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Abstract 
This paper presents model-based approach to process-control software de-
velopment. The presented approach enables modelling of control software in 
a straightforward manner and, at the same time, on a high level of abstrac-
tion. The essence of the presented approach is a high-level, domain-specific 
modelling language ProcGraph, which is based on three types of diagrams 
that describe the modelled system using a domain-oriented hierarchical 
structure of interdependent procedural control entities and state-transition 
diagrams describing the behaviour of the procedural control entities. The 
presented concept is demonstrated by means of higher-level model segments 
of a real process-control application that deals with the micronisation process 
in the production of titanium dioxide. The presented industrial case shows 
that the application of ProcGraph provides adequate expressive power for an 
elegant preparation of graphic specifications in a transparent and easy way. 
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1. Introduction 

Industrial process control systems are aimed at controlling and supervising the 
behaviour of technological processes in order to achieve their specific goals. 
Software is the central and most complex part of process control systems be-
cause it implements various demanding real-time control functions and proce-
dures [1]. In our experience, the complexity of the development, operation and 
maintenance of process-control software is not so much associated with classic 
control functions, i.e. achieving and maintaining the desired state of process va-
riables (hereinafter referred to as basic control), but more with the software im-
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plementing the discrete behavioural control [2], which performs a sequence of 
activities that ensure that the goals of the system or process are achieved [3] (he-
reinafter referred to as procedural control). In addition to greater complexity, 
procedural control is also characterized by a significantly higher degree of varia-
bility between the individual applications than is the case in basic control. 

For all above mentioned reasons, it is very important how this procedural 
control software is developed and what its quality attributes are. Unfortunately, 
software engineering state-of-the-practice in the domain of industrial process 
control mainly has a low maturity and is failing to address its demands, primari-
ly those regarding software quality [4] [5] [6]. The causes for this are in the fol-
lowing deficiencies of the software development process: 
• a focus on coding and testing phases with little activity in the earlier software 

lifecycle phases, 
• reliance on the individual programming skills instead of advanced software 

engineering concepts, 
• the use of inadequate device-centric, instead of process-oriented or goal- 

oriented abstractions, 
• a low degree of reuse of artefacts and knowledge, in particular those belong-

ing to early lifecycle phases, 
• a time-consuming and error-prone development process due to the low ex-

pressive power of the programming languages used in the process-control 
domain, and, 

• a low degree of development process automation. 
In order to successfully overcome the issues mentioned above, better concepts 

and methodologies for the engineering of process control software are needed. 
One of these concepts is Model Driven Engineering (MDE) paradigm, which 
raises the abstraction level of software/system development from low-level arte-
facts to a higher-level of models as central artefacts in the software engineering 
process [7]. MDE bridges the gap between problem identification and software 
implementation phases [8] [9] by combining domain-specific modelling abstrac-
tions with transformation engines and generators that allow generating of vari-
ous artefacts [7] [10]. Another concept is Domain-Specific Modelling (DSM) 
and Domain-Specific Modelling Languages (DSML), which enables the model-
ling of software and systems using highly expressive and reusable domain spe-
cific abstractions [11] and ontologies that provide conceptual models and the 
expressivity to capture requirements sufficiently [12]. Domain-specific model-
ling and Domain-specific modelling languages have recently been used in an in-
creasing number of different domains, for example the domain of smart build-
ings [13] or railway control systems [14].  

The paper is structured in the following manner. Section 2 gives an overview 
of the domain specific modelling language ProcGraph. In Section 3, an example 
application implementing the control system for the micronisation of the coarse 
granulated titanium dioxide is presented. Finally, Section 4 draws the conclu-
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sions of the paper. 

2. Domain-Specific Modelling Language ProcGraph 
2.1. Language Requirements 

As already mentioned above, in procedural control there is much more com-
plexity and variability between the individual applications than is the case in ba-
sic control. Consequently, the central part of a ProcGraph model should be in-
formation about the procedural control, and not the information about the un-
derlying basic control. 

When defining the syntax and semantics of the domain specific modelling 
language ProcGraph, the following main requirements were emphasized: 

1) The language must include elements that are suitable for describing the 
dynamic behaviour of reactive systems, since process-control systems are reac-
tive systems in their very nature. 

2) The highest-level abstractions of the language should be goal-oriented and 
problem-oriented, which means that the highest-level model elements should 
represent the high-level procedural control entities. 

3) The language must be designed so that the coupling between the individual 
elements of the model is minimised, both in the extent of coupling and in the 
number of possible different types of coupling; furthermore, coupling must be 
explicitly visible at a high level in the model. 

Given the above-listed main requirements, the following lower level language 
requirements were determined. The modelling language has to be closely related 
to the domain of process control, especially its procedural control entities, which 
should be the main elements of the language. The modelling language must also 
allow for decomposition of the procedural control entities into new entities at a 
lower hierarchical level. The behaviour of the procedural control entities at the 
lowest hierarchical level should be described by a kind of an extended finite-state 
machine. Another important segment of the modelling language is the notation 
of the synchronisation and the interdependence of the procedural control enti-
ties. The language must support the developer in minimising the coupling 
among the procedural control entities, which is the most important attribute of 
good modularisation. As mentioned above, the modelling language should as 
much as possible limit the number of possible types of coupling, i.e. the number 
of different types of dependence relations between the procedural control enti-
ties. These dependency relations must also be part of the graphical notation, and 
it should appear explicitly and at a very high level in the model. This should be 
the best way to maintain good control of the number of these dependencies and, 
consequently, also to minimise the coupling. It should be noted, that there is a 
certain similarity between the concept of procedural control entities described 
above and agents in multi-agent systems [15], where in our opinion procedural 
control entities are somewhat more domain-oriented, while agents in multi- 
agent systems are based more on the method of solution and decomposition of 
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the problem than on the problem domain itself. 

2.2. Language Elements and Diagram Types 

Based on the requirements stated in the previous section, the language elements 
were defined. The example excerpts of a ProcGraph model shown in Figure 1 
will be used as an aid to explain the elements of the language. 
 

 
Figure 1. Schematic structure of a ProcGraph model shown on an example of an entity diagram containing two elementary en-
tities (PCE1, PCE2), their state transition diagrams (STD), and their state dependencies diagram. 
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The main elements of the ProcGraph language are its central processing enti-
ties and its three different diagram types. The central processing entity in a 
ProcGraph model is the procedural control entity (PCE). A PCE can be either 
elementary or a super PCE, which is composed of lower-level PCEs. The high-
est-level PCEs are the operations, which may be decomposed to various levels of 
their sub-activities. 

The three diagram types are entities diagram, state transition diagram, and 
state dependencies diagram. These diagram types are described in the following 
subsections. 

2.2.1. Entities Diagram 
The first diagram type is the procedural control entities diagram (hereinafter re-
ferred to as entities diagram, ED). The entities diagram shows the existence of 
procedural control entities of a certain hierarchy level (elementary PCE or super 
PCE) and the composite relationships (union of all relationships) between them. 
An elementary PCEs is denoted by a rounded rectangle drawn with a thin line, 
and a super PCE is denoted by a rounded rectangle drawn with a thick line. 

There are only two possible types of relationships between PCEs: the transi-
tion condition relationship and the transition propagation relationship. The first 
is denoted by a solid arrowed line connecting two PCEs and the second by a 
dashed arrowed line. The example entities diagram in Figure 1 shows that there 
are two PCEs, PCE1 and PCE2, and that they both are elementary entities. It also 
shows that there is one or more propagational dependencies from PCE1 to 
PCE2, meaning that the transitions to certain states of PCE1 cause (are propa-
gated to) certain state transitions of PCE2. Finally, the example entities diagram 
shows that there is one or more conditional dependencies in both directions, 
from PCE1 to PCE2 (meaning that some state transitions of PCE2 are possible 
only if PCE1 is in a certain state), and from PCE2 to PCE1 (meaning that some 
state transitions of PCE1 are possible only if PCE2 is in a certain state). 

2.2.2. State Transition Diagram 
The second type of diagram is the state-transition diagram (STD), which defines 
the behaviour of a particular elementary PCE. ProcGraph state transition dia-
grams are particular in a number of ways, since they are process-control do-
main-specific [16]. 

2.2.3. State 
Syntactically, a state is a graph node denoted by a rectangle with the state name 
written inside. Examples of states are Stopped, Running, and Stopping states of 
the procedural control entity PCE2 in Figure 1. 

A state transition diagram can contain different types of states, which are di-
vided according to two criteria. According to the criterion of the processing, the 
states are divided in the following way: 
• Quiescent states are states without any processing. 
• Active states are states that contain certain processing. 
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• According to the duration criterion, the states are divided in the following 
way: 

• Transient states are those states that contain only one sequence, and when it 
is executed, a transition to another state occurs. Every active transient state 
contains one Transient sequence. 

• Durative states are those states in which a procedural control entity normally 
remains for a longer time. The processing of active durative states is divided 
into several sequences, which can be of different types. 

A more detailed discussion on the processing of states (and transitions) is 
given in a separate section below. 

2.2.4. Superstate 
Syntactically, a superstate is a graph node denoted by a rectangle with the super-
state name written inside. The inner area of the superstate rectangle may contain 
other superstates, states, and other state transition diagram elements. An exam-
ple of superstate is the Operating superstate of the procedural control entity 
PCE2 in Figure 1. 

State diagrams are composed of a hierarchy of nested states, with superstates 
and substates, and with elementary states at the lowest level of the hierarchy. The 
purpose of nested states may be to incorporate conceptually related entities or, 
as the most important purpose, to avoid the repetition of information by closing 
into a superstate the actions and/or transitions and/or dependence relations 
common to a number of states. Note that a superstate is, in fact, concurrent with 
its active substates at all nesting levels (there may be as many concurrently active 
states as the number of nesting levels). 

In the nested states in ProcGraph DSML, not only pure tree structures are 
possible, but also overlapping superstates. In other words, a state may be con-
tained in one of the two superstates, or in both of them. 

The state machine model of the ProcGraph DSML does not include the notion 
of the initial substate. In fact, all TO transitions are drawn explicitly to elemen-
tary states, while superstates may only have FROM transitions. 

2.2.5. Transition “on Completion” 
Syntactically, the transition on completion is a directed line connecting an or-
dered pair of nodes (source and sink), denoted by a solid line ending with an 
empty arrowhead. An example of transition on completion is the transition from 
the state Starting to the state Running of the procedural control entity PCE1 in 
Figure 1. 

Transition on completion is a transition from one state (Source) to another 
state (Sink), which has no particular cause event, but occurs after the completion 
of the source state processing. According to the criterion of activity (processing), 
transitions on completion can be divided into active, containing activity se-
quences, and inactive, which have no activity sequence. A transition from a su-
perstate cannot be “on completion”. Each elementary active transient state must 
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have exactly one FROM transition of the type “on completion”. 

2.2.6. Transition “on Event” 
Syntactically, the transition on event is a directed line connecting an ordered 
pair of nodes (source and sink), denoted by a solid line ending with a filled ar-
rowhead. An example of transition on event is the transition from the state 
Stopped to the state Starting of the procedural control entity PCE1 in Figure 1. 

Transition on event is a transition from one state (Source) to another state 
(Sink), which is executed on the occurrence of a particular event. At the begin-
ning of such a transition, first any active processing of the source state is imme-
diately terminated. A transition from a superstate can only be of the type “on 
event”. A transition of the type “on event” from a state S with the causing event 
defined by the expression State(S) = complete is equivalent to the transition “on 
completion” from state S. 

According to the criterion of activity (processing), transitions on event, simi-
lar to those “on completion”, can be divided into active, containing activity se-
quences, and inactive, which have no activity sequence. 

2.2.7. ProcGraph State Machine Processing Sequences 
The ProcGraph state machine behaviour model is very finely granulated. In 
other words, we can say that the modelled control entities have a very finely 
granulated processing. 

A very important feature of the processing in the behaviour model is that all 
processing is composed of sequences with a duration (i.e. with non-instantaneous 
execution), unlike, for example, the various variants of the Statecharts model, 
where only the Loop processing has duration, while the Entry, the Exit, and the 
processing of the transitions is instantaneous [17] [18]. The disadvantage of the 
latter model is in its separation of the states from the processing (actions only 
serve to trigger the activities, which are separated from the state model); this 
separation is very likely to bring difficulties with the synchronization of the ac-
tivities. 

As the processing of the transitions in the ProcGraph state machine model has 
duration, and since a modelled control entity must always be in a known state, 
the processing of the transitions is considered as a part of the target state and is 
called Specific entry processing (as it executes on the entry and is specific with 
respect to the source state). 

The processing in the ProcGraph state machine model consists of the follow-
ing elements: 

1) The processing of states, for each state up to one sequence of each sequence 
type, defined as 
• ENTRY sequence, which is executed only once on entry to a given active 

durative state, 
• LOOP sequence, which is executed cyclically all the time while a procedural 

control entity is in a given active durative state (for elementary states also the 
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opposite is true—the completion of the Loop sequence implies the comple-
tion of the state, hence the two expressions are logically equivalent: state 
completion ≡  Loop sequence completion), 

• EXIT sequence, which is executed only once at the exit from a given active 
durative state, 

• ALWAYS sequence, which is executed concurrently with all activities of an 
active durative state, including the sequences of the transitions into that state 
(its specific ENTRY sequence), 

• Transient sequence, which is executed only once at active transient states; 
and 

2) Sequences of the transitions into a state, which are considered as its specific 
Entry sequences, as stated above. 

As a particular detail, let us mention at this point that the ENTRY and LOOP 
sequences are not executed if, at the entry to a state, the condition for its termi-
nation is satisfied; however, the EXIT sequence is executed in every case. 

2.3. ProcGraph State Machine Execution 
2.3.1. Transitions Firing Susceptibility 
The firing susceptibility of transition T1 begins when the processing of transi-
tion T2 traverses the source state of transition T1. In terms of processing se-
quences, the transition becomes susceptible after enabling the Always processing 
and before starting the transition’s source state Entry sequence (if source state is 
a superstate, Figure 2(a)), or before starting the transition’s source state Specific 
entry sequence, that is the sequence of the transition T2 (if source state is an 
elementary state, Figure 2(b)). 

The firing susceptibility of transition T1 ends when the processing of transi-
tion T2 traverses the source state of transition T1, or just before starting transi-
tion’s source state Exit sequence (Figure 3(a)). The firing susceptibility of tran-
sition T1 also ends on the firing of transition T2 from the same state (Figure 
3(b)). 

2.3.2. Transitions Priorities 
If the transition conditions for more susceptible transitions become true at a 
given moment, the transition with the highest priority position will be activated 
according to the following rules: 
 

T2 T1
a)

T2 T1
b)

 
Figure 2. Begin of firing susceptibility. 

https://doi.org/10.4236/jsea.2023.168017


G. Godena, M. Glavan 
 

 

DOI: 10.4236/jsea.2023.168017 323 Journal of Software Engineering and Applications 
 

T2 T1
a)

T2 T1
b)

 
Figure 3. End of firing susceptibility. 

 
1) Transitions caused by propagations have higher priority than ordinary 

transitions. 
2) Among transitions at different levels in the hierarchy of states, higher pri-

ority is assigned to transitions with the source in higher-level (outer) superstates. 
3) Among transitions with the sources at the same level in the hierarchy of 

states, higher priority is assigned to transitions with the sink in higher-level 
(outer) superstates. 

4) If the transition conditions for more susceptible transitions with both 
sources and sinks at the same level become true at a given moment, the choice of 
a transition to be fired is non-deterministic. 

2.3.3. The Sequence of Processing on State Transition 
Before giving the definition of the sequence of processing on state transition, we 
shall define the term of the root state. The root state is the elementary state, ac-
tive at the time of transition firing, that is the source state or a substate of the 
source state, in case that the source state is a superstate. The sequence of proc-
essing on state transition from a source state to a target state is as follows: 

1) The processing of all substates of the source state is terminated. This in-
cludes all Entry, Loop, Exit, and Always processing and the processing of transi-
tions into the state (specific Entry processing) of all substates. 

2) On the path from the source to the sink state, first for the source state, and 
then successively, following the increasing state hierarchy for each superstate of 
the root state that is not a superstate of the target state, the following successive 
steps are performed: 

a) termination of the Entry, Loop, Transient and Specific entry processing, 
b) execution (starting and waiting for completion) of the Exit processing, 
c) termination of the Always processing. 
3) The state variable value changes from the source to the sink state. 
4) On the path from the source to the sink state, following the decreasing state 

hierarchy for each superstate of the sink state that is not a superstate of the root 
state, the following successive steps are performed: 

a) enabling the Always processing, 
b) execution (starting and waiting for completion) of the Entry processing, 
c) enabling the Loop processing. 
5) For the sink state, the following successive steps are performed: 
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a) enabling the Always processing, 
b) execution (starting and waiting for completion) of the Specific entry proc-

essing (the processing of the transition into the sink state), 
c) execution (starting and waiting for completion) of the Entry processing, 
d) enabling the Loop processing. 
If the sink state is a transient state, then instead of c) and d), there is an execu-

tion (starting and waiting for completion) of its Transient processing. 
The ProcGraph state machine behaviour model allows overlapping of super-

states. For an illustration of the implications of this fact, let us consider a few 
examples of state transitions in state machines including superstates, which are 
shown in Figure 4. In the example, the firing of a transition has the following 
implications on the activation or deactivation of individual superstates. 

1) Transition T1 implies activity of elementary state S3 and superstates SS2 
and SS3. At the transition, the superstate SS2 has to be activated, while the pos-
sible need of the activation of SS3 depends on which elementary state was active 
at the time of transition firing, as follows: 
• if elementary state S1 was active ⇒ superstate SS3 is activated, since it has to 

be active concurrently with state S3, which is the next active elementary state; 
• if elementary state S2 was active ⇒ superstate SS3 is not activated, since it al-

ready was active, being a superstate of S2. 
2) Transition T2 implies activity of elementary state S4 and superstate SS2. At 

the transition, the possible need of the deactivation of SS3 is dependent on which 
elementary state was active at the time of transition firing, as follows: 
• if elementary state S1 was active ⇒ superstate SS3 is not deactivated, since it 

already was non-active, not being a superstate of S1; 
• if elementary state S2 was active ⇒ superstate SS3 is deactivated, since it was 

active concurrently with S2, being its superstate, and it should not be active 
concurrently with S4, not being its superstate. 

2.3.4. State Dependencies Diagram 
The third type of diagram is the procedural control entities state-transition de-
pendencies diagram (hereinafter referred to as a state dependencies diagram, 
SDD). 

The SDD is an explosion of a composite dependency in an entity diagram, 
which exactly defines the mutual behaviour dependencies between the two PCEs  
 

SS3

SS2SS1

S1 S2 S3T1 S4

T2  
Figure 4. An illustration of state transitions including overlapping superstates. 
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it connects. An SDD consists of the STDs of two interdependent PCEs and a set 
of elementary dependencies. The lower part of Figure 1 shows an example SDD. 
A dependency can be either a conditional dependency, which is denoted by a 
normal line with a filled arrowhead, or a propagation dependency, which is de-
noted by a dashed line with a filled arrowhead. The transition that is the sink of 
a conditional dependency can only be fired when the source state of this de-
pendency is active. For example, in Figure 1 the transition between “Stopped” 
and “Running” of PCE2 can only be fired if “Running” is the active state of 
PCE1. The transition that is the sink of a propagation dependency is fired when 
the source state of this transition and the source state of the dependency are 
both active. For example, in Figure 1 the transition between “Operating” and 
“Stopped” of PCE2 is fired when “Stopped” is the active state of PCE1 and “Op-
erating” is the active state of PCE2. 

There are two additional features of the SDD. The first feature are delayed 
propagations, which take effect only after the propagation cause is present for a 
given time (defined by a parameter of the delayed propagation). The delayed 
propagations are denoted by the symbol Δ. 

The second feature are conditioned dependency relations, both conditional 
and propagational, which have effect only if an associated logical expression has 
TRUE value. The conditioned dependency relations are denoted by the letter C. 
It should be mentioned at this point, that the conditioned dependency relations 
have a potential to increase the coupling and consequently the complexity of the 
system, therefore they should be used only exceptionally and carefully. 

All the behaviour dependencies between two PCEs that are defined in an SDD 
are summarised by the shape of a composite dependency, which shows a union 
of the defined elementary dependencies. For example, in Figure 1 the composite 
dependency in the entities diagram shows that between PCE1 and PCE2 there 
are one or more conditional dependencies in each direction and one or more 
propagational dependencies directed from PCE1 to PCE2, which can also be 
seen in the SDD. 

2.3.5. Definition of Low-Level Processing in ProcGraph 
The three above mentioned diagram types represent a high-level behavioural 
structure of the ProcGraph model, which has to be filled with specific, finely 
granulated processing definitions, written in a dedicated programming language 
of the implementation platform (e.g. IEC 61131-3 Structured Text language for 
the PLC platform). This processing performs the low-level core of the intended 
functionality of the control system, including equipment control, sequential 
control and control loops of any kind, while the purpose of the graphical part of 
the language is to provide the high-level, domain-specific structural framework 
that supports an appropriate modularisation of the software to procedural con-
trol entities, modelling the high-level behaviour of these entities, and defining 
the dependencies among them. 
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3. Example Application 
3.1. Introduction 

Titanium dioxide (TiO2) is a white pigment that is widely used in paint and 
enamel production. The production of the TiO2 pigment in the Cinkarna 
chemical works consists of a succession of several processes, both continuous 
and batch. One of the processes in the last stage of the production (the so-called 
final processing stage) is the continuous process of micronisation (micro- 
grinding) of the dried TiO2 coarse granulate. A simplified technological scheme 
of the TiO2 micronisation process is shown in Figure 5. The physical model of 
the system contains 10 equipment groups, 157 equipment devices, and 224 I/O 
points. 

Coarsely crushed material with a granulation of up to 0.5 cm enters the mi-
cronisation process. The material is transported to the intermediate storage silo 
(A), from which it is taken and dosed from the weighing silo (B) to the jet mill 
(C), where it is ground to the desired fineness. Grinding is performed with 
compressed air (9.5 bar) provided by the compressor (D). Additives that im-
prove certain properties of the pigment, which are stored in the additives storage 
silo (E), are added to the mill from the additives dosing vessel (F), through a  

 

 
Figure 5. Micronisation process simplified technological scheme. 
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special dosing system (G). From the jet mill, the material is pneumatically 
transported first to the separating silo (H) and from there to the packing silo (I) 
and further to the packing room (J) of the final product. Dust removing (K) is 
carried out from the packing room, whereby the collected material is returned 
(L) to the packing silo. 

3.2. ProcGraph Model of the Micronisation Process 

Due to the limited space for this example, it is not possible to present it in its en-
tirety; instead we had to choose between complete coverage with a few details (a 
broad and shallow approach) and partial coverage with more details (a narrow 
and deep approach). In order to give the reader the best possible insight into the 
presented system, we decided to show the high level view of all operations. The 
operations are elaborated to the level of individual STDs and SDDs, without de-
tailed specification of the low-level processing. Omitting the low-level details 
should not hinder a general understanding of the presented approach and the 
system considered. 

3.2.1. Micronisation Root Diagram 
During the requirements analysis process, the procedural control of the mi-
cronisation process was decomposed into six operations (highest level proce-
dural control entities), which constitute the highest level entity diagram, called 
root diagram: Dosing, Jet grinding, Compressed air supply, Pneumatic transport 
to the separating silo, Pneumatic transport to the packaging silo, and Packaging 
room dust removing. The root diagram is shown in Figure 6. 

From the root diagram we can see that there are six top-level PCEs (opera-
tions) and that three of them (Dosing, Pneumatic transport to the separating 
silo, and Pneumatic transport to the packaging silo) are not elementary, but have 
further decomposition to sub-activities (not-elementary operations being de-
noted by rounded rectangles drawn with thick lines). Their lower-level activities 
are placed in each operation’s subED. 

The other three operations (Jet grinding, Compressed air supply, Packaging 
room dust removing) are elementary (denoted by rounded rectangles drawn 
with thin lines), so those operations have no further decomposition to 
lower-level activities (in other words, they are elementary PCEs); therefore for  
 

 
Figure 6. Root diagram of the micronisation process. 
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those operations the next step is to define their behaviour through respective 
STDs. 

From the root diagram we can also see that there are conditional and propa-
gational dependencies between pair of operations, which form a kind of condi-
tional/propagational chain of operations. So, for example, we can see that be-
tween the Jet Grinding and Compressed Air Supply operations there are condi-
tional dependencies in both directions (in each operation there is a state transi-
tion that is dependent from other operation being in a certain state). We can also 
see, that there is a propagational dependency directed from Compressed Air 
Supply to Jet Grinding operation, which means that a certain state of Com-
pressed Air Supply operation causes (is propagated to) a certain transition of Jet 
Grinding operation. 

3.2.2. Operation Dosing 
The operation Dosing is non-elementary, hence it is decomposed into a new ED 
containing its sub-activities. The entity diagram of the Dosing operation is 
shown in Figure 7. 

The Dosing operation entity diagram in Figure 7 shows that this operation is 
composed of four subactivities, namely: 

1) Dosing.Core, which performs the main functional part of the Dosing op-
eration: 
• dosing coarse granulate, by means of (negative ramp) weight control in the 

weighing silo, 
• dosing additives, by means of flow control from the additives dosing vessel; 

2) Coarse Granulate Weighing Silo Pre-Charging (CGWSPC); 
3) Coarse Granulate Weighing Silo Hammering (CGWSH); 
4) Additives Dosing Vessel Pre-Charging (ADVPC). 
In Figure 7 aproxy symbol of the Jet Grinding operation appears. The root 

ED in Figure 6 showed the existence of conditional and propagational depend-
encies between the operations Jet Grinding and Dosing. Since the Dosing opera-
tion is non-elementary, i.e. it is composed of four sub-activities, as stated above, 
it has to be defined which of its four sub-activities is/are interdependent with the 
Jet Grinding operation. The conditional/propagational dependence connections 
in Figure 7 show that Dosing.Core is the sub-activity of Dosing that is interde-
pendent with the Jet Grinding operation. 
 

 
Figure 7. Entity diagram of the operation dosing. 
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Figure 7 also shows the dependencies between the main sub-activity Dos-
ing.Core and other sub-activities, as follows: 
• Additives Dosing Vessel Pre-Charging is propagationally dependent on Dos-

ing.Core, 
• Between the Coarse Granulate Weighing Silo Pre-Charging activity and the 

Dosing.Core activity there is a propagational dependence in both directions, 
• Coarse Granulate Weighing Silo Hammering is propagationally dependent 

on Coarse Granulate Weighing Silo Pre-Charging. 
In the following we present the state transition diagrams of the individual 

elementary sub-activities of the Dosing operation, as well as the state dependen-
cies diagrams showing concrete details regarding the above mentioned propaga-
tional dependencies between individual sub-activities of the Dosing operation. 

The state transition diagram of the Dosing.Core subactivity is shown in Fig-
ure 8. 

From the STD in Figure 8 it can be seen that the behaviour of this activity is 
rather simple and self-explanatory. The starting part is divided into two states, 
according to the points of the starting sequence at which the two auxiliary 
suboperations (CGWSPC and GCWSH) have to be started. The Running state is 
divided into two substates: Weight control, which is active when the coarse 
granulate weighing silo is not charging, and Weight PV (process value) tracking, 
which is active when the coarse granulate weighing silo is charging. 
 

 
Figure 8. STD of the Dosing sub-activity Dosing.Core. 
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Figure 9 shows the STD of the activity Dosing.CGWSPC, showing its two 
substates of the state Running, namely ChargingOFF (charging of the weighing 
silo is not active, hence the granulate dosing from the weighing silo can be per-
formed through weight control) and ChargingON (charging of the weighing silo 
is active, hence the weight control is in a PV (process value) tracking mode. 

Figure 10 shows the bi-directional propagational dependency between Dos-
ing.Core and Dosing.CGWSPC activities. On the one hand, Dosing.CGWSPC is 
subordinated to Dosing.Core, i.e. it is started and stopped via propagational de-
pendencies from Dosing.Core. On the other hand, Dosing.Core is propagation-
ally dependent by Dosing.CGWSPC, since it switches between Weight control 
and Weight process value tracking states, based on the charging status of Dos-
ing.CGWSPC. 

Figure 11 shows the simple Stopped-Running STD of the weighing silo ham-
mering (Dosing.CGWSH) sub-activity, and the propagational dependencies in 
Figure 12 show that weighing silo hammering sub-activity is active (Running) if 
and only if the weighing silo pre-charging sub-activity (Dosing.CGWSPC) is in 
its ChargingON state. 

Figure 13 shows the states of the Additives Dosing Vessel Pre-Charging 
(Dosing.ADVPC) activity, and the SDD in Figure 14 shows that Dosing.ADVPC 
is subordinated to Dosing.Core, i.e. it is started and stopped via propagational 
dependencies from Dosing.Core. 

3.2.3. Operation Jet Grinding 
Figure 15 shows the STD of the operation Jet Grinding, while the Figure 16  
 

 
Figure 9. STD of the dosing sub-activity coarse granulate weighing 
silo pre-charging. 
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Figure 10. SDD between Dosing.Core and Dosing.CGWSPC. 

 

 
Figure 11. STD of the dosing sub-activity coarse granulate weighing silo hammering. 

 

 
Figure 12. SDD between Dosing.CGWSPC and Dosing.CGWSH. 
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Figure 13. STD of the dosing sub-activity additives 
dosing vessel pre-charging. 

 

 
Figure 14. SDD between Dosing.Core and Dosing.ADVPC. 

 
shows the dependencies between the Jet Grinding and the Dosing operation 
(more specifically its sub-activity Dosing.Core). 

Simply stated, the dependency relation is that Dosing isn’t allowed to operate 
if Jet Grinding is not running. This relation implies three dependencies (two  
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Figure 15. STD of the operation Jet Grinding. 

 

 
Figure 16. SDD between Dosing.Core and Jet Grinding. 

 
conditional and one propagational) in the SDD between Jet Grinding and Dos-
ing.Core, namely: 

1) The condition for the starting of Dosing.Core is that the state of Jet Grind-
ing is Running. 

2) The condition for the stopping of Jet Grinding is that the state of Dos-
ing.Core is Stopped. 

3) If Dosing.Core is in one of the sub-states of the Operating superstate, and, 
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at the same time, Jet Grinding isn’t in Running state (i.e. it is in Not running su-
perstate), the transition of Dosing.Core activity to its Stopping state occurs; in 
other words, the Not running (super)state of Jet Grinding is propagated to the 
transition of Dosing.Core from the Operating (super)state to the Stopping state. 

3.2.4. Operation Compressed Air Supply 
Figure 17 shows the STD of the operation Compressed Air Supply, while the 
Figure 18 shows the dependencies between the Compressed Air Supply and the  
 

 
Figure 17. STD of the operation compressed air supply. 

 

 
Figure 18. SDD between jet grinding and compressed air supply. 
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Jet Grinding operation. Simply stated, the dependency relation is that Jet Grind-
ing isn’t allowed to operate if Compressed Air Supply is not running. This rela-
tion implies three dependencies (two conditional and one propagational) in the 
SDD between Compressed Air Supply and Jet Grinding, namely: 

1) The condition for the starting of Jet Grinding is that the state of Com-
pressed Air Supply is Running. 

2) The condition for the stopping of Compressed Ait Supply is that the state of 
Jet Grinding is Stopped. 

3) If Jet Grinding is in one of the sub-states of the Operating superstate, and, 
at the same time, Compressed Air Supply isn’t in Running state (i.e. it is in Not 
running superstate), the transition of Jet Grinding operation to its Stopping state 
occurs; in other words, the Not running (super)state of Compressed Air Supply 
is propagated to the transition of Jet Grinding from the Operating (super)state 
to the Stopping state. 

3.2.5. Operation Pneumatic Transport to the Separating Silo 
The operation Pneumating Transport to the Separating Silo (PTSS) is non-ele- 
mentary, hence it is decomposed into a new ED containing its sub-activities. The 
entity diagram of the PTSS operation is shown in Figure 19. 

The PTSS operation entity diagram in Figure 19 shows that this operation is 
composed of three subactivities, namely: 

1) PTSS.Core, which performs the main functional part of the PTSS operation, 
i.e. the pneumatic transport to the separating silo itself; 

2) Separating Silo Filter Bags Pneumatic Shaking (SSFBPS); 
3) Separating Silo Entry Pneumatic Hammering (SSEPH). 
In Figure 19 there appear two proxy symbols of other operations, which are 

interdependent with the PTSS operation, namely the Compressed Air Supply 
operation, and the PTPS operation (more specifically, its PTPS.Core sub-activity).  
 

 
Figure 19. ED of the operation PTSS. 
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The root ED in Figure 6 showed the existence of conditional and propagational 
dependencies between the non-elementary operation PTSS and the operations 
Compressed Air Supply (elementary) and PTPS (non-elementary). Since the 
PTSS operation is non-elementary, i.e. it is composed of three sub-activities, as 
stated above, it has to be defined which of its three sub-activities is/are interde-
pendent with the Compressed Air Supply operation, and with the PTPS opera-
tion. The conditional/propagational dependence connections in Figure 19 show 
that PTSS.Core is the sub-activity of PTSS that is interdependent with both 
Compressed Air Supply and PTPS operations. 

Figure 19 also shows the dependencies between the main sub-activity PTSS.Core 
and other sub-activities, as follows: 
• Separating Silo Filter Bags Pneumatic Shaking is propagationally dependent 

on PTSS.Core; 
• Separating Silo Entry Pneumatic Hammering is propagationally dependent 

on PTSS.Core. 
In the following we present the state transition diagrams of the individual 

elementary sub-activities of the PTSS operation, as well as the state dependencies 
diagrams showing concrete details regarding the above mentioned propagational 
dependencies between individual sub-activities of the PTSS operation. 

The state transition diagram of the PTSS.Core subactivity is shown in Figure 
20. From the STD it can be seen that the behaviour of this activity is rather sim-
ple and self-explanatory. The starting part is divided into two states, according 
to the point of the starting sequence at which the two auxiliary sub-activities 
(SSFBPS and SSEPH) have to be started. On the other hand, the stopping part is 
divided into four states, according to the points of the stopping sequence at 
which the two auxiliary sub-activities (SSFBPS and SSEPH) have to be stopped. 

Figure 21 shows the simple Stopped-Running STD of the PTSS.SSFBPS 
sub-activity, with the Running (super)state divided into two states, namely 
Regular (pneumatic shaking operating on the regular basis, based on the pres-
sure difference between the two sides of the filter bags) and Unconditional 
(pneumatic shaking operating unconditionally, regardless the pressure differ-
ence between the two sides of the filter bags). 

The propagational dependencies in Figure 22 show that the PTSS.SSFBPS 
sub-activity is started on PTSS.Core entering the Starting.End state, forced to 
unconditional shaking on PTSS.Core entering the Stopping.3 state, and that it is 
stopped on PTSS.Core entering the Stopping.4 state. 

Figure 23 shows the simple Stopped-Running STD of the PTSS.SSEPH sub- 
activity. The propagational dependencies in Figure 24 show that the PTSS.SSEPH 
sub-activity is started on PTSS.Core entering the Starting.End state, and that it is 
stopped on PTSS.Core entering the Stopping.2 state. 

The ED of the operation PTSS in Figure 19 showed the conditional-propaga- 
tional dependencies of the operation PTSS (its sub-activity PTSS.Core) with two 
other operations, namely PTPS (described in the next section), and Compressed 
Air Supply, described in the following. Figure 25 shows the dependencies 
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Figure 20. STD of the sub-activity PTSS.Core. 

 

 
Figure 21. STD of the sub-activity PTSS.SSFBPS. 

 
between the PTSS.Core sub-activity and the Compressed Air Supply operation. 
Simply stated, the dependency relation is that Compressed Air Supply isn’t al-
lowed to operate if PTSS.Core is not running. This relation implies three 
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Figure 22. SDD between PTSS.Core and PTSS.SSFBPS. 

 

 
Figure 23. STD of the sub-activity PTSS.SSEPH. 

 
dependencies (two conditional and one propagational) in the SDD between 
Compressed Air Supply and PTSS.Core, namely: 

1) The condition for the starting of Compressed Air Supply is that the state of 
PTSS.Core is Running. 

2) The condition for the stopping of PTSS.Core is that the state of Com-
pressed Air Supply is Stopped. 

3) If Compressed Air Supply is in one of the sub-states of the Operating su-
perstate, and, at the same time, PTSS.Core isn’t in Running state (i.e. it is in Not 
running superstate), the transition of Compressed Air Supply operation to its 
Stopping state occurs; in other words, the Not running (super)state of PTSS.Core 
is propagated to the transition of Compressed Air Supply from the Operating 
(super)state to the Stopped state. 
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Figure 24. SDD between PTSS.Core and PTSS.SSEPH. 

3.2.6. Operation Pneumatic Transport to the Packaging Silo 
The operation Pneumating Transport to the Packaging Silo (PTPS) is non-ele- 
mentary, hence it is decomposed into a new ED containing its sub-activities. The 
entity diagram of the PTPS operation is shown in Figure 26. 

The PTPS operation entity diagram in Figure 26 shows that this operation is 
composed of two subactivities, namely: 

1) PTPS.Core, which performs the main functional part of the PTPS opera-
tion, i.e. the pneumatic transport to the packaging silo itself; 

2) Separating Silo Bottom Pneumatic Hammering (SSBPH). 
In Figure 26 there appear two proxy symbols of other operations, which are 

interdependent with the PTPS operation, namely the PTSS operation (more spe-
cifically, its PTSS.Core sub-activity), and the Packaging Room Dust Removing 
operation. The root ED in Figure 6 showed the existence of conditional and 
propagational dependencies between the non-elementary operation PTPS and 
the operations Packaging Room Dust Removing (elementary) and PTSS 
(non-elementary). Since the PTPS operation is non-elementary, i.e. it is com-
posed of two sub-activities, as stated above, it has to be defined which of its two  
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Figure 25. SDD between CAS and PTSS.Core. 

 

 
Figure 26. ED of the operation PTPS. 

 
sub-activities is/are interdependent with the PTSS operation, and with the 
Packaging Room Dust Removing operation. The conditional/propagational de-
pendence connections in Figure 26 show that PTPS.Core is the sub-activity of 
PTPS that is interdependent with both PTSS and Packaging Room Dust Remov-
ing operations. 

Figure 26 also shows the dependencies between the sub-activity Separating 
Silo Bottom Pneumatic Hammering is propagationally dependent on PTPS.Core. 
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In the following we present the state transition diagram of the PTPS sub-acti- 
vity Separating Silo Bottom Pneumatic Hammering, as well as the state depend-
encies diagrams showing concrete details regarding the above mentioned 
propagational dependencies between the two sub-activities of the PTPS opera-
tion. 

The state transition diagram of the PTPS.Core subactivity is shown in Figure 
27. From the STD it can be seen that the behaviour of this activity is rather sim-
ple and self-explanatory. The starting part is divided into two states, according 
to the point of the starting sequence at which the auxiliary sub-activity (SSBPH) 
has to be started. On the other hand, the stopping part is also divided into two 
states, according to the points of the stopping sequence at which the auxilliary 
sub-activity has to be stopped. The (super)state Running has two states, namely 
Running with or without feedback from the packaging room, which is defined 
by a technological parameter; the value of that parameter can be changed at any 
time, also when the operation PTPS is running. 

Figure 28 shows the simple Stopped-Running STD of the PTPS.SSBPH sub- 
activity. The propagational dependencies in Figure 29 show that the PTPS.SSBPH 
sub-activity is started on PTPS.Core entering the Starting.End state, and that it is 
stopped on PTPS.Core entering the Stopping.End state. 
 

 
Figure 27. STD of the sub-activity PTPS.Core. 
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Figure 28. STD of the sub-activity PTPS.SSBPH. 

 

 
Figure 29. SDD between PTPS.Core and PTPS.SSBPH. 

 
The ED of the operation PTPS in Figure 26 showed the conditional-propaga- 

tional dependencies of the operation PTPS (its sub-activity PTPS.Core) with two 
other operations, namely Packaging Room Dust Removing (described in the 
next section), and PTSS (its sub-activity PTSS.Core), described in the following. 
Figure 30 shows the dependencies between the PTPS.Core PTSS.Core. Simply 
stated, the dependency relation is that PTSS.Core isn’t allowed to operate if 
PTPS.Core is not running. This relation implies three dependencies (two condi-
tional and one propagational) in the SDD between PTSS.Core and PTPS.Core, 
namely: 

1) The condition for the starting of PTSS.Core is that the state of PTPS.Core is 
Running. 

2) The condition for the stopping of PTPS.Core is that the state of PTSS.Core 
is Stopped. 

3) If PTSS.Core is in one of the sub-states of the Operating superstate, and, at 
the same time, PTPS.Core isn’t in Running state (i.e. it is in Not running super-
state), the transition of PTSS.Core activity to its stopping sequence (Stopping.1 
state) occurs; in other words, the Not running (super)state of PTPS.Core is 
propagated to the transition of PTSS.Core from the Operating (super)state to the  
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Figure 30. SDD between PTPS.Core and PTSS.Core. 

 
Stopping.1 state. As a particular detail, let us mention that this propagation is 
delayed, i.e. it doesn’t occur immediately on PTPS.Core entering its Not running 
state, but with a delay, defined by a technological parameter. In other words, it is 
allowed for PTSS.Core to operate when PTPS.Core is not running, however only 
for a limited time, defined by a parameter of the dependency. 

3.2.7. Operation Packaging Room Dust Removing 
Figure 31 shows the STD of the operation Packaging Room Dust Removing 
(PRDR), while the Figure 32 shows the dependencies between the PRDR and 
the PTPS operation (more specifically its sub-activity PTPS.Core). Note that in 
this case the dependencies are conditional, meaning thar they take effect only if a 
condition C is TRUE, where C: = Running with feedback from packaging room = 
TRUE. 

Simply stated, the dependency relation is that PTPS.Core isn’t allowed to op-
erate if the operation PTPS has feedback from packaging room turned on and 
the operation Packaging Room Dust Removing is not running. This relation im-
plies three dependencies (two conditional and one propagational) in the SDD 
between PRDR and PTPS.Core, namely: 

1) If Running with feedback from packaging room = TRUE, then the condi-
tion for the starting of PTPS.Core is that the state of PRDR is Running; 
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Figure 31. STD of the operation PRDR. 

 

 
Figure 32. SDD between PRDR and PTPS.Core. 
 

2) If Running with feedback from packaging room = TRUE, then the condi-
tion for the stopping of PRDR is that the state of PTPS.Core is Stopped; 

3) If Running with feedback from packaging room = TRUE, and if PTPS.Core 
is in one of the sub-states of the Operating superstate, and, at the same time, 
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PRDR isn’t in Running state (i.e. it is in Not running superstate), the transition 
of PTPS.Core activity to its stopping sequence (Stopping.Init state) occurs; in 
other words, if Running with feedback from packaging room = TRUE, then the 
Not running (super)state of PRDR is propagated to the transition of PTPS.Core 
from the Operating (super)state to the Stopping.Init state. 

3.3. Final Remarks on the Example Application 

The technological process under consideration is a mid-size and mid-complexity 
continuous process, and thus not very simple, however, the example shows that 
it can be mastered in a very transparent and easy way using elegant graphic 
specifications with the adequate expressive power, which allows efficient analysis 
and communication between the analyst and the process engineers during the 
early development phases, as well as between the analyst and the programmers 
in the implementation and deployment phases. The graphic specifications in the 
example have a rather fine granularity, as a result, sequential processing in the 
states and transitions is very straightforward and the size of individual sequences 
ranges from just a few lines to no more than a few tens of lines of code in IEC 
61131-3 Structured Text language. 

4. Conclusion 

The paper presents a software engineering approach to analysis and design of 
process control software, based on an innovative high-level, domain-specific 
modelling language ProcGraph. The approach is process-oriented, unlike the 
equipment-oriented methods that are commonly used in process control soft-
ware design, and hence it is closer to the process engineer’s point of view, which 
facilitates the mapping of the process engineer’s requirements into software 
analysis and design model, reducing software development time and improving 
the quality of the software. Furthermore, the specification can easily be verified 
and, consequently, has a great potential to achieve a high degree of correctness. 
Finally, it can be routinely transformed into the program code, allowing the code 
to be verified and to achieve a near-zero defect in the coding phase. Hence, the 
presented type of development paradigm could be characterised as an example 
of »correct by construction “process, in contrast to the nowadays common 
»construct by correction” process. 
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