
Journal of Software Engineering and Applications, 2023, 16, 521-529
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2023.1610026 Oct. 11, 2023 521 Journal of Software Engineering and Applications

Improving Performance of Computer
Algebra Systems

Kostas Zotos, Irena Atanassova

Department of Informatics, Faculty of Science and Mathematics, South-West University “NeofitRilski”, Blagoevgrad, Bulgaria

Abstract
Computer Algebra Systems have been extensively used in higher education.
The reasons are many e.g., visualize mathematical problems, correlate real-
world problems on a conceptual level, are flexible, simple to use, accessible
from anywhere, etc. However, there is still room for improvement. Computer
algebra system (CAS) optimization is the set of best practices and techniques
to keep the CAS running optimally. Best practices are related to how to carry
out a mathematical task or configure your system. In this paper, we are going
to examine these techniques. The documentation sheets of CASs are the
source of data that we used to compare them and examine their characteris-
tics. The research results reveal that there are many tips that we can follow to
accelerate performance.

Keywords
Mathematical Software, Computer Algebra Systems, CAS, Improving
Performance, CAS Performance, CAS Optimization, MATLAB,
Maple, Mathematica

1. Introduction

The field of Mathematics is found in many disciplines such as Biology, Physics,
Economics, Chemistry and many more. Computer technology has completely
affected many scientific fields, facilitating people’s daily lives. In this light, the
field of Mathematics could not remain unaffected by the rise of technology. In
recent decades, a variety of mathematical software have been created, which im-
prove the learning experience of the understanding and familiarity of the inter-
ested users.

It is difficult to compare CASs. There are few studies in the literature that dare
to compare them. This happens because each one specializes in a field of Ma-

How to cite this paper: Zotos, K. and
Atanassova, I. (2023) Improving Perfor-
mance of Computer Algebra Systems.
Journal of Software Engineering and Ap-
plications, 16, 521-529.
https://doi.org/10.4236/jsea.2023.1610026

Received: August 3, 2023
Accepted: October 8, 2023
Published: October 11, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2023.1610026
https://www.scirp.org/
https://doi.org/10.4236/jsea.2023.1610026
http://creativecommons.org/licenses/by/4.0/

K. Zotos, I. Atanassova

DOI: 10.4236/jsea.2023.1610026 522 Journal of Software Engineering and Applications

thematics and has a different philosophical approach. So, it would be a mistake
to say which of them is the best or what is wrong or right. Therefore, the aim of
the paper could not be to find the best CAS but to present techniques to improve
the existing ones.

Different devices, platforms, and web browsers may have distinctive necessi-
ties, limitations, and features that affect how CAS runs. Huge scale numerical
calculations can put overwhelming requests of computer memory and processing
power. Some CASs analysts believe that do not have to optimize CASs perfor-
mance because computer hardware is progressing so quickly. On the other hand,
software engineers and researchers are ordinarily less tolerant of poorly designed
software. In technical markets, the general philosophy is the gains of perfor-
mance to rise continuously. In this paper, we will not criticize these opinions
which are all partly correct, but we are going to combine them and present some
tips and techniques to improve the performance of CASs.

The rest of the paper is organized as follows: Section 2 provides a general
overview of Computer Algebra Systems. In Section 3, we are going to examine
some tips for better performance. Next (Section 4), the results are presented and
discussed whereas in the final section (Section 5) some conclusions are drawn.

2. Basic Characteristics of Famous Computer Algebra
Systems

Computer Algebra Systems are software packages, which are used in manipula-
tion of mathematical formulas. The primary goal of a Computer Algebra System
is to automate tedious and sometimes difficult algebraic manipulation tasks.
There are many publications that show the positive impact of CAS on students
[1]. Today, they exist over fifty Computer Algebra Systems on the market. The
most famous are Mathematica, Maple, MATLAB, Maxima, SageMath, SymPy,
GNU Octave, Magma and MathStudio. In this paper, we will focus on MATLAB,
Mathematica and Maple. The documentation sheets of these three CASs are the
source of data that we used to compare them and examine their characteristics.
So, the basic features of them are the following:
• MAPLE-Maplesoft

MAPLE is a modern, interactive mathematical software package for symbolic
and numerical calculations, as well as for graphing, used in university courses as
well as in research and other applications. It started as a research project at the
University of Waterloo in Canada about 30 years ago, and today it has evolved
into the MapleSoft company [2] and has established itself as one of the best
software packages for symbolic computing. Maple is based on a kernel, written
in C, which provides the Maple language.
• Wolfram Mathematica

Mathematica is a computing package with a lot of capabilities in almost all
areas of Mathematics (e.g. Algebra, Set Theory, Analysis, Statistics, etc.) [3]. It
first appeared in the late 80s as a command execution kernel that could be

https://doi.org/10.4236/jsea.2023.1610026

K. Zotos, I. Atanassova

DOI: 10.4236/jsea.2023.1610026 523 Journal of Software Engineering and Applications

adapted to any operating system (e.g. Unix, MacOS, Windows, etc.). This com-
mon Kernel still exists today (improved and enriched), while its connection with
the user is made through a Notebook interface.

Despite the advantages of having a common core, unfortunately there are also
some disadvantages, such as quite slow processing speed (compared to pure
programming languages), program instability and increased memory require-
ments. The low speed is mainly seen when the repeated execution of a series of
commands (e.g. Loops) is requested and is mainly due to the fact that Mathema-
tica uses an interpreter and not a compiler like classical programming languages
(e.g. C, Pascal, Visual basic).
• MATLAB-MathWorks

It is a modern integrated mathematical package used extensively in academia
and industry. It is an interactive program for numerical calculations and graph-
ing, but it also provides programming capability, which makes it a useful tool for
all sciences. Unlike the Maple and Mathematica software, MATLAB in its initial
versions did not perform symbolic calculations. In its newer versions, the pack-
age includes toolkits that allow symbolic computations.

As its name suggests, MATLAB is specially designed for matrix calculations,
such as solving linear systems, finding eigenvalues and eigenvectors, inverting a
quadratic matrix, etc. In addition, this mathematical package is equipped with
many options for graphics and programs written in its own programming lan-
guage to solve other problems such as finding the roots of a non-linear equation,
solving non-linear systems, solving initial value problems with ordinary diffe-
rential equations, etc. Finally, there are tools for creating custom graphical user
interfaces and interactive tools for iterative exploration, design, and prob-
lem-solving [4].

According to Shacham and Cutlip (1998), the comparison of mathematical
software packages ensures the selection of a system, which will fully meet the
needs of each user. However, in order to achieve the comparison, these software
packages should be investigated with a comparative eye based on specific objec-
tive criteria [5]. These criteria are summarized as follows:
• Numerical performance
• User friendliness
• Technical support

Mathematica, MATLAB and Maple have a simple and user-friendly interface
and a huge support network of their users. This is reinforced by the fact that
they have help centers integrated into the software, as well as on the websites of
each company. Having discussion groups, documentation, manuals, and videos
can solve any user’s question.

MATLAB is between 9 to 11 times slower than the best C++ executable. Ma-
thematica is only about three times slower than C++ (after a considerable re-
writing of the code). Julia has the best performance (approximately 2.70 times
slower than the best C++ executable) [6].

https://doi.org/10.4236/jsea.2023.1610026

K. Zotos, I. Atanassova

DOI: 10.4236/jsea.2023.1610026 524 Journal of Software Engineering and Applications

MATLAB is more focused on numerical computing, while Wolfram Mathe-
matica is more focused on symbolic computation. Both are powerful tools, but
they are designed for different types of tasks. Maple is best for users who want a
good tool basically for Mathematics and Engineering. Maple isn’t supported as
widely as other mathematical software (e.g. MATLAB and Mathematica).
Community support is more active and richer in Mathematica and MATLAB
rather than Maple.

In the following Table 1, we can see some of the basic characteristics of
Maple, Mathematica and MATLAB. From this table we can understand why
these three CASs are on the top and how difficult is to pick out only one. Τhere
are many other features (not so important) that for reasons of brevity and space
are not listed in the following Table 1.

3. Tips for Better CAS Performance

Computational optimization means that a system, whether software or hard-
ware, runs as fast and stable as possible. Computer Algebra System optimization
is the set of best practices and techniques to keep the CAS running optimally.
This section provides some tips to help you handle CAS in a way that accelerate
performance. Most of this material is general and applies to all CASs, but there
are tips which apply only to specific CASs. So, if you want to have better perfor-
mance follow these points:
• Pre-allocate when appropriate. Pre-allocation ensures that matrix elements

will be stored in contiguous locations in memory and therefore incurs the
cost of memory allocation just once [5].

• Place independent operations outside loops, use vector operations instead
of loops. Some CASs use processor-optimized libraries for matrix and vector
computations and therefore you can accelerate performance by vectorizing
code [7]. When you can’t vectorize something and need to use a loop don’t
forget to pre-allocate. Most uses of loops can be replaced by calls to faster
(built-in) procedures that perform an iteration [8].

• Make the mathematical operations simpler. For example, the partial cor-
relation coefficient can be computed via regression models, or via the simple
correlation matrix. The second one is much faster [9].

• Use profiling to measure memory and time complexity of your program
and analyze the frequency/duration of function calls. With a profiler, you can
easily determine which functions use a significant amount of time or which
of them are called most [10].

• Avoid overloading built-ins functions. In some CASs there is a warning
that informs you about the existence of a built-in function.

• Sometimes using a functional style (that avoids difficult to optimize
side-effects) instead of an imperative style gives higher efficiency.

• Create new variables if data type changes. Avoid code that generates va-
riables, it’s better to load them from files, you should avoid using “data as
code”.

https://doi.org/10.4236/jsea.2023.1610026

K. Zotos, I. Atanassova

DOI: 10.4236/jsea.2023.1610026 525 Journal of Software Engineering and Applications

Table 1. Basic characteristics of Maple, Mathematica and MATLAB.

Parameters Maple Mathematica MATLAB

User-friendly Yes Yes Yes

Provides efficient and
accurate solutions to
complex problems

Yes Yes Yes

Code generation in other
programming languages

Java, Perl, C#, Fortran, C,
Python, Visual Basic
and Python.

C C and C++

Support of 2D image
processing.

Yes Yes Yes

Support of 3D image
processing.

Needs access to OpenGL
library to draw 3-D plots.

Yes Yes

Capability of editing
documents during a
computation

No Yes Yes

RAM requirements
Needs a good specification
in RAM.

Needs high RAM
Needs a good specification
in RAM.

Used for
Computations in Engineering,
Quantum Chemistry, Physics
and Advanced Math

Computations in
Mathematics, Engineering,
Chemistry, Physics,
Biology, Finance and
many other fields

Computations in
Mathematics, Engineering,
Chemistry, Physics, Biology,
Finance and many other
fields

Cost
High (lower prices for
students)

High (lower prices for
students)

Some packages are
available free to use.

Best for
Users who want a good tool
for Mathematics and
Engineering

Users who want help in
neural networking,
modelling the data and
visualizing simulations.

Users who want to analyze
data and model them. It’s
best to detect fraudulent
activities by analyzing data.

Chat-powered code writing No
You can compose code by
describing the task in
words.

No

Autocompletion Yes Yes Yes

Code reformatting No Yes No

Syntax help for
Missing arguments,
scoping conflicts.

Missing arguments,
bracket matching, excess
arguments, scoping
conflicts.

Missing arguments, bracket
matching, excess arguments.

• Avoid global variables. Choose local functions over nested functions.
• Use functions instead of scripts.
• Write clean code, do not create garbage (allocated storage that’s not re-

https://doi.org/10.4236/jsea.2023.1610026

K. Zotos, I. Atanassova

DOI: 10.4236/jsea.2023.1610026 526 Journal of Software Engineering and Applications

quired) because this increases the work of the garbage collector and therefore
the time to complete the work.

• Use modular programming. Separate program functions into independent
pieces.

• Use short-circuits operators (for example & and ||), it’s more efficient [11].
• Use sparse arrays when appropriate and numeric arrays when possible.
• You can speed-up applications performing parallel computing. An increasing

amount of CAS operations will automatically parallelize over local cores.
• Some CASs, like MATLAB, is designed to solve problems numerically, not

symbolically. Therefore, it’s better for a symbolic computation to select the
appropriate tool, for example Mathematica, which is faster in symbolic com-
putations. Keep in mind that compiled languages are less prone to runtime
failures than interpreted languages due to type system adherence [12].

• In matrices, it is faster to scan down columns than over rows. Column-major
order implies that elements along a column are sequential in RAM while
elements along a row are separated. Scanning down columns promotes cache
effectiveness [13].

• Use the advanced IDEs of CASs because they offer you the capability to easily
edit and navigate code in an integrated workgroup environment with a spe-
cialized editor (code folding, bracket highlighting, syntax coloring, error re-
porting, command completion etc.) [14].

• Listen code analyzer suggestions.
• Avoid unnecessary I/O. This means avoiding unnecessary reads and writes of

files or data.
• Organize and avoid losing data. Use a unique folder for every project to

keep all related files together. Use comments (especially header comments).
Avoid using dangerous commands like clear all (MATLAB) in a script. Be-
ware of CAS crash.

• Automate as much as you can. Use the appropriate tools, don’t spend time
to write functions that already exist in your CAS. You don’t need to reinvent
the wheel. Test early and test often with automation. According to a 2020-21
World Quality Report, automation testing tools can save time and minimize
human errors [15].

• If your computer doesn’t meet the basic requirements (in RAM,
processing power etc.) of desktop CAS version use online version. With
these online platforms you can make mathematical computations even when
your computer doesn’t meet the required standards of desktop version. With
a simple PC you can perform any mathematical computation directly in your
browser and collaborate with other CAS users by giving them the appropriate
privileges (read, write, and run) that you want and share files directly. You
can store files in your CAS Cloud Drive and synchronize your important
math files with the Cloud Drive. Moreover, you could access the latest ver-
sion of CAS without any downloads, installation, or maintenance and with all

https://doi.org/10.4236/jsea.2023.1610026

K. Zotos, I. Atanassova

DOI: 10.4236/jsea.2023.1610026 527 Journal of Software Engineering and Applications

the latest features available.
By applying some of the previous techniques the measurements show a spec-

tacular improvement in performance. For example, according to Mathworks
[16] preallocation and vectorization can speed up code by several orders of mag-
nitude. In Maple, the new algorithms preallocate memory and run in place,
which makes them faster (approximately twice comparing to previous edition)
when multiple extensions are present [17]. The use of Mathematica built-in
functions can make the code run sometimes4 times faster [18] and the use of ef-
ficient built-in data structures (such as packed arrays or sparse arrays that can be
used in many more situations than it may appear from their stated main pur-
pose) gives us better execution time. All these are some examples, there are
many other experiments that show us in detail how efficient is to follow the tips
that are presented above.

4. Results

Computer Algebra Systems (CAS) have become increasingly popular for stu-
dents and teachers. The reasons are numerous e.g., are more flexible, simple to
use, accessible from anywhere etc. However, as with any instructive software,
they too have a few impediments that we ought to know and optimize them.

Computer algebra system optimization is the set of best practices and tech-
niques to keep the CAS running optimally. Different devices, platforms, and web
browsers may have distinctive necessities, limitations, and features that affect
how CAS runs. It’s very difficult to optimize CAS performance in the same level
for every environment. There are many factors such as the processing power,
memory and the operating system that significantly determine the performance.
Most of the techniques referred in this paper are general and applies to all CASs,
but there are tips which apply only to specific CASs. The basic of them are
summarized in the following lines:
• It’s a very good practice to run profiler on your code and improve perfor-

mance by changing lines of code or functions that use a significant amount of
time. This advice is maybe the most important of all.

• Listen code analyzer suggestions.
• Make sure that your problem and the goals are clear in order to select the

appropriate mathematical tool.
• Automate as much as you can.
• Make the mathematical operations simpler. Place independent operations

outside loops and use vector operations instead of loops.
• Use modular programming (separate program functions into independent

pieces).
• Organize and use the advanced IDEs (Integrated Development Environ-

ments) of CASs.
• Use the appropriate built-in function and method to solve a problem. Avoid

overloading built-ins functions. Don’t spend time to write functions that al-

https://doi.org/10.4236/jsea.2023.1610026

K. Zotos, I. Atanassova

DOI: 10.4236/jsea.2023.1610026 528 Journal of Software Engineering and Applications

ready exists.
• Create new variables if data type changes. Avoid code that generate variables.

Avoid global variables. Choose local functions over nested functions. Use
functions instead of scripts.

• Use sparse arrays when appropriate and numeric arrays when possible.
• Pre-allocate when appropriate.
• Use online version of CASs if your computer doesn’t meet the basic desktop

version requirements (in RAM, processing power etc.). All you need is a
Web-Browser and Internet access.

Computer Algebra Systems have become increasingly popular for students
and teachers. What tool we can use depends on what we want to solve. MATLAB
is more focused on numerical computing, while Wolfram Mathematica is more
focused on symbolic computation. Both are powerful tools, but they are de-
signed for different types of tasks. MATLAB is more data-oriented than Mathe-
matica. Maple isn’t supported as widely as other mathematical software
(MATLAB and Mathematica) and new users are not so familiar with it.

5. Conclusion

The world of CAS development is always evolving, with new technologies and
tools. New versions of CASs have greatly improved performance and efficiency
in many ways which include: Faster computation speeds for many basic opera-
tions, technical improvements for drawing graphs, integration of new technolo-
gies resulting in faster compile times and many other things. However, there is
still room for improvement. Optimizing performance of CASs in any way is a
wise investment. On the other hand, online Computer Algebra platforms are on
the rise because all you need is a simple PC or mobile phone with Internet
access. They provide a variety of tools that help you easily find a solution for any
math problem. We hope that in the future all these innovations will continue
and will be even more. The only thing that is certain is that CASs is going to play
a very important role in every field in future.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Weigand, H.G. (2017) What is or What Might be the Benefit of Using Computer

Algebra Systems in the Learning and Teaching of Calculus? In: Faggiano, E., Ferra-
ra, F. and Montone, A., Eds., Innovation and Technology Enhancing Mathematics
Education, Mathematics Education in the Digital Era, Vol. 9, Springer, Cham,
161-193. https://doi.org/10.1007/978-3-319-61488-5_8

[2] https://www.maplesoft.com/

[3] https://www.wolfram.com/mathematica/

[4] https://www.mathworks.com/products/matlab.html

https://doi.org/10.4236/jsea.2023.1610026
https://doi.org/10.1007/978-3-319-61488-5_8
https://www.maplesoft.com/
https://www.wolfram.com/mathematica/
https://www.mathworks.com/products/matlab.html

K. Zotos, I. Atanassova

DOI: 10.4236/jsea.2023.1610026 529 Journal of Software Engineering and Applications

[5] Shacham, Μ. and Cutlip, Μ.Β. (1998) A Comparison of Six Numerical Software
Packages for Educational Use in the Chemical Engineering Curriculum. Proceed-
ings of the 1998 Annual ASEE Conference, Seattle, 28 June-1 July 1998, 1-12.

[6] http://jonathankinlay.com/2018/10/comparison-programming-languages/

[7] https://www.mathworks.com/company/newsletters/articles/accelerating-matlab-alg
orithms-and-applications.html

[8] https://www.maplesoft.com/support/help/maple/view.aspx?path=efficiency

[9] Tsagris, M. and Papadakis, M. (2018) Taking R to Its Limits: 70+ Tips.
https://doi.org/10.7287/peerj.preprints.26605v1

[10] https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-pe
rformance.html

[11] https://www.mathworks.com/help/matlab/ref/shortcircuitand.html

[12] Singh, D. (2017) An Empirical Study of Programming Languages from the Point of
View of Scientific Computing. IJISET—International Journal of Innovative Science,
Engineering & Technology, 4, 367-371.

[13] Getreuer, P. (2023) Writing Fast MATLAB Code. MATLAB Central File Exchange.
https://www.mathworks.com/matlabcentral/fileexchange/5685-writing-fast-matlab-
code

[14] https://www.wolfram.com/workbench/

[15] https://www.sogeti.com/explore/reports/world-quality-report-2020/

[16] https://www.mathworks.com/products/matlab/performance.html

[17] https://www.maplesoft.com/support/help/maple/view.aspx?path=OpenMaple%2FC
%2FMapleAlloc

[18] https://sudonull.com/post/96601-10-Tips-for-Writing-Quick-Code-in-Mathematica

https://doi.org/10.4236/jsea.2023.1610026
http://jonathankinlay.com/2018/10/comparison-programming-languages/
https://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html
https://www.mathworks.com/company/newsletters/articles/accelerating-matlab-algorithms-and-applications.html
https://www.maplesoft.com/support/help/maple/view.aspx?path=efficiency
https://doi.org/10.7287/peerj.preprints.26605v1
https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://www.mathworks.com/help/matlab/ref/shortcircuitand.html
https://www.mathworks.com/matlabcentral/fileexchange/5685-writing-fast-matlab-code
https://www.mathworks.com/matlabcentral/fileexchange/5685-writing-fast-matlab-code
https://www.wolfram.com/workbench/
https://www.sogeti.com/explore/reports/world-quality-report-2020/
https://www.mathworks.com/products/matlab/performance.html
https://www.maplesoft.com/support/help/maple/view.aspx?path=OpenMaple%2FC%2FMapleAlloc
https://www.maplesoft.com/support/help/maple/view.aspx?path=OpenMaple%2FC%2FMapleAlloc
https://sudonull.com/post/96601-10-Tips-for-Writing-Quick-Code-in-Mathematica

	Improving Performance of Computer Algebra Systems
	Abstract
	Keywords
	1. Introduction
	2. Basic Characteristics of Famous Computer Algebra Systems
	3. Tips for Better CAS Performance
	4. Results
	5. Conclusion
	Conflicts of Interest
	References

