
Journal of Software Engineering and Applications, 2023, 16, 483-495
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2023.169023 Sep. 18, 2023 483 Journal of Software Engineering and Applications

The User Interfaces Transition Diagram-Editor:
A Tool to Simplify User-System Interaction
Modeling

Maria C. Gómez-Fuentes , Jorge Cervantes-Ojeda , Alan Badillo-Salas

Department of Applied Mathematics and Systems, Universidad Autónoma Metropolitana, Mexico City, Mexico

Abstract
The User Interface Transition Diagram (UITD) is a formal modeling notation
that simplifies the specification and design of user-system interactions. It is a
valuable communication tool for technical and non-technical stakeholders
during the requirements elicitation phase, as it provides a simple yet techni-
cally complete notation that is easy to understand. In this paper, we investi-
gated the efficiency of creating UITDs using draw.io, a widely used diagram-
ming software, compared to a dedicated UITD editor. We conducted a study
to compare the time required to use each tool to complete the task of creating
a medium size UITD, as well as the subjective ease of use and satisfaction of
participants with the dedicated Editor. Our results show that the UITD editor
is more efficient and preferred by participants, highlighting the importance of
using specialized tools for creating formal models such as UITDs. The find-
ings of this study have implications for software developers, designers, and
other stakeholders involved in the specification and design of user-system in-
teractions.

Keywords
UITD, User Interfaces Flow Specification, Requirements Specification,
Modelling Notation

1. Introduction

The User Interface Transition Diagram (UITD) is a formal modeling notation
that simplifies the specification and design of user-system interactions. It can be
used to model the flow of user interfaces that the system will have, which makes
it a valuable communication tool for technical and non-technical stakeholders

How to cite this paper: Gómez-Fuentes,
M.C., Cervantes-Ojeda, J. and Badillo-Salas.
A. (2023) The User Interfaces Transition
Diagram-Editor: A Tool to Simplify User-
System Interaction Modeling. Journal of
Software Engineering and Applications, 16,
483-495.
https://doi.org/10.4236/jsea.2023.169023

Received: June 28, 2023
Accepted: September 15, 2023
Published: September 18, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2023.169023
https://www.scirp.org/
https://orcid.org/0000-0003-0033-4476
https://orcid.org/0000-0002-2267-7165
https://doi.org/10.4236/jsea.2023.169023
http://creativecommons.org/licenses/by/4.0/

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 484 Journal of Software Engineering and Applications

during the requirements elicitation phase. Additionally, it is technically accurate,
allowing it to be used reliably to start the development of the modelled system
[1].

Simplicity is key when working with modeling notations, especially for
non-experts [2]. The UITD provides a notation that is both complete and simple
enough for non-technical stakeholders to understand [3]. It is a formal modeling
notation that is easy to learn, facilitating communication between stakeholders
with and without software development technical skills. Compared to other formal
modeling tools, the UITD has several advantages including its simplicity, com-
pleteness, and ability to model user-system interactions in a clear and concise way.
Empirical evidence about the UITD’s understandability by non-technical stake-
holders is also provided in [3]. By using the UITD, designers and developers can
create models that are both technically accurate and easy to understand, helping
to ensure that all stakeholders are aligned and satisfied with the specification of
the system’s requirements.

In recent years, various tools have been developed to support the creation of
generalized diagrams. One such tool is draw.io, which is a well-known open-
source diagramming software. Draw.io is widely used for creating diagrams,
flowcharts, and other types of graphical representations. While draw.io is a ver-
satile tool, it may not be specifically designed to handle the requirements of
creating UITDs. This raises the question of how easy it is to create UITDs using
draw.io, and whether it is more efficient to use a dedicated tool such as the
UITD editor [4].

To investigate this question, we conducted a study in which participants were
asked to create UITDs using both draw.io and the UITD editor. Our study
aimed to demonstrate that the UITD editor is a useful tool for building User In-
terface Transition Diagrams. So, we compare draw.io as a benchmark with the
UITD editor in terms of the time required to complete the task, as well as the
subjective ease of use and satisfaction of the participants. We hypothesized that
the UITD editor would be more efficient and preferred by participants, as it is
specifically designed for creating UITDs and has specialized functionalities to
simplify the editing of UITD properties. The results presented here confirm the
above.

Initially, the primary purpose of the UITD editor is to expedite the process of
creating UITDs for developers. Importantly, it should be noted that a subse-
quent phase of development envisions the UITD editor expanding its utility to
encompass automatic code generation as well.

The results of our study have important implications for software developers,
designers, and other stakeholders involved in the creation of systems that rely on
user-system interactions.

The remainder of this paper is organized as follows: Section 2 contains a brief
introduction to User Interface Transition Diagrams and a general description of
the UITD editor features. In Section 3 we briefly describe the UITD Editor cha-
racteristics. In Section 4 we describe the experimental study. Section 5 has re-

https://doi.org/10.4236/jsea.2023.169023

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 485 Journal of Software Engineering and Applications

sults. Section 6 has discussion. Finally, Section 7 conclusions and future work.

2. The User Interface Transition Diagrams

The UITD expresses requirements of a system regarding its User Interface (UI)
transition triggers from a source UI to a destination UI [1]. It graphically cap-
tures all the actions that the user can perform in the UI and the corresponding
change of UI, if any. In a UITD, interfaces have a text name and a number for
their easy identification during design and subsequent stages. Transitions have
an origin and a destination user interface. Each transition has a label. Labels in
transitions are composed of one user action and, when two or more transitions
have the same user action, the label also contains information about the condi-
tions that need to be met to trigger the transition.

In the UITD, each transition is labeled with a specific format: User ac-
tion/<Condition>, where the user action refers to the action taken by the user in
the UI, and the Condition is an optional additional piece of information that
specifies any conditions that need to be met for the transition to occur. For ex-
ample, a transition labeled “Click on Submit button/Form fields are all filled”
indicates that the user must click the “Submit” button and all form fields must
be filled out for the transition to occur.

The example UITD in Figure 1 illustrates the flow of user interfaces and
available user actions for a cultural center website that provides information
about concerts, theatre plays, and movies. The UITD shows two kinds of users:
associated and visitor, and the different actions they can take on the site. The
associated users are able to edit the pages to add or modify events.

The transitions between UIs represent the actions that can be taken by the us-
er, such as clicking on a button or navigating to a different page. For example,
the transition labeled “Click on Login button/User has valid credentials”
represents the action of clicking on the “Login” button, and the condition that
must be met for the transition to occur, namely that the user must have valid
credentials.

One of the benefits of using UITDs is their modularity, allowing for the dia-
gram to be divided into sub-diagrams, making it more manageable (constructa-
bility). To illustrate the modularity of UITDs, Figure 2 shows a sub-diagram for
the login subsystem. Here, one can see that the UI #1 “Home” is presented to all
users upon login. When an associated user logs in by giving correct account and
password, the UI #4 “Home (Associated)” is presented. Both, Associated and
Visitor, can see the UI #2 “Menu”. The full options for UI #2 are explained later
with the UITD subdiagram in Figure 3.

It is possible for an associated to select the login option in UI #2 when he/she
is already in a session. In this case, UI #20 will be displayed with the message:
“your session will end, are you sure?”. With the “no” option the user continues
in his/her current session, while with the “yes” option, the UI #3 is presented in
order to login again by providing an account and password.

https://doi.org/10.4236/jsea.2023.169023

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 486 Journal of Software Engineering and Applications

Figure 1. UITD of the site of a cultural center.

Figure 2. Login subsystem.

https://doi.org/10.4236/jsea.2023.169023

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 487 Journal of Software Engineering and Applications

Figure 3. Site navigation with the Menu.

The User Interface Transition Diagram (UITD) editor includes a feature
for managing complex diagrams called bolded and non-bolded User Interfac-
es. This feature allows for the diagram to be divided into several fragments,
making it more manageable. Whenever a UI has its border in bold, it means
that it is complete in the sense that all transitions connected to/from this UI
are documented and visible in the current fragment. Conversely, when a UI
does not have its borders in bold, it indicates that not all connected transi-
tions are included in the fragment and consulting another fragment will be
necessary to see them all. A UI can appear in multiple sub-diagrams, but it is
recommended that all UIs appear in bold in at least one of the fragments. The
full set of available transitions from a UI is the union of all transitions present
in all fragments containing that UI. This feature simplifies the management of
complex diagrams, allowing the user to focus on specific areas of the diagram
as needed.

In the UITD of Figure 3 (Main site), the UI #2 “Menu” options are shown
except “login” and “logout”, therefore its border is not in bold. The other UI #2
options are: “see concerts”, “see theatre plays”, “see movies”, “contact informa-
tion” and “about us”.

https://doi.org/10.4236/jsea.2023.169023

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 488 Journal of Software Engineering and Applications

Containing and Contained User Interfaces

The idea of containing and contained User Interfaces (UIs) is to place one UI in-
side another in the diagram, expressing that all transitions with origin in the
contained UI are also available from the containing UI. Thus, the transition
triggers that are available from the contained UI are a subset of those available
from the containing UI. This feature allows the use of a UI inside several other
UIs and to extend the functionality of a UI by placing it inside another one. Ex-
tending the functionality is useful when one wants to allow the extended func-
tionality only in certain cases, such as a privileged user type.

Figure 3 illustrates an example of the containing and contained UI feature.
The UI #6 “Concerts (Associated)” is a containing interface that includes the UI
#5 “Concerts”. The UI #5, in turn, contains the UI #2 “Menu”. All the options in
the UI #2 “Menu” are available from both UI #5 and UI #6.

However, visitors can only access UI #5, whereas associated users have access
to UI #6, where they can add a new concert or select a concert to edit it. When
doing so, the UI #12 “Edit concert” is displayed. The UI #8 “Theatre plays (As-
sociated)” containing the UI #7 “Theatre plays”, and the UI #10 “Movies (Asso-
ciated)” containing the UI #9 “Movies” work the same way. When an associated
user selects “logout” in UI #6, UI #8 or UI #10, the corresponding UI for visitors
is displayed, that is UI #5, UI #7 or UI #9 respectively. The UI #18 “About us”
and the UI #19 “Contact” are displayed the same way for associated users and
for visitors.

3. The UITD Editor

The UITD editor is a User Interface Transition Diagram drawing tool designed
to help software developers create models of user-system interactions with ease
[4]. The tool is freely accessible through the following links:

http://148.206.168.145/EditorUITDEnglish/examples/indexF.html;
http://148.206.168.145/UITD/home.
The latter is a resource page containing additional information about UITDs.

The editor provides a simple and intuitive interface and is continually being im-
proved upon to enhance its functionality. It is a valuable resource for anyone
involved in software development who needs to create user interface transition
diagrams.

The UITD editor is built in JavaScript. It is based on mxGraph version 4.0.4
[5], which is an open source library created to draw diagrams.

The UITD editor is a versatile software tool that offers a variety of features to
aid software developers in easily drawing a model of the user-system interactions
with a UITD [4]. Some of its key features include the ability to draw a User In-
terface (UI) and label it with its name, with automatic generation of numeric
identification. It also allows users to draw transitions and label them with the
user action that triggers them and the necessary condition for that trigger. Addi-
tionally, the tool enables users to mark the border of a UI in bold to indicate that

https://doi.org/10.4236/jsea.2023.169023
http://148.206.168.145/EditorUITDEnglish/examples/indexF.html
http://148.206.168.145/UITD/home

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 489 Journal of Software Engineering and Applications

all possible transitions to and from it are visible in the current fragment of the
diagram. Other features of the UITD editor include the ability to place a UI in-
side an existing one (containing and contained UI), print diagrams (as a PDF or
on a printer), access a user guide, and utilize a range of helpful examples.

4. Experimental Study

In this section, we describe an experimental study that aims to evaluate the effi-
ciency of drawing UITDs using the UITD editor compared to an existing general
graphic editing tool (draw.io). We followed the recommendations in [6] for
preparing and reporting the study. The research question that will be answered
based on our results is defined first. We then describe the selection of subjects,
formulate our hypothesis, and explain the instrument design. Next, we provide
an overview of the experimental procedure, followed by a detailed description of
the analysis procedure.

4.1. Research Question

Our main research question is:
RQ: Is it faster to build a UITD with the UITD editor than with draw.io?

4.2. Selection of Subjects

To ensure the suitability of our study, we recruited volunteers from the comput-
er engineering undergraduate program at the Autonomous Metropolitan Uni-
versity in Mexico City, all of whom had prior experience working with UITDs
and were willing to draw UITDs using two different tools. We believe this selec-
tion of volunteers was appropriate for our study, as they were familiar with the
concepts and techniques involved in creating UITDs.

The sample group had 62 subjects.

4.3. Experimental Procedure

Participants were instructed to create two UITDs, the login subsystem in Figure
2 and the main site in Figure 3, using both the UITD editor and draw.io. These
UITDs are fragments of the full UITD in Figure 1. Participants were asked to
record the time it took them to create the diagrams using each tool. Draw.io was
chosen for comparison as it is a popular and powerful charting tool with a free
version available. Following the diagram creation task, participants were asked
to complete the following questionnaire.

4.4. Instrument Design

The questionnaire that we use as an instrument is the following:
1) Which tool did you use first during the study?
a) UITD editor.
b) Draw.io.
2) Please report the time it took you to make the requested diagrams (without

https://doi.org/10.4236/jsea.2023.169023

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 490 Journal of Software Engineering and Applications

reporting the seconds):
a) With the UITD editor
Diagram 1:
Diagram 2:
b) With Draw.io:
Diagram 1:
Diagram 2:
3) How much experience did you have with draw.io?
a) I did not know it previously
b) Very little experience
c) Little experience
d) Some experience
e) A lot of experience
4) Select the UITD Editor features that you consider to be an advantage com-

pared to draw.io:
a) No advantage
b) Automatic drawing of User Interfaces (UI) with number and name
c) The automatic arrow labeling with condition/action
d) The drawing of a UI within another UI
e) The functionality to bold all UI borders
5) Do you have any suggestions for improvements to the UITD Editor?

4.5. Hypotheses Formulation

To determine whether there was a significant difference between the mean time
spent drawing UITDs with the UITD editor versus draw.io, we utilized a depen-
dent sample t-test (paired sample t-test) [7]. This statistical test was chosen be-
cause it compares the mean difference between two sets of paired observations.
Each subject in our study was measured twice, resulting in pairs of observations.
Specifically, each subject i was associated with the time spent using draw.io
(

iothert) and the time spent using the UITD editor (
iUITDeditort) to draw UITDs.

We define the differences between two paired samples as:

 1
i ii other UITDeditord t t i n= − ≤ ≤ (1)

where
n is the sample size
The null hypothesis for the paired sample t-test assumes that there is no sig-

nificant difference between the means of the two paired samples. In other words,
the true mean difference µd between the paired samples is equal to zero. Thus,
our null hypothesis can be stated as:

H0: µd = 0
The alternative hypothesis is that there is a significant difference between the

means of the two paired samples. In this case, we are interested in determining
whether the mean time spent using the UITD editor is lower than the mean time
spent using the alternative tool. Therefore, the mean difference must be positive

https://doi.org/10.4236/jsea.2023.169023

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 491 Journal of Software Engineering and Applications

and our alternative hypothesis is:
H1: µd > 0 (upper-tailed)
We want to determine with which of the hypothesis (null or alternative) the

experimental data are more consistent.

4.6. Analysis Procedure

The test statistic for a paired sample t-test is given by Ec. (2)

()d

t
n

d
s

= (2)

where
d is the average of the differences di given by Ec. (1)

ds is the sample standard deviation of the differences, given by Ec. (3)

() () ()2 2 2

1 2

1
n

d

d d d d d d
s

n

− + − + ⋅⋅⋅ + −
=

−
 (3)

Now we state how the assumptions to perform hypothesis testing with paired
sample t-test are met:
• The dependent variable must be continuous. In our study, the dependent va-

riable is the time spent, which is a continuous variable.
• The subjects must be independent. The subjects made their diagrams indivi-

dually, and their measurements did not affect each other.
• Each pair of measurements must be obtained from the same subject. We used

the differences in the time spent by each subject to draw the diagrams.
• The dependent variable should be approximately normally distributed. We

performed an Anderson-Darling normality test on the differences in the time
spent, and the p-value was greater than 0.05, indicating that the data is not
statistically different from a normal distribution. Therefore, the assumption
of normality is met.

4.7. Validity Threats

Skill Bias: One potential threat to validity is the presence of bias resulting from
varying levels of diagram-making skills among participants in different groups.
To mitigate this, we employed a within-subjects design, requiring all participants
to create diagrams using both the UITD editor and draw.io. By assessing each
individual’s performance on both tools, we minimized the impact of skill dispar-
ities and ensured a fair comparison. The use of a dependent sample t-test further
enabled us to gauge the mean differences in performance on an individual basis.

Experience Bias: Another threat involves bias stemming from the experience
gained by participants when creating the first diagram, potentially affecting their
performance in subsequent attempts. To counter this, we implemented a coun-
terbalancing approach. Half of the participants were instructed to begin with the
UITD editor, while the other half began with draw.io. This approach equalized
the impact of experience across both tools and allowed us to examine any varia-

https://doi.org/10.4236/jsea.2023.169023

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 492 Journal of Software Engineering and Applications

tions introduced by the order of tool usage.
By addressing these potential threats, we aimed to enhance the internal valid-

ity of our study, ensuring that the observed differences in performance could be
attributed to the inherent qualities of the tools rather than external factors.

4.8. Power of the Test (A Priori)

A power analysis was conducted using the G*Power 3 software [8]. We used the
matched pairs t-test for the inequality of two dependent means, one tail.

For the a priori power analysis, the G*Power software indicated that a sample
size of 45 is needed to achieve a statistical power of 0.95, while a sample size of
90 is needed to achieve a power of 0.99.

5. Results
5.1. The Two Parts of the Study

In order to achieve a sufficient number of subjects, that is, the number indicated
in the a priori power of the test, our study was divided into two parts.

First part of the study. In the first group, 34 subjects participated, and we ob-
tained the following results:
• For UITD 1 (Figure 2 Login), the t-statistic value was 3.009206, and the

p-value was 0.002494.
• For UITD 2 (Figure 3 Main site), the t-statistic value was 1.911171, and the

p-value was 0.032355.
Since both p-values for the paired sample t-test were less than the standard

significance level of 0.05, we can reject the null hypothesis H0.
During this part of the study, a significant finding was that 50% of the partic-

ipants suggested the incorporation of shortcuts such as ctr-c/ctrl-v for copy/
paste and ctrl-z/ctrl-y for undo/redo. Based on this feedback, we decided to in-
clude these requested features in the tool before continuing with the subsequent
part of the study.

Second part of the study. The results of the second group, which consisted of
28 individuals, are presented below:
• For UITD 1 (Figure 2 Login), the t-statistic value was 2.020355, and the

p-value was 0.026687.
• For UITD 2 (Figure 3 Main site), the t-statistic value was 2.060819, and the

p-value was 0.024538.
Since the p-values for the paired sample t-test were less than the standard sig-

nificance level of 0.05, we reject the null hypothesis H0.
According the a priori power analysis, 45 samples are needed to get a statistic-

al power of 0.95 (see section 4.9). So, adding the samples of the first part of the
study with those of the second, we obtained 62 samples, and results are the fol-
lowing:
• For UITD 1 (Figure 2 Login), the t-statistic value was 3.614776 and the p-

value was 0.000305.

https://doi.org/10.4236/jsea.2023.169023

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 493 Journal of Software Engineering and Applications

• For UITD 2 (Figure 3 Main site), the t-statistic value was 2.758436 and the
p-value was.003828.

5.2. Power of the Test (Post Hoc)

We used the matched pairs t-test for the inequality of two dependent means, one
tail in the G*Power software. For the post hoc power analysis, we calculated the
required parameters following the guidelines in [8].

For a sample size of 62, we obtained that, for UITD 1 (Figure 2 Login), the
achieved statistical power was 0.9731597. And, for the UITD 2 (Figure 3 Main
site), the achieved statistical power was 0.8605469.

5.3. Opinions about the Advantages of the UITD Editor

None of the participants stated that they had not found advantages with the
UITD Editor, 81% stated that the automatic drawing of User Interfaces (UI)
with number and name is an advantage of the UITD Editor, 58% found as an
advantage the automatic arrow labeling with condition/action, 68% stated the
drawing of a UI within another UI as an advantage, and 44% marked the func-
tionality to bold all UI borders as an advantage. This is reported in Table 1.

6. Discussion

Now we provide a thorough analysis of the study’s findings, addressing their
significance and implications for user interface design and modeling. We also
highlight the strengths and limitations of the study and suggest potential direc-
tions for future research.

To demonstrate the effectiveness of the UITD editor, we aimed to reject the
null hypothesis (H0) and accept the alternative hypothesis (H1) with a signific-
ance level of 0.05. H1 suggests that the average time spent creating a User Inter-
face Transition Diagram using the UITD editor is less than the average time
spent using draw.io. The results of the paired sample t-test confirmed this hy-
pothesis, as the p-values were found to be below the standard significance level
of 0.05, leading us to reject H0.

Furthermore, our a priori power analysis indicated that a sample size of 45
was sufficient to achieve a statistical power of 0.95. The post hoc power analysis
provided insights into the performance of the UITD editor compared to draw.io.
With 62 samples, we can be 97% confident that the UITD editor is faster for

Table 1. UITD Editor advantages.

UIT editor traits

No
advantage

Automatic drawing
of User Interfaces
(UI) with number

and name

Automatic arrow
labeling with

condition/action

drawing of a UI
within another

UI

functionality to
bold all UI

borders

0% 81% 58% 60% 44%

https://doi.org/10.4236/jsea.2023.169023

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 494 Journal of Software Engineering and Applications

creating the smaller diagram (UITD 1) and 86% confident that it is faster for
creating the larger diagram (UITD 2) than using draw.io.

The study derives its strength from meticulous methodological design that
adheres to established protocols and data analysis techniques. Employing a
framework that involves individual participants being compared to themselves
enhances result reliability by mitigating variations in skills and prior expe-
riences. Furthermore, incorporating participant feedback and iteratively refining
the tool highlights its adaptability to cater to users’ requirements, thus enhanc-
ing its practical utility.

7. Conclusions

Our study demonstrated that the UITD editor outperforms draw.io in terms of
efficiency and accuracy when drawing User Interface Transition Diagrams. The
incorporation of recommended shortcuts, such as ctr-c/ctrl-v for copy/paste and
ctrl-z/ctrl-y for undo/redo, further enhanced the usability of the editor. While
the comparison was limited to draw.io, we believe that the specialized features of
the UITD editor would provide it with an advantage over other general-purpose
drawing tools.

It is worth noting that the UITD editor is part of a larger toolset, Architector,
which we are developing to automate the process of generating web application
skeletons with interface navigation based on UITDs. In future work, we plan to
explore the benefits of Architector and publish it as a tool for developers.

In summary, our findings suggest that the UITD editor is a valuable tool for
developers seeking to model the flow of user interfaces efficiently and accurately.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Gómez, M.C. and Cervantes, J. (2013) User Interface Transition Diagrams for Cus-

tomer-Developer Communication Improvement in Software Development Projects.
Journal of Systems and Software, 86, 2394-2410.
https://doi.org/10.1016/j.jss.2013.04.022

[2] Van der Linden, D., Hadar, I. and Zamansky, A. (2019) What Practitioners Really
Want: Requirements for Visual Notations in Conceptual Modeling. Software & Sys-
tems Modeling, 18, 1813-1831. https://doi.org/10.1007/s10270-018-0667-4

[3] Cervantes-Ojeda, J., Gómez-Fuentes, M. and Chacón-Acosta, G. (2022) Can Non-
Developers Learn a Simplified Modeling Notation Quickly? Journal of Software:
Evolution and Process, 34, e2481. https://doi.org/10.1002/smr.2481

[4] Cervantes-Ojeda J, Badillo-Salas, A. and Gómez-Fuentes, M.C. (2021) Specialized
Tool for Editing User Interface Transitions Diagrams (UITD). 2021 9th Interna-
tional Conference in Software Engineering Research and Innovation (CONISOFT),
San Diego, USA, 25-29 October 2021, 10-16.
https://doi.org/10.1109/CONISOFT52520.2021.00014

https://doi.org/10.4236/jsea.2023.169023
https://doi.org/10.1016/j.jss.2013.04.022
https://doi.org/10.1007/s10270-018-0667-4
https://doi.org/10.1002/smr.2481
https://doi.org/10.1109/CONISOFT52520.2021.00014

M. C. Gómez-Fuentes et al.

DOI: 10.4236/jsea.2023.169023 495 Journal of Software Engineering and Applications

[5] MxGraph. https://jgraph.github.io/mxgraph/

[6] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. and Wesslén, A.
(2012) Experimentation in Software Engineering. Springer Science & Business Me-
dia, Berlin. https://doi.org/10.1007/978-3-642-29044-2

[7] Ross, A. and Willson, V. L. (2017) Paired Samples T-Test. In Ross, A., ed., Basic and
Advanced statistical Tests, Brill, Leiden, 17-19.
https://brill.com/display/book/9789463510868/BP000005.xml

[8] Faul, F., Erdfelder, E., Lang, A.G., Buchner, A. (2007) G* Power 3: A Flexible Statis-
tical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences.
Behavior Research Methods, 39, 175-191. https://doi.org/10.3758/BF03193146

https://doi.org/10.4236/jsea.2023.169023
https://jgraph.github.io/mxgraph/
https://doi.org/10.1007/978-3-642-29044-2
https://brill.com/display/book/9789463510868/BP000005.xml
https://doi.org/10.3758/BF03193146

	The User Interfaces Transition Diagram-Editor: A Tool to Simplify User-System Interaction Modeling
	Abstract
	Keywords
	1. Introduction
	2. The User Interface Transition Diagrams
	Containing and Contained User Interfaces

	3. The UITD Editor
	4. Experimental Study
	4.1. Research Question
	4.2. Selection of Subjects
	4.3. Experimental Procedure
	4.4. Instrument Design
	4.5. Hypotheses Formulation
	4.6. Analysis Procedure
	4.7. Validity Threats
	4.8. Power of the Test (A Priori)

	5. Results
	5.1. The Two Parts of the Study
	5.2. Power of the Test (Post Hoc)
	5.3. Opinions about the Advantages of the UITD Editor

	6. Discussion
	7. Conclusions
	Conflicts of Interest
	References

