visual data analysis and 
natural language understanding to enhance overall performance and usability in 
specific use cases such as:  

1) The presence of small objects or animals crossing the road, potentially cats.  
2) The occurrence of narrower or merging lanes ahead, along with the reasons 
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or events that could have led to in this road configuration, such as a natural dis-
aster like a landslide.  

In order to achieve the above, we propose an architecture that aims to en-
hance predictive performance. While we have tested VOLTRON with the exem-
plary use cases above, this approach can be utilized and also extended for a 
broad spectrum of scenarios. 

4.1.1. Input Data 
The input data involves capturing a video feed and transforming it into a se-
quence of individual images in a format that can be utilized by YoloV8-n. 

4.1.2. Models 
• YoloV8-n [4], a state-of-the-art object detection model, is utilized to process 

the visual data. It identifies and localizes objects of interest within the images 
or frames captured by the vehicle’s cameras. Choosing YoloV8-n provides 
several key benefits over its predecessors. Notably, its anchor-free detection 
capability enhances flexibility and efficiency, eliminating the need for ma-
nual anchor box specifications. This is particularly advantageous when 
dealing with dynamic objects in varying scenes and perspectives, according 
to our use case. Additionally, YoloV8-n boasts improved accuracy and efficacy 
through its optimized network architecture, revised loss function, and mod-
ified anchor boxes, promising superior results compared to earlier versions. 

• LLaMA V2 [3] is a specialized language model integrated to handle language 
and textual data. With variable model sizes available to choose from and an 
increased amount of training data, as well as a double context length of 4096 
tokens, we opted for LLaMA2 with 7 billion parameters. The integration of 
RLHF (Reinforcement Learning from Human Feedback) during its training 
phase has significantly improved our results and quality. 

4.1.3. Model Fusion 
The core of this architectural design centers around the model fusion stage, a 
crucial point where the outputs of YoloV8-n and LLaMA2 come together. This 
convergence signifies the beginning of multimodal integration, allowing the 
model to utilize the combined outputs of both models to make informed predic-
tions and decisions in the realm of self-driving applications. 

The YoloV8-n model, primarily focused on object detection, yields outputs in 
the form of probabilities. These probabilities are subsequently translated into 
descriptive sentences that comprehensively elucidate the identity of each indi-
vidual object, along with its corresponding probability score. This transforma-
tion enhances the interpretability and contextual richness of the visual data 
analysis. 

Subsequently, this transformed output, now presented in the form of coherent 
sentences, is transmitted to LLaMA2. In order to join the two models, we have 
utilized a single layer that provides LLaMA with the tokens instead of imple-
menting Q-Transformers or Vision encoder-decoders. As a language model, 
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LLaMA processes this information to generate scenario-specific outputs and prac-
tical recommendations. By assimilating and interpreting the visual data within 
the realm of natural language understanding, LLaMA enhances the model’s abil-
ity to provide relevant insights and real-time suggestions within self-driving sce-
narios. This integrated approach contributes to more sophisticated and well- 
informed decision-making processes. 

4.2. Dataset and Training  
4.2.1. Dataset Generation 
We have taken a multifaceted approach for our dataset generation, creating a 
mixture of artificially generated images as well as publicly available images. Data 
collection is one of the most important starting points of this project. We made 
use of the Selenium library to scrape images from the internet. We ran a script to 
collect the necessary data and store it on our local system. Next, we annotated 
the data in order to create a better data source to begin with. We have taken into 
consideration the limiting case of variations in object orientations and lighting 
conditions with changing illumination intensity. For our experiments, we used a 
cluster of RTX 4000 Ada GPUs. 

4.2.2. LLaMA2 Fine-Tuning 
In our approach, we have utilized the capabilities of LLaMA V2. The primary 
focus of our efforts is dedicated to enhancing the quality of the responses gener-
ated by the model and providing valuable feedback to the end user. This endea-
vor has been thoughtfully segmented into three distinct sections, each with its 
own unique purpose and methodology. 

The first of these sections is Prompt Engineering, which leverages the ReAct 
[14] framework. This approach is designed for rapid iteration and boasts the 
advantage of not requiring any specific training. It is instrumental in shaping 
and refining the thoughts, actions, and observations encapsulated in the model’s 
responses. 

The second section implements RAG (Retrieval Augmented Generation) [15] 
and serves as a critical component for expanding the external knowledge base. 
This module enhances the model’s ability to query databases and execute fact- 
checking procedures, thereby increasing the depth and accuracy of the informa-
tion it can provide.  
 

 
Figure 4. Some images from our dataset that were used for the evaluation of the model. 
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The third and final section, referred to as PEFT (Parameter-Efficient Fine- 
Tuning) [16], adds a layer of complexity to our methodology. Unlike the other 
sections, PEFT requires training and access to a high-quality dataset. Its role is 
pivotal in enhancing the model’s performance by imbuing it with a deeper un-
derstanding of nuanced and intricate aspects of the subject matter. 

By breaking down our approach into these three sections, we can not only of-
fer users more polished and contextually relevant responses, but also enhance 
the model’s knowledge base and handle more intricate queries and interactions. 
This comprehensive approach highlights our dedication to pushing the limits of 
AI capabilities, while also guaranteeing responsiveness, dependability, and preci-
sion in user interactions. 

To ensure computational efficiency and address the resource demands of in-
ference, we have adopted several strategies. One key approach is LoRA (Low 
Rank Adaptation) [17], which reduces trainable parameters, saving memory 
without compromising results. Rank factorization makes LLaMA2 manageable 
on our constrained and specific setup and use case. 

We have also explored mixed precision training to leverage lower-precision 
tensors for memory-efficient and rapid GPU processing. Additionally, we have 
implemented quantization to transition model weights from floats to low-bit in-
teger representations. We have chosen PTQ (Post Training Quantization) [18] 
for cost-effectiveness, as it involves training to convergence and then convert-
ing weights without further training. This approach stands in contrast to QAT 
(Quantization-Aware Training) [19], which requires more computational re-
sources and access to representative training data. 

Furthermore, we have improved efficiency by adopting batching [20]. Instead 
of reloading model parameters for each input sequence, batching allows para-
meters to load once and serve multiple input sequences, streamlining the process. 

5. Qualitative Evaluation  

In the context of self-driving vehicles, a critical concern that we observed was the 
vehicle’s inability to detect and respond rapidly to the presence of cats or similar 
objects rapidly crossing a road. This deficiency in object recognition and re-
sponse capabilities has resulted in numerous accidents and, tragically, severe fa-
talities. 

To address this issue, we carried out several experiments. Our initial experi-
ment involved creating a specialized dataset comprising images featuring cats, 
with a particular focus on those exhibiting unique characteristics such as reflec-
tions and predominantly black fur. This dataset was then used with pretrained 
YoloV8-n weights, which is a state-of-the-art object detection model. 

The YoloV8-n model was used to perform object detection, providing proba-
bilistic results on the presence of cats within the images. Subsequently, we inte-
grated the YoloV8-n model with LLaMA, which was equipped with a set of so-
phisticated instructions and scenarios. This integration aimed to not only im-
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prove the quality of the response generated by the self-driving vehicle but also to 
provide valuable feedback that could enhance the vehicle’s real-time deci-
sion-making process. 

To assess our model’s performance, we utilized a dataset of 300 images en-
compassing a diverse range of animals, orientations, colors, and slight variations 
in noise (See Figure 4 and Figure 5). This varied image set aimed to prevent any 
biases in the model’s outputs. We experimented with different image combina-
tions, calculating their accuracy scores and averaging the results. The accuracy 
takes into consideration the number of correct outputs generated by the model. 
For the initial 150 images, the accuracy scores were 88%, 89%, and 87% based on 
randomly sampled 100 images from this subset, resulting in a mean accuracy of 
88%. In the subsequent 150 images, the accuracy scores were 90%, 88%, and 
87%, yielding a mean accuracy of 88.33%. To ensure balance across the varied 
pools of images, we computed the mean again. This approach led to a final mean 
accuracy of 88% and 88.33%, resulting in an overall mean accuracy of 88.16%. 
This improvement signifies a significant stride forward in the mission to make 
self-driving vehicles safer and more proficient at responding to unforeseen road 
hazards, particularly in scenarios involving pedestrians (See Figure 6). We assess 
our system’s performance using a set of metrics, with a primary focus on accu-
racy. In this evaluation, we consider the range of models currently available in 
our environment. This approach enables us to gain a comprehensive under-
standing of how our system compares to the existing models, which helps us in 
our pursuit of higher performance and accuracy.  
 

 
Figure 5. Output generated when a cat is running across the road which is blurred and 
not very clearly visible (image is open source). 
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Figure 6. Output generated when the cat is at distance but there are people also walking 
(image clicked by author). 

6. Conclusion  

In conclusion, we introduced a unique model fusion method, merging YoloV8-n 
and LLaMA2, to amplify both vision and language models’ predictive prowess. 
YoloV8-n was used for precise object detection and LLaMAV2 which offered a 
novel paradigm to enhance object detection and language-based contextual un-
derstanding. VOLTRON seamlessly integrates vision-based insights without re-
lying on complex encoders. Instead, it adopts a simplified, single-layer fusion 
approach, showcasing its efficacy by merging visual and linguistic understand-
ing. Empirical evaluations underscore significant accuracy enhancements in re-
sults for self-driving vehicle applications. 

7. Future Works  

There are several promising ways for extension. First, we can delve into the de-
velopment of a robust protocol that facilitates seamless communication among a 
network of vehicles. This communication infrastructure would empower LLMs 
to engage in meaningful exchanges, enabling them to collectively harness their 
linguistic capabilities. A fleet of vehicles can collaborate by sharing valuable 
information among themselves, becoming nodes in a network that operates 
cohesively to enhance overall safety and efficiency. 

A notable aspect of this endeavor is the handling of incidents like natural dis-
asters that may remain concealed from incoming vehicles. To address this, we 
propose a mechanism where vehicles that have previously encountered such in-
cidents can act as informants. By sharing their experiences, these vehicles ensure  
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Figure 7. How we perceive the future work to be. 

 
that the arriving vehicle is promptly made aware of the situation. This awareness 
is conveyed to the driver via a pop-up text message, significantly enhancing the 
driver’s responsiveness. This newfound awareness offers the driver two practical 
courses of action: the option to reroute and circumvent the incident or to pro-
ceed with heightened caution. 

In this dynamic system, data remains in constant flow, with updates occurring 
at regular 15-minute intervals. These updates are not arbitrary; instead, they serve 
to continuously optimize the performance, ensuring their adaptability and effec-
tiveness in a constantly evolving environment. This comprehensive approach to 
vehicular communication and information exchange promises to enhance safety, 
efficiency, and overall road network performance. 

Implementing this method could pave the way for a more effective and prom-
ising realization of the extended possibilities and future prospects of our pro-
posed approach (See Figure 7). 
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