
Journal of Software Engineering and Applications, 2023, 16, 361-396
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2023.168019 Aug. 29, 2023 361 Journal of Software Engineering and Applications

Strategy and Methodology of Integration
Testing for GUI Software

Mengqing TanLi1, Jiyi Xiao1, Ying Zhang2

1School of Software, University of South China, Hengyang, China
2School of Mechanical Engineering, University of South China, Hengyang, China

Abstract
In this paper, by means of effective testing practices, main strategies of inte-
gration testing for GUI software, including differentiating strategy for distin-
guished system, strategy of personnel organization, incremental testing strat-
egy based on baseline version, testing strategy of circulating loop through the
whole life, and the strategy of test suite construction, were briefly investi-
gated. Moreover, for the code analysis, the FTA (Fault Tree analysis) is pro-
posed to deal with the software change in regression testing. For test suite
constructing, the constructing methods for baseline version and the incre-
mental change are deeply discussed, in which main points focus on the test-
ing strategy based on “Sheet/Form”, the “Grey-box approach” for integration
testing process, and the application of the improved STD (State Transform
Diagram) in state testing. At the same time, the suite construction of integra-
tion testing for two types, including small scale program and large scale soft-
ware, is analyzed and discussed in detail. For testing execution, the specific
method based on “Cross-testing” is investigated. Concurrently, by a lot of
examples, all results of testing activity indicate that these strategies and me-
thods are useful and fitted to integration testing for GUI software.

Keywords
Integration Testing, Strategy and Methodology, Grey-Box Approach,
GUI Software

1. Introduction and Background

On the high nature and view of study philosophy, we affirm advanced aspect of
structural-functionalism, an expressing form of system theory, but do not negate
usefulness and value of empiricism with a bit of locality feature sometimes

How to cite this paper: TanLi, M.Q., Xiao,
J.Y., Zhang, Y. (2023) Strategy and Metho-
dology of Integration Testing for GUI
Software. Journal of Software Engineering
and Applications, 16, 361-396.
https://doi.org/10.4236/jsea.2023.168019

Received: July 1, 2023
Accepted: August 26, 2023
Published: August 29, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2023.168019
https://www.scirp.org/
https://doi.org/10.4236/jsea.2023.168019
http://creativecommons.org/licenses/by/4.0/

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 362 Journal of Software Engineering and Applications

[1]-[5]. In software testing, we must pay great attention to the analysis of soft-
ware structure and functionality, e.g. the application of FTA (Fault Tree Analy-
sis) for test suite construction in regression testing [6]. At the same time, sum-
marizing and finding the law and principle of software testing is a very impor-
tant work in software testing practice, e.g. the strategy of “Grey-box approach”
in integration testing [7].

In detail, for software system, on the one hand, it consists of various units in-
cluding initializing unit, setting unit, executing unit, output unit and help unit
etc., on the other hand, the relationship among units generally includes two
types, i.e. the function addressing and the data connecting. As a consequence,
the integration testing of software system must synchronically test and verify
both function addressing and data connecting [5].

Additionally, on our opinion, study on the strategy of software testing should
be considered in terms of two aspects including organization and technology. In
the organization aspect, the personal organizing and process arrangement
should be concerned [2]. For the technology aspect, we should notice testing
strategy, testing method and approach, testing tool, etc. Moreover, in software
testing activity, the graph tool is emphasized here because graph tool will im-
prove the software testing work on quality and efficiency, and usual graph tools
are shown in Figure 1.

Without deniable evidence, Chinese software development has been put in a
great pace, not only on basic computer structure building but also on update
communication technology especially mobile communication technology. How-
ever, in software engineering, the core basis of software programming and soft-
ware testing still falls behind, such as programming language and tools and au-
tomatic software testing tools. For software testing, we still lack the advanced
technology and methodology of software testing all the time, such as for GUI
software testing [4]. In this study, we will deeply investigate the strategy and
methodology of GUI software testing mainly focusing on integration testing.

2. Related Literature and Work

Ron Patton in his writings “software testing” [3] proposed two ways of integration

Figure 1. Graph tools of software testing in our research.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 363 Journal of Software Engineering and Applications

testing including bottom-up way and top-down way. Moreover, in his opinion,
the driven module can be used to assure testing more completely, and the appli-
cation of stub will improve the testing velocity. Fu Bing [4] thought that the
“Modified Sandwich Integration Testing” has better performance e. g. high par-
allelism and being easy to execute special path testing. Li Fan [5] gave the sug-
gestion of synthetically applying various method of integration testing in terms
of actual situation of software testing activity.

For integration testing of GUI software, Fu Bing [4] has put forwards the dif-
ficulty of GUI software testing, and considered that the study of GUI testing, in-
cluding that of GUI integration testing, still located in the initial phase now and
existed testing technology cannot assure the quality of factual GUI software.

So, against the difficulty of the problem of GUI software testing, by summa-
rizing from home and abroad [8] [9] especially from our software testing prac-
tice, we proposed that the “Triple-step method” based on “Sheet/Form” to deal
with the problem of unit testing of GUI software [2] which details will be dis-
cussed in this paper, and the “Grey-box approach” to dispose the problem of in-
tegration testing of GUI software [7] which specific examples will be demon-
strated in the following.

Recent studies [2] [10] has deeply investigated the unit testing for new testing
organization—“Pair-wise” mode, and a previous work [11] has proposed the
method of test suite construction for smoke test which can be taken as a special
integration testing. Consequently, this study will discuss the strategy and me-
thodology of integration testing for GUI software including code analyzing, test
design of baseline version and increment change, testing execution for “cross-
testing”, etc. As the key aspect, the test suite construction would be depicted
with more concerning.

3. Strategy of Integration Testing for GUI Software

As we all known, types and applied areas are distinguished for factual software
system. In fact, integration testing may be relative to not only software self but
also both software and hardware [12]; at the same time, it may refer to not only
functionality but also data and information [11]; even more it may not only con-
sider running in local machine but also consider linking to computer network
[12]. All these features require adoption of differentiating strategy.

3.1. Differentiating Strategy for Distinguished System in
Integration Testing

As mentioned above, the factual software and system are various. Some software
have less functions and less data interfaces, and integration testing may be not
complex such as small-scale embedding software and instrument inspection
software. In contrast, others have more functions and more data communication
interfaces, and integration testing will be complicated and the workload of inte-
gration testing will be increased. Without loss of unification, factual software

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 364 Journal of Software Engineering and Applications

system can be systematically divided into three types including safety-critical
system, general system, and lower system. Consequently, integration has three
types, i.e. key integration, important integration, and unimportant integration.
Thus, execution of integration testing should be respectively done according to
these actual types. Furthermore, the arrangement of integration testing must be
executed in terms of actual state of software integration, i.e. key and important
integration should be arranged with more rigid testing while fewer testing items
should be briefly tackled to integration for lower system and unimportant parts.
The specific strategy of integration testing arrangement is shown in Table 1.

3.2. Strategy of Personnel Organization in Integration Testing

The strategy of personnel organization takes an important role in software test-
ing activity. The new organization embedding “Pair-wise” mode [2] is an up-
dating testing organization that it can keep effective cooperation between pro-
grammer and tester. The composition of “Pair-wise” organization mode is
shown in Figure 2. In this mode, the testing activity mainly include two parts,
i.e. cross-testing and independent testing. For cross-testing, the code or program
of programmer must be tested by crossing tester under effective monitoring of
manger. For independent-testing, key testing including key sampling testing
must be done by independent-tester.

3.3. Strategies in Testing Procedure in Integration Testing

The strategy in testing procedure should be “Taking the software testing activity
of baseline version as basic center and keeping testing activity effective and rapid
responding all through the whole software producing process.”

Table 1. The choice of testing items in integration testing for deferent software/system.

Testing items

Safety-critical
system

General
system

Lower
system

KIa IIb UIc KI II UI II UI

Code
review

Desk check, etc. ○d ○ ○ ○ ○ ○ ○ Δe

Data
testing

Process boundary ○ ○ ○ ○ ○ Δ ○ f

Format & interface ○ ○ ○ ○ ○ Δ Δ Δ

Safety ○ ○ ○ ○ ○ ○ ○ Δ

Functin
and
state

testing

0-switch
requirement

○ ○ ○ ○ ○ Δ Δ

N-switch
requirement

○ Δ Δ Δ

a. KI-Key integration, b. II-Important integration, and c. UI-Unimportant integration, d.
“○” presents an item that it must be done, e. “△” implies an alternative item, and f. the
blanket is an item not required to do.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 365 Journal of Software Engineering and Applications

Figure 2. Test organization of integration testing embedding “Pair-wise” mode.

3.3.1. Incremental Testing Strategy Based on Baseline Version
For GUI software, especially for today software with online version update, the
general strategy is the incremental testing strategy based on baseline version.
With the view of integration testing, this incremental testing strategy can be de-
scribed as shown in Figure 3, in which the smoke test is taken as a brief function
testing to determine whether next testing phase is continuously executed.

3.3.2. Testing Strategy of Circulating Loop through the Whole Life
For today’s GUI software, because the rapid speed of updating and the mutual
close relation among all phase of software producing, testing strategy of circu-
lating loop through the whole life should be adopted rather than dividing testing
phase from programming phase, as shown in Figure 4. In this strategy, the re-
sults of testing phase such as unit testing, integration testing, system testing, and
validation testing must back forward to coding and programming phase. In fact,
the results of testing phase should back forward to design phase including pri-
mary design and detail design, even more to requirement analysis phase.

3.4. Strategy of Test Suite Construction in Integration Testing

In software testing activity, the workload of test design has the ratio of 60% in
the whole testing work, and there is an upward trend, especially for the con-
struction of test suite in update software with rapid upgrading [13]. In general,
test suite construction should concern many aspects including the building of
basic standard, application of advanced strategy and methodology, the set-up of
testing environment, and use of history experience [14], etc. and the procedure
and strategies of test suite construction can be demonstrated as Figure 5. Addi-
tionally, if the test design is very difficult, this task can be assigned to another
skilled testing engineer or the independent tester.

4. Methodology

For integration testing of GUI software, the factual software system must be
firstly delicate to do analysis including using effective method and advanced

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 366 Journal of Software Engineering and Applications

Figure 3. Procedure of incremental testing based on baseline version.

Figure 4. Testing strategy of circulating loop through the whole life.

Figure 5. Procedure and strategies of test suite construction in integration testing.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 367 Journal of Software Engineering and Applications

tool. At the same time, in order to assure finding out more BUGs and improve
the testing efficiency, the test suite constructing must be paid more attention
according to actual requirement, in which the good planning and useful tool are
necessary [15].

4.1. Case Software

PQMS2, Product Quality Monitoring System version 2.0, is a control tool of
product quality for various manufacturing factory and GUI is shown in Figure 6.
Using PQMS2, seven kinds of control chart can be drawn, and product quality of
divisions of a factory can be monitored, including material and standard part
from purchasing, parts and components in producing, and finished product af-
ter assembly [16].

In a word, PQMS2 is a factual craft of GUI software. Additionally, with a
larger scale, PQMS2 is the application software for Microsoft Windows with
more general GUI controls and components, and its integration testing has re-
presentativeness and typicality for GUI software.

4.2. Research Design

For software testing, integration testing has some common features, but it also
embraces its own distinguished aspects. Generally, the process of integration
testing for GUI software has five steps as follows.

Step 1 Analysis of code and program.
Because integration testing starts its activity after all related unit testing are fi-

nished, the integration order and method must be considered with systematic
view [17]. In general, the modified Sandwich strategy and testing method based

Figure 6. GUI of PQMS2.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 368 Journal of Software Engineering and Applications

on “Sheet/Form” for GUI software should adopted for baseline version. For the
incremental testing, the FTA method should be applied for dependency analysis
of software change.

Generally, the procedure of integration testing should be also executed in
terms of the “Triple-step method”, which the data testing is prior to be executed
without ignoring process boundary testing, and next is function testing and
state testing in sequence. However, it is noticed that some steps can be omitted
for factual software. In terms of requirement of Section 3.1, PQMS2 taken as a
general GUI system, the specific strategy of testing item assignment is shown in
Table 2.

In coding and programming of GUI software, there are generally two situa-
tions including the type based on “Sheet/Form” and the type driven directly
by member function without “Sheet/Form”. The former is the main situation,
and its functions are implemented by all controls and components in the
“Sheet/Form”. For another type, its functions are directly driven by controls and
components or hotkey in the window interface.

By a lot of testing practice, we conclude that the unit testing based on
“Sheet/Form” is an effective method for GUI software testing, i.e. all controls
and components in the “Sheet/Form” should taken as a unified entity including
these handling by member functions if the function is implemented within the
“Sheet/Form”. For functions of software are directly driven by controls and
components or hotkey in the window interface, the testing should be similarly
done in terms of the member function driven by event of the control in the
“Sheet/Form”, i.e. the testing of this situation should be disposed in the level of
member function.

As a typical example of GUI software, testing methods in PQMS2 are as-
signed according to above results, and details in terms of Figure 4 are shown
in Table 3.

Table 2. The executed strategy of general testing items in integration testing in PQMS2.

Testing items
Key

integration
Important
integration

Unimportant
integration

Code
review

Desk check, etc. Obliged Obliged Obliged

Data
testing

Process
boundary

Obliged Obliged Needed

Format &
interface

Obliged Obliged Needed

Safety Obliged Obliged Obliged

Functin
and state
testing

0-switch
requirement

Obliged Obliged Needed

N-switch
requirement

Actual
situation

Actual situation Actual situation

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 369 Journal of Software Engineering and Applications

Table 3. The assignment of testing method for preparation of integration testing in
PQMS2.

Testing units
“Sheet/Form”

based

Member
function

based

Other
method

Unit testing of windows controls and
components

 ●

Unit testing of setting units ●

Unit testing of initialization units ●

Unit
testing
of basic
sheets

Unit testing of factory sheet ●

Unit testing of division and
department sheet ●

Unit testing of product or
class sheet ●

Unit testing of part/component
sheet ●

Unit testing of inspection
process sheet ●

Unit testing of inspection
data sheet ●

Unit testing of other units ● ● ●

For update software product, the integration testing of baseline version is the

most important node for software testing through the whole life cycle. Based on
the basic procedure in Figure 5, test suite construction of integration testing of
PQMS2 for baseline version can be scheduled in terms of the modified Sandwich
method, and the specific scheme is shown in Figure 7.

Step 2 Construction of test suite.
For the integration testing of a factual software system, we must consider the

factual situation of this system as mentioned in Section 3.1, which may mainly
include system scale, software composition, running environment, and applica-
tion scenario, etc. [18] [19].

According to the result of software testing practice, we know that test design is
the central task with about workload of 60% in software testing activity, which
the majority is the test suite construction. In integration testing of GUI software,
we have proposed three measures to dispose test suite construction as follows.
• Testing method based on “Sheet/Form” for GUI software testing.
• “Grey-box approach” for integration testing.
• Improved STD method for state testing.

For GUI software, a lot of testing work is the work of high-level testing for the
general software system besides traditional testing of logic testing and program
verification. In order to be easily understood and to demonstrate it, the work of

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 370 Journal of Software Engineering and Applications

Figure 7. Scheme of integration testing with the improved Sandwich method.

high-level testing can be called as “GUI-oriented software testing”, but it is no-
ticed that this GUI testing should include the testing of member function driven
by the GUI event. In a factual software system, there are various GUI controls
and components, and a kind of control or component has also many units or in-
stances, and this situation has lead to the difficulty of software testing including
the organizing of testing activity. In order to solve this difficulty, the testing me-
thod based on “Sheet/Form” is put forward, and its main point is that the
“Sheet/Form” is taken as a unified entity to execute unit testing coordinating
with all controls and components in the “Sheet/Form”. As a consequence,
grey-box testing approach and improved STD method will be discussed in detail
in the following.

1) “Grey-box approach”.
a) Principle
In GUI software, we have known that various GUI controls and components

concurrently drive the execution of a software function and many controls or
components activate a software function by one event. For this situation, in the
integration testing, if all integrated routes of all GUI controls and components
are tested, the amount of testing work will be vast. That is to say, if all integrated
routes from Ci to Hi should be tested, it will be a combination of “Ci (i = 1, 2, ···,
m) × Hj (j = 1,2, ···, n)”. For example, in a process K of one software function, if
the number of event activating is UK and the number of handling route is VK, the
test number of integrated routes for this software function K will be UK × VK,
and for K = 1, 2, ···, FP, the test number of integrated route in integration testing
will reach 1

pF
K Kk U V

=
×∑ (Figure 8).

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 371 Journal of Software Engineering and Applications

Figure 8. The principle of “Grey-box approach” in integration testing for GUI software.

Hence, in order to decrease the test number of integrated routes, we proposed

a measure to deal with this problem, and it is the testing strategy of “Grey-box
approach” [7]. In the “Grey-box approach”, the pole for output of testing infor-
mation is inserted into the map function, and for a process of software function
with m activating event and n handling routes, we firstly test the correctness of
the front part with white-box method, i.e. starting at “Windows control 1, …,
Windows control m” and ceasing at mark “Point” of the pole, and then the fol-
low-up part, i.e. from the pole to “Handling 1, …, Handling n”, is tested with
black-box method in sequence. And details of this approach may refer to [7] and
[17].

Generally, the selection of pole position has several statuses for inserting into
the mapping function, details are specified as follows.
• The path aggregation point across white-box analysis,
• The point that integrated route must go through,
• The entrance point of map function, and,
• The entrance point of initial member function.

b) Applying procedure
As mentioned above, the “Grey-box approach” is synthetic testing strategy

that white-box method used in the fore-end to find out the error and BUG as
early as possible with the message-handling mechanism, and the black-box me-
thod is applied to solve the testing process of more difficult follow-up part. As
such, this approach is suitable to dispose the combination explosion problem for
the majority of GUI software, including all kinds of application software devel-
oped with visual programming tools such as visual C++, visual Java, Delphi, etc.
However, its effectiveness will be better for the software with more message
types and more handling events.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 372 Journal of Software Engineering and Applications

Without loss generality, the procedure of test case constructing with the
“Grey-box approach” may be demonstrated as follows.
• For one function disposing, several test cases of fore-end white-box testing

should be constructed according to all kinds of control types.
• In terms of factual software, using black-box testing method, test cases of

follow-up function testing are conducted distinguishing with various running
situation.

• Conducting test case for all follow-up function disposing.
• In the process of follow-up construction of test case, the mapping function

may be chosen according to the most rapid execution.
• If it is necessary, the test case of fore-end white-box testing must be not

omitted for follow-up construction of test case.
• Necessary description should be given in the process of test case construc-

tion.
2) Improved STD (State Transform Diagram) method
a) Definition of improved STD
Facing to features of GUI software, the improved STD is proposed to deal

with the function and state testing of GUI software. The difference of improved
STD includes three aspects. (a) The symbol “●” in diagram presents the start
point of software behavior, because a concrete state of control and event is ex-
isted to start for a state transforming in the GUI software, (b) the end point of
diagram is labeled by symbol “⊙” for its graphical representation and expres-
siveness, and (c) the synthesis of many same or similar states is reasonably done.
[2] [10]

b) Testing procedure based on improved STD
The procedure of function and state testing with improved STD could be giv-

en as follows.
• A programmer, acted as a tester in cross-testing, receives the finished

code/program from another programmer, and does necessary analysis in-
cluding FTA.

• According to the factual software, test design of software functions is firstly
performed in detail, and taken care of the respective disposing based on ac-
tual running and exception handling.

• In terms of the front section above, the improved STD is drawn for the fac-
tual software.

• By the finished STD, test cases for state testing are consequently constructed.
Step 3 Testing executing.
The testing execution is a very important part in software testing activity, be-

cause it supplies the test result of a factual software system. Additionally, it is the
basis of upgrading for software producing and testing. However, the testing ex-
ecution in software testing organization should be done in terms of the factual
situation, including the status of software system, the situation of the software
company, and the status of employee, etc.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 373 Journal of Software Engineering and Applications

Here, we mainly discuss the testing execution based on “Grey-box approach”
by “Cross-testing” organizing for “Pair-wise” mode, and the main process is
shown in Figure 9. In this case, the integration testing should focus on function
testing and state testing because the data testing generally has been finished in
unit testing.

In the “Cross-testing”, two programmers were be organized as a pair, and they
manually cooperated for accomplishing the programming and testing, which
one engaged in software programming and another one execute the software
testing of the finished program by the former.

In testing execution, testing record must be done according to institution and
arrangement of manager. Consequently, testing record should be updated with
the alternation of test cases and test suite, and it is also the requirement to track
BUG.

Step 4 Report and tracking.
The test report is the evidence of testing activity, and it is also the data source

to track BUG and to look into the responsibility. Hence, the test report must be
true, completed and reliable.

The trace of BUG is long-term and sustainable process, and it is necessary to
use the statistic method and tool in the process of BUG tracking.

5. Result of Analysis and Tackling
5.1. FTA for Incremental Testing in Integration Testing

The incremental change happened typically in the upgrading of software ver-
sion, but the self-constructing process of baseline version may be also considered
as an incremental process. According to the view of software process manage-
ment, however, the whole incremental testing based on the baseline version is
more significant for update software products including all kinds of application

Figure 9. The testing execution for “Grey-box approach” by “Cross-testing” organizing.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 374 Journal of Software Engineering and Applications

areas, e.g. the student achievement management system, the factory quality con-
trol system, the hospital information management system, and tickets ordering
system for air-line/online instamatic system, etc. Hence, following analysis will
discussed the whole incremental testing based on the baseline version.

Primarily, FTA is an effective analysis tool of fault diagnosis for hardware
system. Considering the clearness of technology roadmap and the easy-to-un-
derstand of technology principle, we applied this tool in the software testing es-
pecially for regression testing. By testing practice, we conclude that the FTA can
be used for regression testing including the change of modifying and the change
of adding. As such, a brief example will be investigated as illustrated in follow-
ing, and more details can refer to [6].

As a consequence, for the testing organization of “Pair-wise” mode, if the in-
cremental change happed, the incremental construction of regression test suite
should be design by crossing tester, which this task is recommended to be done
by skilled testing engineer, because the FTA must be done with skills. Without
loss of typicality, we discuss the incremental change of adding.

According to the information derived from investigation and experience of
quality engineers, the coordination of R chart should be independent in XAve-R
chart of PQMS2. Thereupon, adding the coordination-offset coefficient for R
chart is necessary respectively in XAve-R chart. Before the construction of re-
gression test suite, the dependency analysis must be done to reveal the mutual
relationship and influence conducted by programming change. Fault-tree analy-
sis is very important tool for testing engineer, and Figure 10 has illustrated the
fault-tree of adding the coordination-offset.

Figure 10. The fault tree of adding the coordination-offset for R chart.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 375 Journal of Software Engineering and Applications

In Figure 10, A is the top event, and Ai, Aij, Aijk, Aijkl are the middle event re-
spectively, and Xij, Xijk are the final event respectively, while Ci is the condition of
event happening. As such, the detail description of the top and middle event is
shown in Table 4, and the final event of fault-tree analysis is given in Table 5.

In terms of the results of fault-tree analysis derived from all final events, the
requirement of constructing test case is list in Table 6, and detail process may
refer to [6].

5.2. Test Suite Construction

In general, the software of integration testing can be typically divided into small
scale program and large scale software by the view of scale. Moreover, on the

Table 4. The top and middle event of FTA.

Code Event statement Code Event statement

A
Adding coordination-offset
coefficient for R chart is necessary
respectively in XAve-R chart

A33
Disposing for GUI influence
in OnDraw()

A1
Adding control in GUI and
variables in .cpp

A34 Adding data interface parameters

A2
Adding member in View class,
Dialogue class and their objects

A321 Disposing in global initialization

A3 Adding member in data interface A3211
Disposing for
influence—OnProcessUpdate()

A31 Disposing for data saving interface C1 X21 is done before X22

A32 Disposing for data gathering interface C2 A34 is done before A33, A32 and A31

Table 5. The final event of FTA.

Code Event statement Code Event statement

X11
Adding Controls of Static Text,
EditBox and their variables

X322
Disposing of data getting in
OnDraw()-GetSetting()

X21 Declaration of “int RChart_offset” X323
Disposing of data getting in
OnUpdate()-GetSetting()

X22
Disposing in dialogue
initializing-InitDialog()

X33
Disposing for GUI influence in
OnDraw()-RChart_offset

X23
Disposing in View
class-OnSetfigure()

X341
Adding definition of
unit in strSetting[]

X31
Disposing in data
saving-OnSaveSetting()

X342

Adding disposing of chart
initialization for definition
of unit in strSetting[]

X321
Disposing for influence in
calling-OnGetCurrentProcess()

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 376 Journal of Software Engineering and Applications

Table 6. Choicea and addingb of test case in terms of result of FTA.

ID Testing contents Referring to

PQMS2-ENT-INT-TC304-MF
Add division and department
from sheet

X341

PQMS2-ENT-INT-TC307-MF
Add division and department to
monitoring category

X341

PQMS2-ENT-INT-TC314-MF Add product from sheet X341

PQMS2-ENT-INT-TC324-MF Add part from sheet X341

PQMS2-ENT-INT-TC327-MF
Add product_part to monitoring
category

X341

PQMS2-ENT-INT-TC334-MF Add inspection process from sheet X341

PQMS2-ENT-INT-TC337-MF
Add inspection process to
monitoring category

X341

PQMS2-ENT-INT-TC360-MF
Input test data with saving
manuallyfrom sheet

X341

PQMS2-ENT-INT-TC906-MF
Display and preview XAve-R chart
from monitoring category

X11, X21, X322,
X341, X342

a. Unit testing is not considered for choice here, b. Adding test case in unit testing—
PQMS2-ACF-UNI-TC001~TC025-MF, etc.

view of software development, the software of integration testing can be diffe-
rentiated into software developing based on baseline version and software up-
dating for incremental change. Hence, the disposing of test suite constructing
must consider all these distinctions.

5.2.1. Test Suite Constructing of Integration Testing—For Small
Scale Program

For industrial practitioners, there is some simple application software, some-
times being called simple program, and it accomplished few functions even single
function for particular requirement. In this case, the integration testing must
execute in terms of factual situation, e.g. some testing items may be omitted for
“unimportant integration” part as Table 2 under supervision of manager.

Somehow, the XAve-R chart program in PQMS2 may be taken as an example
of small scale program, because its functions are relatively fewer to merely dis-
play and update the XAve-R chart.

1) Baseline version
Similarly, the integration testing of XAve-R chart program must be arranged

after all related unit testing are finished, in which the “Triple-step method”
should be adopted. For unit testing of XAve-R chart program in PQMS2, the
data testing should mainly focus on the boundary value testing of input controls
in the “Supervision or tolerance setting” sheet, the “Coefficient setting” sheet,
and the “Layout parameter setting” sheet, and care should be taken for the data
interface and format testing of text file of inspection data. At the same time, the

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 377 Journal of Software Engineering and Applications

unit state testing should be done using the improved STD.
Because of having some window access control, the XAve-R chart program

should execute the integration testing applying “Grey-box approach”. As a con-
sequence, test suite of front-end white-box for function testing should be con-
structed firstly. In order to shorten the demonstration, the function of “Layout
parameter setting” is only given here, and examples are shown in Table 7.

Additionally, the integration function testing of XAve-R chart program
should include integration function testing and integration state testing. The in-
tegration function testing mainly includes the function testing of initializing dis-
play, redisplay after coefficient and parameter are altered, and update displaying
of XAve-R chart. The test case example of follow-up black-box of integration
function testing for XAve-R chart is shown in Table 8.

As a small scale program, the integration state testing may be done similarly
using the improved STD and it is not very complex. Furthermore, the improved
STD of integration state testing of XAve-R chart is shown in Figure 11. In this
diagram, S0 is the initial state, and S12 is the end state, and “e1/r1 a1/r1, e2/r2 a2/r2, e3/r3
a3/r3, e6/r6 a6/r6, e7/r7 a7/r7, e17/r17 a17/r17, e18/r18 a18/r18, e19/r19 a19/r19, e20/r20 a20/r20, e21/r21 a21/r21,
e27/r27 a28/r28, e29/r29 a29/r29” are bi-direction transformations, and it is noticed that S4
is equivalent to S0 mainly due to decrease the complexity of the diagram, and the
specific meaning of these codes are omitted here.

According to the finished improved STD, the test suite of integration state
testing for XAve-R chart is shown in table A1 and A2 of Appendix. For this suite,
it is noticed that the testing steps have been depicted in detail to operate conve-
niently for testing execution.

2) Incremental testing
In previous “Layout parameter setting” sheet of XAve-R chart program, “off-

set of coordinate axle” has been given, but “offset of R coordinate axle” is not
given, so that the adjusting of R chart has a bit of difficulty. In PQMS2, it is quite
necessary to add the parameter of R coordinator-offset in the “Drawing layout
parameter setting” sheet as shown in Figure 12.

Table 7. Example of test cases of front-end white-box for the XAve-R chart program.

Precondition—Insert the pole of < MessageBox (“Testing output.”); > in the front of member
function <void CEXE9_7View::OnSetfigure()>.

ID Input Expected output

PQMS2-AFW-INT-TC100-AD
In the XAve-R window interface, click the menu item
of “Setting—Drawing layout”, and activate the
“Layout parameter setting” sheet.

Prompt “Testing output.”

PQMS2-AFW-INT-TC101-AD
Click the shortcut key “Alt-B” and “Alt-P” from the
menu item of “Setting (S)—Drawing layout (F)”.

Prompt “Testing output.”

PQMS2-AFW-INT-TC102-AD
Click the toolbar item of “Layout”, and activate the
“Layout parameter setting” sheet.

Prompt “Testing output.”

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 378 Journal of Software Engineering and Applications

Table 8. Example of test cases of black-box for the XAve-R chart program.

Precondition—Delete the pole of <MessageBox (“Testing output.”);> in the front of member
function <void CEXE9_7View:: OnSetTolerance(), void CEXE9_7View:: OnSetScale(),
void CEXE9_7View:: OnSetfigure(), void CEXE9_7View:: OnXAveChartMonitorUpdate(),
void CEXE9_7View:: OnXAveChart MonitorRevUpdate(), void CEXE9_7View:: OnUpdate()>.

ID Input Expected output

PQMS2-ACF-UNI-TC100

Start the XAve-R chart with default setting and inspection data, and
values of default setting are given with “strSetting [20] = {220, 750,
0.60, 0.46, 10.0, 220, 1000, −530, 1000, 11, 30, 820, 1.25, 0, 1500, 130,
10.0, 0.75, −340, 4}”, and inspection data is the data batch of
“2018_01_01 INSPDAVA2_1 4” with 80 values.

Display precisely
with correct layout
and no prompt of
error information.

PQMS2-ACF-UNI-TC010

Start the “supervision/tolerance setting” sheet from the XAve-R
window interface of the XAve-R chart, and input “0.60” in the EidtBox
“Supervising or tolerance lower limit”, and input “0.46” in the EidtBox
“Supervising or tolerance up limit”, and input “4” in the EidtBox
“Sampling volume”, and click button “OK” finally.

Update displaying
precisely with correct
layout and no
prompt of error
information.

PQMS2-ACF-UNI-TC001

Start the “Coefficient setting” sheet from the XAve-R window interface
of the XAve-R chart interface, and input “10.0” in the EidtBox
“Vertical coordinate magnitude coefficient”, and input “1.25” in the
EidtBox “Total magnitude coefficient”, and input “10.0” in the
EidtBox “R vertical coordinate magnitude coefficient”, and input
“0.75” in the EidtBox “R total magnitude coefficient”, and input “0” in
the EidtBox “Update velocity”, and input “1500” in the EidtBox
“history displaying space”, and click button “OK” finally.

Update displaying
precisely with correct
layout and no
prompt of error
information.

PQMS2-ACF-UNI-TC020

Start the “Layout parameter setting” sheet from the XAve-R window
interface, and input “11” in the EidtBox “Caption offset”, and input
“1000” in the EidtBox “Right space”, and input “820” in the EidtBox
“Limits offset”, and input “1000” in the EidtBox “y offset”, and input
“220” in the EidtBox “x offset”, and input “30” in the EidtBox
“Judgment output”, and input “−530” in the EidtBox “Coordinate axle
offset”, and input “750” in the EidtBox “Ry offset”, and input “220” in
the EidtBox “Rx offset”, and input “130” in the EidtBox “R judgment
output”, and click button “OK” finally.

Update displaying
precisely with correct
layout and no
prompt of error
information.

PQMS2-ACF-UNI-TC101
After TC100, click menu item “Monitoring of XAve-R—Forward” or

toolbar “Monitoring forward”.

Display next chart
precisely with correct
layout and no error
prompt.

PQMS2-ACF-UNI-TC102
After TC101, click menu item “Monitoring of XAve-R—Backward”

or toolbar “Monitoring backward”.

Display previous
chart precisely with
correct layout and no
error prompt.

PQMS2-ACF-UNI-TC103
Click menu item “Monitoring of XAve-R—Update” or toolbar

“Monitoring Update”.

Update displaying of
current chart
precisely with correct
layout and no error
prompt.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 379 Journal of Software Engineering and Applications

Figure 11. The improved STD of integration testing for XAve-R chart program.

For this incremental change of adding “offset of R coordinate axle”, the in-
cremental unit testing of this “Layout parameter setting” sheet must be executed
firstly including (a) data testing—mainly data boundary value testing, (b) func-
tion testing—such as function-self running testing and other limitation testing,
and (c) state testing—test suite should be constructed in terms of the improved
STD which is relative very simply.

For this incremental integration testing, as a kind of small scale program, data
testing is unnecessary to be repeated, and function testing must be done with
new test case which derived from the result of FTA and can be modified using
“PQMS2-ACF-UNI-TC020” listed in Table 8 above, and the detail of test case of
the function incremental testing is shown in Table 9.

Additionally, because this small scale program—XAve-R chart program was
integrated into the whole system—PQMS2, the follow-up integration testing for

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 380 Journal of Software Engineering and Applications

Figure 12. GUI of drawing layout setting sheet.

PQMS2 must be done in terms of “Modified Sandwich” method [4]. At the
same time, we can directly use the result of FTA as mentioned in Table 6 above,
and the test case with the code of “PQMS2-ENT-INT-TC906-MF” is given in
Table 10.

5.2.2. Test Suite Constructing of Integration Testing—For Large
Scale Software

1) Baseline version
The test suite construction of integration testing of baseline version, such as

“Main program”, should be done generally using “Grey-box approach”, except
that it is simple program or non-GUI software as mentioned above. For the con-
structing of test suite of integration testing based on “Grey-box approach”, the
general procedure can be depicted as follows.

a) For every function disposing, several test cases of fore-end white-box test-
ing should be constructed according to all kinds of window control types.

b) In terms of factual software system, using black-box testing method, con-
struct test cases of function testing distinguishing with various running situa-
tion.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 381 Journal of Software Engineering and Applications

Table 9. Incremental test case of the “Drawing layout parameter setting” sheet.

Precondition—Delete the pole of <MessageBox (“Testing output.”);> in the front of member
function of <void void CEXE9_7View:: OnSetfigure()>.

ID Input Expected output

PQMS2-ACF-UNI-TC020-MF

Start the “Drawing layout parameter setting” sheet from the
XAve-R chart interface, and input “11” in the EidtBox
“Caption offset”, and input “1000” in the EidtBox “Right
space”, and input “820” in the EidtBox “Limits offset”, and
input “1000” in the EidtBox “y offset”, and input “220” in the
EidtBox “x offset”, and input “30” in the EidtBox “Judgment
output”, and input “−530” in the EidtBox “Coordinate axle
offset”, and input “750” in the EidtBox “Ry offset”, and input
“220” in the EidtBox “Rx offset”, and input “130” in the
EidtBox “R judgment output”, and input “−340” in the
EidtBox “R coordinate axle offset”, and click button
“OK” finally.

Update displaying
precisely with correct
layout of “offset of R
coordinate axle” and
no prompt of error
information.

Table 10. Incremental test case of integration function for the whole PQMS2.

Precondition—Delete the pole of <MessageBox (“Testing output.”);> of QMS2-ENT-INT-TC350-AD~TC353-AD, and finish
data input of the inspection data item “Division of machining and cutting—CM_Digital thickness inspection_Lock

pollar-thickness-2019_09_18 INSPDAVA2_1 4” in the monitoring category.

ID Input Expected output

PQMS2-ENT-INT-TC906-MF

Start the main window interface of PQMS2, and click the
inspection data item “Division of machining and
cutting—CM_Digital thickness inspection_Lock
pollar-thickness-2019_09_18 INSPDAVA2_1 4” in the
monitoring category, and click button
“Do monitoring-2_XAvechart”.

Displaying precisely
XAve chart with correct
layout and no prompt of
error information.

c) Conducting test case for all follow-up function disposing if necessary.
d) In the process of follow-up construction of test case, the mapping function

may be chosen according to the most rapid accuracy.
e) Necessary description should be given in the process of test case construc-

tion.
Here, the constructing method and writing format are given for the integra-

tion testing using the example of PQMS2. Without loss generality for GUI soft-
ware, the integration testing of the “Part/component” sheet is discussed accord-
ing to the “Grey-box approach”, and the GUI of “Part/component” sheet in
PQMS2 is shown in Figure 13.

The “Part/component” sheet is typical GUI in PQMS2, which includes popu-
lar GUI controls and components, e.g. “Button” control, “Editbox” control,
“ComBoBox” control, and “List” component, etc. At the same time, this
“Part/component” sheet is activated by message mechanism of the menu item in
main system interface and all functions in this sheet are also activated by the

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 382 Journal of Software Engineering and Applications

Figure 13. The GUI of “Part/component” sheet in PQMS2.

event of controls and components. Hence, the test suite of this sheet is con-
structed based on the “Grey-box approach”.

According to the applying procedure of “Grey-box approach”, the front-end
test suite is constructed with white-box method and the follow-up test suite is
conducted by black-box method in the “Grey-box approach”. Consequently, the
test suite of front-end white-box is given in Table 11, and the test suite of fol-
low-up black-box is given in Table 12.

In writing of test case for “Grey-box approach”, following matters should be
noticed.
• For construction of the test suite of front-end with white-box, the precondi-

tion should be given in terms of actual site for inserting the testing probe,
and all kinds of control types to activate the message event must be given
without omission.

• For construction of the test suite of follow-up with black-box, the test case of
unit testing should be not repeated, and the test case of integration testing
between units should be constructed.

2) Incremental testing
Besides the test suite construction of integration testing for baseline version,

the test suite construction of incremental change will occur in integration testing
too, and the incremental testing generally is probably due to the change with

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 383 Journal of Software Engineering and Applications

Table 11. Test cases of adding part/component in “Part/component” sheet—white-box.

Precondition—Insert the pole of <MessageBox (“Testing output.”);> in the front of member function of
<BOOL CProductPartDIALOG::OnInitDialog()>.

ID Input Expected output

PQMS2-ENT-INT-TC320-AD

In the left monotoring category of main window interface, click
the item “Division of machining and cutting”, choose “Add
product_part/component” using the right key of mouse, and
activate the “Part/component” sheet.

Prompt “Testing
output.”

PQMS2-ENT-INT-TC321-AD
In the main window interface, click the menu item of
“Basic data of product quality—Part/component”,
and activate the “Part/component” sheet.

Prompt “Testing
output.”

PQMS2-ENT-INT-TC322-AD
Click the shortcut key “Alt-B” and “Alt-P” from the menu item
of “Basic data of product quality (B)—Part/component (P)”.

Prompt “Testing
output.”

PQMS2-ENT-INT-TC323-AD
In the main window interface, click the toolbar item of
“Component” , and activate the “Part/component” sheet.

Prompt “Testing
output.”

Table 12. Test cases of adding part/component in “Part/component” sheet—black box.

Precondition—a. Delete the pole of <MessageBox (“Testing output.”);> in the front of member function of
<BOOL CProductPartDIALOG::OnInitDialog()>. b. the item of “PC000006-Lock pin—Machining and

cutting part—···” has existed in the list of “Part/component” sheet but not included in the monitoring category.

ID Input Expected output

PQMS2-ENT-INT-TC327-MF

In the “Part/component” sheet, choose the item
“PC000006-Lock pin—Machining and cutting
part—···” of the list, and click the button
“Add to monitoring category” finally.

Display the information prompt of
finished adding, and update the
data in the monitoring category.

cross-influence for several units. If the incremental integration testing is dealt
with this kind of change of cross-influence, the dependency analysis is necessary
and the FTA can be usually applied as mentioned above; consequently, the con-
struction of the test suite of front-end with white-box and follow-up with
black-box should done using “Grey-box approach” as mentioned above; and de-
tails are omitted here. Hence, we only give the example of modification of win-
dow access controls.

As we all known, window access controls and its implementation functions
usually are needed to modify sometimes, e.g. for fulfilling the supervision of key
sampling test or GUI check. If the window access control is modified, the test
case of integration testing must be constructed again in terms of “Grey-box ap-
proach”. As a typical example, in PQMS2, the menu item of “Output of inspec-
tion data” is modified to “Backup of inspection data output”, and test cases of
fore-end with white-box were changed with ID
“PQMS2-ENT-INT-TC368-MF~TC369-MF” as shown in Table 13, but test
cases of the black-box testing are unnecessary to modify again if without change

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 384 Journal of Software Engineering and Applications

Table 13. Test cases for the menu item of “Backup of inspection data output”.

Precondition—Insert the pole of <MessageBox (“Testing output.”);> in the front of member function of
<BOOL CExportDataDialog::OnInitDialog()>.

ID Input Expected output

PQMS2-ENT-INT-TC368-MF
In the main window interface, click the menu item of
“Data I/O—Backup of inspection data output”, and activate the
backup of inspection data.

Prompt
“Testing output.”

PQMS2-ENT-INT-TC369-MF
Click the shortcut key “Alt-T” and “Alt-I” from the menu item of
“Data I/O (T)—Backup of inspection data output (I)”.

Prompt
“Testing output.”

in implementation function.

5.3. Testing Executing

In the integration testing of GUI software, in terms of the test case and test suite,
the tester executes the testing process as follows.

a) Checking whether the unit testing of all relative units is finished according
to the requirement of standard and manager.

b) If the software is a system based on window controls, the grey-box testing
approach should be adopted.

c) Execute the front-end testing of white-box test suite.
d) Execute the follow-up testing of black-box test suite.
e) If the test suite of state testing is existed, the state test should be done after

the necessary familiar of the improved STD.
f) Necessary description should be given in the process of test case construc-

tion.
g) Recording test process necessarily and the test result in detail including the

BUG with detail information.
Additionally, following maters should be paid attention.
a) At first, the correct and effective test case and test suite are needed before

testing execution.
b) The desk check of code review must be done by programmer before inte-

gration testing.
c) The programmer and the tester can execute “Cross-testing” in terms of

“Parallel-disposing” pattern and “Idle-waiting” pattern [2].
d) If the incremental testing occurred based on FTA, the testing should be ex-

ecuted by a skilled software testing engineer.
e) If the software is a network system with database, the integration testing of

data interface and communication is required.
f) If it is necessary, the process boundary testing should be assigned.
g) If the requirement of software is rigid, the walkthrough and other audit

should be finished as early as possible. At the same time, the function and state
testing must be executed with “N-switch” consideration.

h) If it is necessary, the tester could feed back the reasonable modifying

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 385 Journal of Software Engineering and Applications

Figure 14. The pie chart of testing time in integration testing.

suggestion.

For testing execution of integration testing, according to the requirement of
GUI software, we have performed the testing practice for PQMS2 with some ex-
perimental ways. Without loss representative and generality, the factual result of
testing time of testing execution for the independent program XAve-R chart in
PQMS2 are: (a) the testing time of front-end white-box testing is 2.63 min, (b)
the testing time of follow-up black-box testing is 5.43 min, and (c) the testing
time of state testing is 14.92 min. Consequently, the pie chart of this example is
illustrated in Figure 14.

From Figure 14, we can find that the testing time of state testing had occupied
64.9%. Hence, we suggest that the advanced testing technology and method
should be invented and adopted to accelerate the process of state testing.

5.4. Report and Tracking

In generally, the test report must be correct and precise without mistake for mi-
sunderstanding. In testing activity for GUI software, the test report format could
directly be generated from the test case with table style, while the BUG state
must be recorded as factual situation. The following must be noticed for the test
report.
• Data of test report must be true, completed and reliable.
• Results of test report must be written in terms of the evidence of testing ac-

tivity.
• Conclusion must be given without being ready to accept either course.
• Test report must include the column of the BUG state written clearly by tes-

ter as concise as possible.
In order to implement BUG tracking, the BUG recording must be saved com-

pletely as possible. If necessary, the BUG database should be developed to
achieve a long-term and sustainable control.

6. Discussion

The main implication of our presented work in this paper is that good strategy

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 386 Journal of Software Engineering and Applications

and methodology will greatly improve the efficiency and quality of integration
testing for GUI software, and avoid the redundant operation in integrating test-
ing activity, including the adoption of effective testing organization. However,
care must be taken what kind software system the tested object is and how the
testing activity is organized for actual software companies including personal
composition, e.g. product-oriented organizing or project-oriented organizing.

6.1. Special Disposing Methods for Particular Software System
6.1.1. Special Disposing for Embedded Software
In major industrial practice, a lot of software exists in the form of embedded
software. Usually, majority of software in industry is a part composed of instru-
ment and equipment, in this case, the factual software may be considered as the
embedded software. The testing of this kind of embedded software must be dis-
posed in terms of its own features as follows.
• Stub technology usually used in embedded software testing.
• The performance testing must be emphasized, including memory utilization

testing, I/O testing, etc.
• Logic testing should be prior to apply complier collection mode, and using

perfect test tools is a good choice.

6.1.2. Special Disposing for Inspection Software
For inspection software, including instrument software, the initialization is a
very important part for the whole software system, because good initialization
will improve the starting of software system. At the same time, the setup part of
software system should be rigidly considered, especially concerning the factual
applied situation of software system. Historically, the serious failure of software
setup in the instrument had got rise to terrible result. In 1985-1987, the The-
rac-25 instrument made by Atomic Energy of Canada Limited brought about 5
dead cases, and all accidents are caused by the wrong operation and software
fault of error-setup disposing [4]. Hence, the testing of basic setting and initiali-
zation units must be paid more attention.

6.2. Threats of Validity

In order to assure the validity of study results including the feasibility of strategy
and methodology of integration testing for GUI software, several measures are
taken. In general, the part of strategies is concluded from mass experience of
software testing practice with a view of scientific conclusion, and the part of
methodology is illustrated and proved with a lot of factual examples.

6.2.1. Internal Validity
At first, to assure the representative, factual examples were carefully chosen from
the GUI software—PQMS2 to avoid the bias of lack of functionality and GUI
interface, which includes most of general GUI controls and components and
runs under the typical Windows system. At the same time, the integration test-

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 387 Journal of Software Engineering and Applications

ing activity of PQMS2 has the representative of most GUI application software
with features of more functionalities and more interaction of “Forms/Sheets”.
Further, the testing execution of PQMS2 has also included the typical achieve-
ment of the integrated process of the modified Sandwich method.

On the other hand, in this study, for the methodology of integration testing
for GUI software, we investigate two main research methods and tools, i.e. the
FTA (Fault Tree Analysis) method and the improved STD (State Transform Di-
agram) method. FTA is mainly used in coding and programming analysis for
incremental testing, and the improved STD is mainly applied for function and
state testing.

FTA is wonderful analysis tool for software failure and BUG derived from
fault diagnosis. For BUG produced after software modification change, it is ef-
fective tool in terms of the factual result from fault analysis in engineering ap-
plication. For unit adding or BUG hypothesis generated from software addition
change (BUG hypothesis is better disposing for the choice of logic gate), it is also
effective method because this analysis diagram can clearly and precisely describe
the unit composition of software and the relationship among software units, and
fault and BUG derivation can be conveniently done.

However, when FTA is applied to analyze the change of software addition, the
effectiveness will rely on the precise definition of logic relationship among added
units, and the accurate computation of cut-set etc. may be difficult. Hence, it will
have some problems for this applied case and scenario in safety-critical system,
but it is valuable and useful for the factual application in general software sys-
tem.

The improved STD has its factual effectiveness for the improvement of dia-
gram related to the software engineering feature including the expression of start
point. If the division and layout of the improved STD is clear and correct as
possible, the improved STD can effectively analyze the whole sight of all states
and can effectively depict the specific feature of the divided layer and trans-
forming route of the software running behavior. Additionally, in order to keep
the clearness of description, we proposed a useful strategy which “the curved di-
agram” is used for the small scale case and “the straight-line diagram” is applied
for the large scale case.

6.2.2. External Validity
At present, the GUI software for smart-phone is bloomed with the communica-
tion technology. The improved STD, used in desktop system and derived from
desktop application, is a universal tool for software state analysis, and it can be
also applied in the smart-phone software with a limited changing.

6.2.3. Construct Validity
In this study, on the one hand, specific strategy and method are derived from the
summarization of software testing practice, and have been verified in factual
testing process. As such, strategy and method proposed in this study will ensure

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 388 Journal of Software Engineering and Applications

the validity to help practitioners of software testing. On the other hand, the hy-
pothesis of “0-switch~N-switch state testing” with the improved STD for general
GUI software has been verified for its validity using examples of PQMS, except
the safety-critical software with “N-switch state testing”.

6.2.4. Conclusion Validity
By the case software—PQMS as the representative and typical GUI software, re-
search was performed using many examples including a lot of detail disposing.
These specific disposing should strengthen the validity of this work with the
doubtless replication of the study and factual application in similar contexts, e.g.
the example of section 5.2.2.1 can be applied in “Sheet/Form” situation and the
example of section 5.2.2.2 is fitted to the situation driven directly by window
access control. Additionally, meaningful references have been added to clarify
the strategy and methodology in this study, e.g. the “Grey-box” approach for in-
tegration testing of GUI software [7], the Improved STD for the function and
state testing [2], etc.

7. Summary

This paper presents strategy and methodology of integration testing for GUI
software, and discusses the integration testing activity for two situations includ-
ing small-scale program and large-scale software. In detail, we proposed various
strategies of integration testing for GUI software, including differentiating strat-
egy of distinguished software system, testing organizing strategy, testing proce-
dure strategy, and test suite construction strategy. These strategies could give the
instruction for software testing practitioners to improve the testing efficiency
and strengthen the process control of software testing activity.

Furthermore, we have deeply discussed a set of effective methods mainly fo-
cusing on test case and suite construction in integration testing, e.g. the testing
arrangement method based on “Grey-box approach” for the modified Sandwich
integration strategy. Facing the update evolution trend of software system, we
investigate the test suite construction method based on baseline version and test
suite construction method based on incremental change. Then, we also briefly
describe the testing execution for the testing organizing of “Cross-testing” and
the emerged problem within it. All methods would instruct practitioners to ra-
pidly set up the testing process in terms of “Triple-step method” and “Grey-box
approach” for GUI software.

This study thereby provides a contribution to the software companies about
the effective strategies in integration testing for GUI software. At the same time,
the study provides a contribution to the software testing practitioners about the
specific execution method for integration testing based on “Grey-box approach”.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 389 Journal of Software Engineering and Applications

References
[1] Alegroth, E. and Feldt, R. (2017) On the Long-Term Use of Visual Gui Testing in

Industrial Practice: A Case Study. Empirical Software Engineering, 22, 2937-2971.
https://doi.org/10.1007/s10664-016-9497-6

[2] TanLi, M., Zhang, Y. and Wang, Y.L. (2022) Architecture and Methodology of Unit
Testing Embedding Pair-Wise Mode for Small Team. Journal of Software Engi-
neering and Applications, 15, 111-133. https://doi.org/10.4236/jsea.2022.1511022

[3] Patton, R. (2006) Software Testing. Pearson Education Inc., NewYork, USA.

[4] Fu, B. (2014) Course of Software Testing Technology. Tsinghua University Press,
Beijing.

[5] Li, F. (2016) Software Testing Technology. Mechanical Industry Press, Beijing.

[6] TanLi, M., Zhang, Y. and Wang, Y.-L. (2020) Research on Fault Tree Technique in
Software Regression Testing. Computer Engineering and Software, 41, 5-8, 25.

[7] TanLi, M., Zhang, Y., Wang, Y.L., et al. (2021) Grey-Box Technique of Software In-
tegration Testing Based on Message. Proceedings of 3rd International Conference
on Artificial Intelligence and Computer Science, Beijing, 29-31 July 2021, 198-206.

[8] Runeson, P. (2009) Guidelines for Conducting and Reporting Case Study Research
in Software Engineering. Empirical Software Engineering, 14, 131-164.
https://doi.org/10.1007/s10664-008-9102-8

[9] Bradbury, J.S., Cordy, J.R. and Dingel, J. (2005) An Empirical Framework for Com-
paring Effectiveness of Testing and Property-Based Formal Analysis. Proceedings of
the ACM SIGPLAN-SIGSOFT Work on Program Analysis for Software Tools and
Engineering, Lisbon, 5-6 September 2005, 1-4.
https://doi.org/10.1145/1108792.1108795

[10] Tang, D., TanLi, M. and Li, T. (2022) Software Test Organizing for Small Team
Based on “Pair-Wise” Mode. Proceedings of 2022 International Conference on
Smart Transportation and Future Mobility, Changsha, 2-4 September 2022, 113-
119.

[11] TanLi, M., Zhang, Y., Jiang, Y., et al. (2021) Baseline Test Suite Construction of
Smoke Test for Extreme Programming. Proceedings of 2021 International Confe-
rence on Communication Engineering and Logistics Management, Shanghai, 24-26
July 2021, 1-7. https://doi.org/10.1088/1757-899X/1179/1/012001

[12] TanLi, M., Zhang, Y. and Wang, Y.-L. (2020) System Testing Based on Software
Performance. Computer Engineering and Software, 41, 1-4, 25.

[13] Xu, Y.-Y. (2015) A Study of Test Case Reuse Based on CBR. Computer Engineering
and Software, 36, 117-120.

[14] TanLi, M., Jiang, Y., Wang, Y.L., et al. (2020) Infrastructure Building of Software
Testing for Engineering Software Based on Cooperation of University and Compa-
ny. Proceedings of the 10th International Workshop on Computer Science and En-
gineering , Shanghai, 19-21 June 2020, 18-26.

[15] Chen, Z.H. (2005) Research and Implementation of Test Method in Task Arrange-
ment of Resource Satellite. Radio Engineering, 35, 62-64.

[16] TanLi, M., Jiang, Y., Wang, Y.L., et al. (2018) Digital Inspection of Cutting and
Machining Based on Manufacturing Quality for Shop Floor. ICMEIT2018, Shang-
hai, 23-24 April 2018, 1-7. https://doi.org/10.12783/dtetr/icmeit2018/23372

[17] TanLi, M., Xiao, J.Y. and Zhang, Y. (2023) Guideline of Test Suite Construction for
GUI Software Centered on Grey-box Approach. Journal of Software Engineering

https://doi.org/10.4236/jsea.2023.168019
https://doi.org/10.1007/s10664-016-9497-6
https://doi.org/10.4236/jsea.2022.1511022
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/1108792.1108795
https://doi.org/10.1088/1757-899X/1179/1/012001
https://doi.org/10.12783/dtetr/icmeit2018/23372

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 390 Journal of Software Engineering and Applications

and Applications, 4, 385-405. https://doi.org/10.4236/jsea.2023.165007

[18] Do, H., Rothermel, G. and Elbaum, S. (2004) Infrastructure Support for Controlled
Experimentation with Software Testing and Regression Testing Techniques. Pro-
ceedings of the 2004 International Symposium on Empirical Software Engineering,
Redondo Beach, 13 April 2004, 60-70.

[19] TanLi, M., Zhang, Y. and Wang, Y.L. (2021) Boundary Clarify between Integration
Testing and Validation Testing and Engineering Example. Proceedings of the 3rd
International Conference on Computer Science, Communication and Network Se-
curity, Sanya, 19 May 2021, 1-7. https://doi.org/10.1051/itmconf/20224501004

https://doi.org/10.4236/jsea.2023.168019
https://doi.org/10.4236/jsea.2023.165007
https://doi.org/10.1051/itmconf/20224501004

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 391 Journal of Software Engineering and Applications

Appendix
Table A1. State test suite of valid one step or multiple steps transformation for XAve-R chart.

ID
Start
state

Next/End state Input Expected output

PQMS2-ACS-INT-TC001 S0 S1-S4-S12

Start the XAve-R program interface,
and click the menu item of
“Setting—Supervision/Tolerance
setting” or toolbar item of
“Supervision/Tolerance”, and enter
“Supervision/Tolerance” sheet.
Without input, click the button
“Shut off” in the up-right corner
of the sheet, and return the
XAve-R interface. Click the button
“Shut off” in the up-right corner
of the XAve-R interface.

Display
“Supervision/Tolerance
setting” sheet, and shut off.
After return to the idle state,
from the XAve-R interface,
finally exit
program.

PQMS2-ACS-INT-TC002 S0 S2-S4-S12

Enter the XAve-R interface again, and
click the menu item of
“Setting—Coefficient setting” or
toolbar item of “Coefficient”,
and enter “Coefficient setting”
sheet. Without input, click the
button “Cancel” of the sheet,
and return the XAve-R interface.
Click the button “Shut off” in the
up-right corner of the XAve-R interface.

Display “Coefficient setting”
sheet, and shut off. After
return to the idle state,
from the XAve-R interface,
finally exit program.

PQMS2-ACS-INT-TC003 S0 S3-S4

Enter the XAve-R interface again, and
click the menu item of
“Setting—Drawing layout setting” or
toolbar item of “Drawing layout”,
and enter “Drawing layout setting”
sheet. Without input, c lick the
button “Cancel” of the sheet.,
and return the XAve-R interface.

Display “Drawing la-yout
setting” sheet, and shut off,
then return to the idle state.

PQMS2-ACS-INT-TC004 S4 S1-S4

After the XAve-R program idle
interface, click the menu item of
“Setting—Supervision /Tolerance
setting”, and enter “Supervision
/Tolerance” sheet. Without input,
click the button “Shut off” in the
up-right corner of the sheet.

Display “Supervision
/Tolerance setting” sheet,
and shut off, then return to
the idle state.

PQMS2-ACS-INT-TC005 S4 S2-S4

Enter the XAve-R program idle
interface, and click the menu item of
“Setting—Coefficient setting”, and
enter “Coefficient setting” sheet.
Without input, click the button “Shut
off” in the up-right corner of the sheet.

Display “Coefficient setting”
sheet, and shut off, then
return to the idle state.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 392 Journal of Software Engineering and Applications

Continued

PQMS2-ACS-INT-TC006 S4 S3-S4-S12

Enter the XAve-R program idle
interface, and click the menu item of
“Setting—Drawing layout setting”, and
enter “Drawing layout setting” sheet.
Without input, click the button “Shut
off” in the up-right corner of “Drawing
layout setting” sheet. Click the button
“Shut off” in the up-right corner
of the XAve-R interface.

Display “Drawing layout
setting” sheet, and shut off,
then return to the idle state.
Finally, Exit XAve-R
program.

PQMS2-ACS-INT-TC007 S0 S6
Click the menu item “XAve-R chart
monitoring—Monitoring forward” in
the XAve-R program interface.

Execute monitoring forward.

PQMS2-ACS-INT-TC008 S6 S7
Click the menu item “XAve-R chart
monitoring—Monitoring backward”
in the XAve-R program interface.

Execute monitoring
backward.

PQMS2-ACS-INT-TC009 S7 S7
Continuously click the toolbar item
“Monitoring backward” to the first
data batch.

Display again.

PQMS2-ACS-INT-TC010 S7 S9-S4
At the first batch data, click the toolbar
item “Monitoring backward”.

Prompt “Returned the first
batch data”, and shut off,
then return to the idle state.

PQMS2-ACS-INT-TC011 S4 S7
After idle state, click the toolbar item
“Monitoring backward”.

Execute monitoring
backward.

PQMS2-ACS-INT-TC012 S7 S5
Click the button “Update” in the
XAve-R program interface.

Display again.

PQMS2-ACS-INT-TC013 S5 S1-S4

After updating, click the toolbar item
“Supervision/Tolerance setting”, and
enter “Drawing layout setting” sheet.
Without input, click the button “Shut
off” in the up-right corner of the sheet.

Display “Supervision
/Tolerance setting” sheet,
and shut off, then return to
the idle state.

PQMS2-ACS-INT-TC014 S4 S5-S2-S4

Click the button “Update” in the
XAve-R program interface. Click the
toolbar item “Coefficient setting”,
and enter “Coefficient setting” sheet.
Without input, click the button
“Cancel” of the sheet.

After updating, display
“Coefficient setting” sheet,
and shut off, then return to
the idle state.

PQMS2-ACS-INT-TC015 S4 S5-S3-S4

Click the button “Update” in the
XAve-R program interface. Click the
toolbar item “Drawing layout setting”,
and enter “Drawing layout setting”
sheet. Without input, click the button
“Cancel” of the sheet.

After updating, display
“Drawing layout setting”
sheet, and shut off, then
return to the idle state.

PQMS2-ACS-INT-TC016 S4 S1-1-S4

After idle state, click the toolbar item
“Supervision /Tolerance setting”. In
“Supervision /Tolerance setting”
sheet, click the button “OK” with
default correct input.

Display
“Supervision/Tolerance
setting” sheet. Save setting,
and return to idle state.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 393 Journal of Software Engineering and Applications

Continued

PQMS2-ACS-INT-TC017 S4 S2-1-S4

After idle state, click the toolbar item
“Coefficient setting”. In “Coefficient
setting” sheet, click the button “OK”
with default correct input.

Display “Coefficient setting”
sheet. Save setting, and
return to idle state.

PQMS2-ACS-INT-TC018 S4 S3-1

After idle state, click the toolbar item
“Drawing layout setting”. In “Drawing
layout setting” sheet, click the button
“OK” with default correct input.

Display “Drawing layout
setting” sheet. Save setting,
and return to idle state.

PQMS2-ACS-INT-TC019 S4 S1-2-S11-S4

After idle state, click the toolbar item
“Supervision /Tolerance setting”. In
“Supervision /Tolerance setting”
sheet, click the button “OK” with null
value for all inputs. Click the button
“OK” of the prompt dialogue.

Display
“Supervision/Tolerance
setting” sheet. Prompt
message of error input
and shut off. Then
return to idle state.

PQMS2-ACS-INT-TC020 S4 S2-2-S11-S2-2-S4

After idle state, click the toolbar item
“Coefficient setting”. In “Coefficient
setting” sheet, click the button “OK”
with null value for all inputs. Click the
button “OK” of the prompt dialogue.
Return “Coefficient setting” sheet,
click the button “Shut off” in the
up-right corner of sheet.

Display “Coefficient setting”
sheet. Prompt message of
error input and shut off.
Return the sheet, and shut
off. Then return to idle state.

PQMS2-ACS-INT-TC021 S4 S3-2-S11-S3-2-S4

After idle state, click the toolbar item
“Drawing layout setting”. In “Drawing
layout setting” sheet, click the button
“OK” with null value for all inputs. Click
the button “OK” of the prompt dialogue.
Return “Drawing layout setting” sheet,
click the button “Shut off” in the
up-right corner of sheet.

Display “Drawing layout
setting” sheet. Prompt
message of error input and
shut off. Return the sheet,
and shut off. Then return to
idle state.

PQMS2-ACS-INT-TC022 S4 S6-S5

Click the toolbar item “Monitoring
forward” in the XAve-R program
interface. Then click the button
“Update”.

Execute monitoring forward,
and display again.

PQMS2-ACS-INT-TC023 S5 S6
After updating, click the toolbar item
“Monitoring forward”.

Execute monitoring forward.

PQMS2-ACS-INT-TC024 S6 S10-S4
Click the menu item “Print-Preview”
in the XAve-R program interface, and
enter preview interface. Then shut off.

Preview the chart. Then shut
off, return to XAve-R
program interface.

PQMS2-ACS-INT-TC025 S4 S5
Click the button “Update” in
the XAve-R program interface.

Display again.

PQMS2-ACS-INT-TC026 S5 S10-S4
Click the menu item “Print-Preview”
 in the XAve-R program interface, and
enter preview interface. Then shut off.

Preview the chart. Then shut
off, return to XAve-R
program interface.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 394 Journal of Software Engineering and Applications

Continued

PQMS2-ACS-INT-TC027 S4 S7-S5-S7

Click the toolbar item “Monitoring
backward” in the XAve-R program
interface, and click the button
“Update”. After updating,
click the toolbar item
“Monitoring backward” again.

Execute monitoring
backward. Display again.
Execute monitoring
backward again.

PQMS2-ACS-INT-TC028 S7 S10-S4
Click the menu item “Print-Preview”
in the XAve-R program interface, and
enter preview interface. Then shut off.

Preview the chart. Shut off,
and return to XAve-R
program interface.

PQMS2-ACS-INT-TC029 S4 S5-S10-S4

Click the button “Update” in the
XAve-R program interface. Click the
menu item “Print-Preview” in the
XAve-R program interface, and enter
preview interface. Then shut off.

Display again. Preview the
chart. Shut off, and return to
XAve-R program interface.

PQMS2-ACS-INT-TC030 S4 S12
Click the button “Shut off” in the
up-right corner of the XAve-R
program interface.

Exit program.

PQMS2-ACS-INT-TC031 S0 S6-S6-S8-S4

Enter the XAve-R program interface
again, and continuously click the
toolbar item “Monitoring forward”
to the last data batch. At the last
data batch, click the toolbar item
“Monitoring forward” again.
Click the button “OK” of the
prompt dialogue.

Execute monitoring forward
continuously. Prompt
“Arrived at the last data
batch”. Shut off, and
return to idle state.

PQMS2-ACS-INT-TC032 S4 S7-S7-S9-S4

After idle state, continuously click the
toolbar item “Monitoring backward”
to the first data batch. At the
first data batch, click the
toolbar item “Monitoring backward”
again. Click the button “OK”
of the prompt dialogue.

Execute monitoring forward
continuously. Prompt
“Returned the first data
batch”. Shut off, and
return to idle state.

PQMS2-ACS-INT-TC033 S4 S10-S4

Click the menu item “Print-Preview”
in the XAve-R program interface,
and enter preview interface.
Then shut off.

Preview the chart. Shut off,
and return to XAve-R
program interface.

PQMS2-ACS-INT-TC034 S4 S6-S1-S4

Click the toolbar item “Monitoring
forward” in the XAve-R program
interface. Click the toolbar item
“Supervision /Tolerance setting”,
and enter “Supervision /Tolerance
setting” sheet. Without input, click
the button “Shut off” in the up-right
corner of the sheet.

Execute monitoring forward.
Then display
“Supervision/Tolerance
setting” sheet. Shut off, and
return to idle state.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 395 Journal of Software Engineering and Applications

Continued

PQMS2-ACS-INT-TC035 S4 S6-S2-S4

Click the toolbar item “Monitoring
forward” in the XAve-R program
interface. Click the toolbar item
“Coefficient setting”, and enter
“Coefficient setting” sheet. Without
input, click the button “Shut off” in
the up-right corner of the sheet.

Execute monitoring forward.
Then display “Coefficient
setting” sheet. Shut off, and
return to idle state.

PQMS2-ACS-INT-TC036 S4 S6-S3-S4

Click the toolbar item “Monitoring
forward” in the XAve-R program
interface. Click the toolbar item
“Drawing layout setting”, and enter
“Drawing layout setting” sheet.
Without input, click the button “Shut
off” in the up-right corner of the sheet.

Execute monitoring forward.
Then display “Drawing layout
setting” sheet. Shut off, and
return to idle state.

PQMS2-ACS-INT-TC037 S4 S7-S1-S4

After idle state, click the toolbar item
“Monitoring backward”. Then click the
toolbar item “Supervision/Tolerance
setting”, and enter “Supervision
/Tolerance setting” sheet. Without input,
click the button “Shut off” in the
up-right corner of the sheet.

Execute monitoring
backward. Display
“Supervision/Tolerance
setting” sheet. Shut off,
and return to idle state.

PQMS2-ACS-INT-TC038 S4 S7-S2-S4

After idle state, click the toolbar item
“Monitoring backward”. Then click the
toolbar item “Coefficient setting”, and
enter “Coefficient setting” sheet.
Without input, click the button
“Shut off” in the up-right
corner of the sheet.

Execute monitoring
backward. Display
“Coefficient setting”
sheet. Shut off, and
return to idle state.

PQMS2-ACS-INT-TC039 S4 S7-S3-S4

After idle state, click the toolbar item
“Monitoring backward”. Then click the
toolbar item “Drawing layout setting”,
and enter “Drawing layout setting”
sheet. Without input, click the button
“Shut off” in the up-right corner
of the sheet.

Execute monitoring
backward. Display “Drawing
layout setting” sheet. Shut off,
and return to idle state.

PQMS2-ACS-INT-TC040 S4 S6
Click the toolbar item “Monitoring
forward” in the XAve-R
program interface.

Execute monitoring forward.

PQMS2-ACS-INT-TC041 S6 S12
Click the button “Shut off” in the
up-right corner of the XAve-R program
interface.

Exit program.

PQMS2-ACS-INT-TC042 S0 S6-S7-S12

Enter the XAve-R program interface
again, and click the toolbar item
“Monitoring forward”. Then click the
toolbar item “Monitoring backward”.
Finally click the button “Shut off” in the
up-right corner of the main program
interface .

Start program, execute
monitoring forward. Then
monitoring backward. Exit
program finally.

https://doi.org/10.4236/jsea.2023.168019

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.168019 396 Journal of Software Engineering and Applications

Continued

PQMS2-ACS-INT-TC043 S0 S5-S5-S12

Enter the XAve-R program interface
again, and click the toolbar item
“Update”, and click it again. Finally
Click the button “Shut off” in the
up-right corner of the main program
interface.

Start program, display again.
Then execute update again.
Exit program finally.

Table A2. State test suite of invalid one step transformation for XAve-R chart.

ID Start state End state of unpermitted transforming

PQMS2-ACS-INT-TC101 S1 S1, S2, S3, S5, S6, S7, S8, S9, S10, S11

PQMS2-ACS-INT-TC102 S2 S1, S2, S3, S5, S6, S7, S8, S9, S10, S11

PQMS2-ACS-INT-TC103 S3 S1, S2, S3, S5, S6, S7, S8, S9, S10, S11

PQMS2-ACS-INT-TC104 S4 S4, S8, S9, S12

PQMS2-ACS-INT-TC105 S5 S4, S8, S9, S12

PQMS2-ACS-INT-TC106 S6 S9, S10, S12

PQMS2-ACS-INT-TC107 S7 S8, S10, S12

PQMS2-ACS-INT-TC108 S8 S1, S2, S3, S5, S6, S7, S8, S9, S10, S11, S12

PQMS2-ACS-INT-TC109 S9 S1, S2, S3, S5, S6, S7, S8, S9, S10, S11, S12

PQMS2-ACS-INT-TC110 S10 S1, S2, S3, S5, S8, S9, S10, S11, S12

PQMS2-ACS-INT-TC111 S11 S1, S5, S6, S7, S8, S9, S10, S11, S12

PQMS2-ACS-INT-TC112 S12 S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12

https://doi.org/10.4236/jsea.2023.168019

	Strategy and Methodology of Integration Testing for GUI Software
	Abstract
	Keywords
	1. Introduction and Background
	2. Related Literature and Work
	3. Strategy of Integration Testing for GUI Software
	3.1. Differentiating Strategy for Distinguished System in Integration Testing
	3.2. Strategy of Personnel Organization in Integration Testing
	3.3. Strategies in Testing Procedure in Integration Testing
	3.3.1. Incremental Testing Strategy Based on Baseline Version
	3.3.2. Testing Strategy of Circulating Loop through the Whole Life

	3.4. Strategy of Test Suite Construction in Integration Testing

	4. Methodology
	4.1. Case Software
	4.2. Research Design

	5. Result of Analysis and Tackling
	5.1. FTA for Incremental Testing in Integration Testing
	5.2. Test Suite Construction
	5.2.1. Test Suite Constructing of Integration Testing—For Small Scale Program
	5.2.2. Test Suite Constructing of Integration Testing—For Large Scale Software

	5.3. Testing Executing
	5.4. Report and Tracking

	6. Discussion
	6.1. Special Disposing Methods for Particular Software System
	6.1.1. Special Disposing for Embedded Software
	6.1.2. Special Disposing for Inspection Software

	6.2. Threats of Validity
	6.2.1. Internal Validity
	6.2.2. External Validity
	6.2.3. Construct Validity
	6.2.4. Conclusion Validity

	7. Summary
	Conflicts of Interest
	References
	Appendix

