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Abstract 
This paper introduces a new version of the open-source educational software, 
LESM (Linear Elements Structure Model), developed in MATLAB for struc-
tural analysis of one-dimensional models such as frames, trusses, and grillag-
es. The updated program includes dynamic analysis, which incorporates iner-
tial and damping effects, time-dependent load conditions, and a transient 
solver with multiple time integration schemes. The software assumes small 
displacements and linear-elastic material behavior. The paper briefly explains 
the theoretical basis for these developments and the reorganization of the 
source code using Object-Oriented Programming (OOP). The updated Graph-
ical User Interface (GUI) allows interactive use of dynamic analysis features 
and displays new results such as animations, envelope diagrams of internal 
forces, phase portraits, and the response of degrees-of-freedom in time and 
frequency domain. The new version was used in a structural dynamics course, 
and new assignments were elaborated to improve students’ understanding of 
the subject. 
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1. Introduction 

The teaching of structural analysis has faced a dilemma in recent decades: how 
to balance the use of manual methods and computer programs. It is known that 
structural mechanics courses that are based on theoretical instruction can bene-
fit greatly from the use of software, especially from those educational-oriented, 
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as it keeps the course up to date with nowadays resources and, at the same time, 
more attractive to students. These benefits are potentially even greater when 
graphical-interactive resources are available. The employment of computer pro-
grams can complement the theory by helping students to: model and simulate 
the behavior of real-world structures, besides simple academic problems; get a 
physical interpretation of the governing equations by observing how the me-
chanical system behaves; acknowledge the sensitivity of the system to the input 
parameters; visualize the results and learn to better criticize them. Moreover, in 
hands-on programming-involving scenarios, access to the source code can pro-
vide a unique experience for students, which goes beyond the use of the software 
as a “black-box”. This approach allows students to work on the implementation 
of analysis methods, which is easier when the code is written in a high-level pro-
gramming language, and it is modular and well documented. 

This paper describes the extension of a structural analysis software, LESM 
(Linear Elements Structure Model), to include dynamic analysis. The goal of this 
development was to complement a graduate course on structural dynamics at 
the Department of Civil and Environmental Engineering of the Pontifical Catholic 
University of Rio de Janeiro (PUC-Rio). This paper also intends to show how the 
course was adapted to incorporate the use of the software as an educational tool 
and how such use took place to enhance students’ understanding of the subject. 

LESM is an educational project developed at PUC-Rio. The program is 
open-source, written in the MATLAB script language, and it was initially de-
signed to serve as a complementary tool for undergraduate and graduate Engi-
neering courses at PUC-Rio. The first version of the program was conceived as a 
non-graphical tool for static linear-elastic analysis of models composed of linear 
elements, i.e. prismatic uniaxial elements with one dimension much larger than 
the others, such as bars (axial behavior only) and beams (axial, flexural, and tor-
sion behaviors). These models are 2D/3D frames, 2D/3D trusses, and grillages. 
The focus was to provide a didactic source code to introduce students to the im-
plementation of matrix structural analysis methods [1]. The second version in-
corporated a user-friendly Graphical User Interface (GUI) with sophisticated 
mouse modelling capabilities [2], among some new analysis features [3]. That 
version was introduced in a course of computer graphics for engineering and 
also increased the usability of the software, allowing not only students but also 
professional engineers to use the program for more practical purposes, but still 
limited to static analysis. 

The consideration of dynamic effects to analyze the vibration of structures 
was an immediate demand. This type of analysis is relevant in many engineering 
applications, and there are only a few educational-oriented programs for this 
purpose with graphical-interactive features and modelling freedom, i.e. geome-
try and degrees-of-freedom (DOFs) are not fixed to pre-defined templates. Ta-
ble 1 provides a list of software developed for educational purposes with dy-
namic analysis capabilities and graphical resources. Part of these programs are 
specialized in earthquake engineering [4]-[11] and are often intended to serve as 
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virtual laboratories. Many of them are restricted to simple predefined models, 
such as single degree-of-freedom (SDOF) and multiple degrees-of-freedom 
(MDOF) systems [4] [5] [6] [11] [12] [13] [14] [15], or frames defined by para-
metric templates [7] [8] [9] [10]. Among those that allow free modelling of 
frames, some rely on non-graphical inputs [16] [17] [18] [19] [20] and only a 
few have an interactive interface for efficient pre- and post-processing [21] [22] 
[23] [24]. However, even for the latter group, the models are usually restricted to 
2D and the dynamic analysis options are very limited. In addition, open-source 
is not a common feature of these softwares. Therefore, the third version of LESM 
is devoted to filling these gaps. 

 
Table 1. Educational software with dynamic structural analysis capabilities and graphical 
resources. 

Software name Platform Open source Models Reference 

Abel MATLAB Yes 3D frame templates [10] 

CAL/CGI FORTRAN Yes 2D frames 
[16] [17] 

[25] 
CALSB Java No 2D frames [21] 

CALSIDOF Java No SDOF systems [15] 

DINEST DELPHI No SDOF systems [12] 

Dynasoft Java Yes 
SDOF/MDOF systems, 
2D/3D frame templates 

[9] 

Unamed Mathematica No SDOF systems [26] 

DYSSOLVE MATLAB Yes 
SDOF systems, 

2D frames 
[27] 

ENGLTHA Visual Basic No SDOF systems [11] 

Frame of Mind 
Java/Flash/ 
FORTRAN 

No 2D frames [22] 

Frame3DD C Yes 2D/3D frames [20] 

Ftool C No 2D frames [24] 

LAS Visual C# Yes 2D frames [18] 

MASTAN2 MATLAB No 2D/3D frames [23] 

NDOF MATLAB No MDOF systems [13] 

NONLIN Visual Basic No SDOF/MDOF systems [4] 

SDET Java No SDOF systems [14] 

Stabil MATLAB Yes 
2D/3D frames, 

Continuous FEM models 
[19] 

Structural Control 
Virtual Laboratories 

Java No 2D frame templates [7] [8] 

VSDL 
Visual Basic/ 

Java 
No SDOF/MDOF systems [5] [6] 
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In the new version of LESM, inertial and damping forces of bar and beam 
elements are considered in different ways according to the selected formulation 
for the mass and damping matrices. Regarding flexural behavior, both Eu-
ler-Bernoulli and Timoshenko theories are available. Different solution metho-
dologies can be employed for the transient problem: a numerical time integra-
tion with one of the implemented implicit or explicit schemes, or an analytical 
solution of the homogeneous equation for free vibration through a modal de-
composition. Initial conditions, load conditions subjected to customizable time 
functions, and concentrated masses can be applied to free DOFs. In all cases, 
small displacements and linear-elastic material behavior are assumed. The 
available results are animations of the transient response or vibration modes, 
envelope diagrams of internal forces, phase portraits, and the response of DOFs 
in time and frequency domain. 

These developments took advantage of some of the main features initially 
proposed for the program. One of them is the code modularity provided by Ob-
ject-Oriented Programming (OOP). In fact, this work put to the test the extensi-
bility of the analysis module as idealized in its creation [1], and the result is very 
satisfactory, as only a few modifications to the original code were required, and 
most of the dynamic analysis features were placed in new classes. Another one is 
the graphical interactivity provided by MATLAB, as explained in [2]. The dy-
namic analysis requires much more graphical resources than a simple static 
analysis since users may want to see animations of the vibrating structures and 
plots of the transient response. Furthermore, the amount of inputs and outputs 
is larger, which requires an intuitive GUI to avoid the pre and post-processing 
becoming confusing. The installation files and the complete source code of the 
latest release version of the program are available on its website1. The project is 
also hosted in a public Git repository2. 

The remainder of this paper is organized as follows. Section 2 explains the 
theoretical considerations of structural dynamics behind the new developments. 
Section 3 describes the new data structure of the source code of the analysis 
module, focusing on the organization of the OOP classes. Section 4 shows the 
new graphical interface features related to dynamic analysis. Section 5 demon-
strates how the program was applied in an academic context. The paper ends 
with concluding remarks and discusses future developments in Section 6. 

2. Theoretical Considerations  

In dynamic analysis, inertial and damping forces are considered, in addition to 
the elastic forces considered in static analysis. In this case, the response of the 
discretized structural model, expressed as vectors of nodal displacements and 
rotations ( x ), velocities ( x ), and accelerations ( x ), as well as external loads 
(f), are time (t) dependent. The system of dynamic equilibrium equations is giv-

 

 

1https://web.tecgraf.puc-rio.br/lesm 
2https://gitlab.com/rafaelrangel/lesm 
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en in Equation (1), where M, C, and K are the mass, damping and stiffness ma-
trices, respectively. 

( ) ( ) ( ) ( )t t t t+ + = Mx Cx Kx f                  (1) 

2.1. System Assembly 

The global mass, damping and stiffness matrices of the structure are assembled 
with contributions from the local matrices of each element. The local stiffness 
matrix available in the program considers Euler-Bernoulli and Timoshenko 
theories. Details about the element stiffness matrix formulation can be found in 
the previous work [1]. The formulation of the local mass matrix and the global 
damping matrix, as well as the assembly of the array of nodal loads, are briefly 
discussed in the sequence. 

2.1.1. Mass Matrix 
Two formulation types are commonly employed for the local mass matrix of 
structural elements. They are the lumped and consistent formulation. Both op-
tions are available in LESM. The lumped formulation is based on the simplifica-
tion that the total element mass is equally divided into two concentrated masses 
at the end nodes. This assumption leads to a diagonal local matrix, which can 
significantly reduce the computational cost in several numerical integration 
schemes. Moreover, in LESM, concentrated masses contribute only to transla-
tional inertia, which relates to DOFs of displacements, not rotations. On the 
other hand, the consistent formulation assumes that the element mass is distri-
buted in accordance with the shape functions that describe the displacement and 
rotation fields. Hence, the local mass matrix, Me, is computed through Equation 
(2), where ρ is the material density, A is the cross-section area, L is the element 
length, and N is the vector of shape functions. In this case, the local mass matrix 
is relative not only to translational, but also to rotational DOFs. The result of the 
integral expression of Equation (2) for a generic 3D beam element, written in 
such a way that it works for both Euler-Bernoulli and Timoshenko theories, is 
presented in the Appendix. The matrix coefficients of a generic 3D beam are fil-
tered into the element matrix according to the selected model type, as explained 
in [1]. 

T
0

d
L

e A xρ= ∫M N N                       (2) 

Alternatively, customized mass matrix [28] is also available in LESM. In this 
approach, the local mass matrix is a linear combination of lumped and consis-
tent formulations, as shown in Equation (3), where µ is a coefficient of propor-
tionality that must be provided by the user so that 0 ≤ µ ≤ 1. 

( ) lump consist1e e eµ µ= − +M M M                  (3) 

2.1.2. Damping Matrix 
In LESM, a classical Rayleigh damping is assumed. In this case, the global 

https://doi.org/10.4236/jsea.2023.167014


C. H. B. Resende et al. 
 

 

DOI: 10.4236/jsea.2023.167014 270 Journal of Software Engineering and Applications 
 

damping matrix is considered as a linear combination of the global mass and 
stiffness matrices, as expressed in Equation (4), where α and β are coefficients of 
proportionality. These coefficients can be directly informed by users, or com-
puted from the critical damping factors of the first and second vibrations modes 
(ξ1 and ξ2) according to Equation (5), where ω1 and ω2 are the natural angular 
frequencies associated to modes 1 and 2, respectively. In this case, the critical 
damping factors must be informed by the user. 

α β= +C M K                         (4) 
1

1 1 1

2 2 2

1
2

1
1
ω ω ξα
ω ω ξβ

−
    

=    
     

                   (5) 

2.1.3. External Load Vector 
External loads can be concentrated forces and moments applied to nodes or dis-
tributed forces applied along elements. These load components are assembled 
into the vector of external loads. In the case of dynamic analysis, the compo-
nents of the load vector may vary over time. In LESM, only nodal loads are al-
lowed to be time-dependent. A load matrix (F) is assembled with the load vec-
tors at each time step, as stated in Equation (6). Vector a  stores user-specified 
amplitudes of the nodal loads, and vector y  holds discrete values of dimen-
sionless time functions that depict how each load varies over time. Note that, as 
we are mostly interested in not very large problems, memory is not a major 
concern, thus it is no issue to store F as a matrix. However, it is straightforward 
to adapt the solvers to compute a force vector on the fly at each time step to 
spare RAM usage, should it be a pressing matter in an eventual large simulation. 

( ) ( )Tt t=F ay                        (6) 

2.2. System Solution 

To obtain the solution of the system of dynamic equilibrium equations, LESM 
makes available two methodologies: numerical time integration schemes, and 
analytical solutions for free vibration via modal decomposition. Both are briefly 
described in the sequence.  

2.2.1. Numerical Integration 
LESM provides different solution algorithms for numerical time integration with 
both explicit and implicit schemes. Currently, there are four options: Newmark, 
Wilson-θ, three-step Adams-Moulton, and 4th order Runge-Kutta. Given the 
appropriate initial conditions and time step size, these algorithms calculate the 
vectors of nodal displacements/rotations, velocities, and accelerations at each 
time step. However, with this approach it is not possible to decouple the influ-
ence of each vibration mode on the dynamic response. 

2.2.2. Modal Decomposition 
This methodology allows the identification of significant vibration modes and 
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their contributions. This is done by decoupling the system of equations, through 
a basis transformation to modal space, and solving analytically each resultant 
homogeneous differential equation for free vibration. 

Firstly, it is necessary to obtain the natural frequencies and modes of vibra-
tion. To do this, undamped and free vibrating conditions are applied to Equa-
tion (1), leading to the generalized eigenvalue problem of Equation (7). It yields 
a solution pair ( 2

iω , φi) for each of the n vibration modes, where n is the number 
of free DOFs, φi is the ith eigenvector, which represents the normalized nodal 
displacements/rotations of the ith vibration mode, and the ith eigenvalue, 2

iω , is 
the squared natural frequency associated to φi. The solution of natural vibration 
frequencies and modes is provided by LESM. 

2 0ω− =K Mϕ                           (7) 

To solve the transient problem by modal decomposition, the system of dynamic 
equilibrium equations in Equation (1) is transformed as in Equation (8), where Φ 
is the modal matrix, whose columns are composed of the eigenvectors φi, and Ω2 is 
the spectral matrix, whose diagonal coefficients are composed of the eigenvalues 

2
iω . Equation (8) represents an uncoupled system, where the resultant ordinary 

differential equations can be solved individually even by analytical methods for f(t) 
= 0. Here, each entry of the solution vector represents the time-dependent contri-
bution of a specific vibration mode to the movement of the whole structure. Nodal 
displacements and rotations (and their derivatives) are computed as an interpola-
tion of the eigenvectors with each of their contributions [29]. 

( ) ( ) ( ) ( )T 2 Tt t t t + + =  x C x x fΦ Φ Ω Φ               (8) 

3. Data Structure 

The analysis module of the program, responsible for the computation of the re-
sults, adopts the Object-Oriented Programming (OOP) paradigm. It provides 
modularity to the code and improves its extensibility. This is crucial in pro-
gramming-involving scenarios for teaching structural analysis methods, as stu-
dents can work on independent OOP classes without affecting the rest of the 
program. The implementation of the dynamic analysis resources also followed 
the OOP approach. Accordingly, only small modifications were needed to the 
original code, as most of the dynamic analysis capabilities were placed in new 
classes. In order to provide a general overview of the new code organization, 
Figure 1 presents the Class Diagram of the program following the UML (Uni-
fied Modelling Language) format [30]. The UML is used to formally illustrate 
the design of an object-oriented code through diagrams. Specifically, the Class 
Diagram depicts the relationship between instantiated objects of the program’s 
classes, as well as inheritance details about concrete subclasses that implement be-
haviors laid out by abstract superclasses. The diagram in Figure 1 also highlights, in 
grey, the newly added classes with respect to the previous versions, whose diagram 
was provided in [1]. The purpose of these new classes is described below: 
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Figure 1. UML class diagram of LESM highlighting the new classes for implement-
ing dynamic analysis. 

 
• Model: An object of this class represents the structural model by storing its 

global properties and pointing to the objects that represent its components. This 
class was previously called Drv and also included the methods for performing 
linear-elastic static analysis. 

• Drv (Driver): Superclass responsible for declaring the methods that drive the 
analysis process, most of them related to the assembly of the system of equa-
tions; an object must be instantiated from one of its subclasses, which contain 
the implementations for linear-elastic static (Drv_LES) and dynamic (Drv_LED) 
analysis. 

• Solver_LE: Superclass responsible for declaring the methods that deal specifi-
cally with the solution of the system of equilibrium equations of linear-elastic ana-
lyses (currently, the only available option). An object must be instantiated from one 
of its subclasses, which contain the implementation of the solution for static analy-
sis (Solver_LES) or dynamic analysis according to the available algorithms: Modal 
Superposition (Solver_LED_ModalSup), Newmark (Solver_LED_Newmark), 
Wilson-θ (Solver_LED_Wilson), Adams-Moulton (Solver_LED_AM3), and 
Runge-Kutta (Solver_LED_RK4). 

• Tfcn (Time Function): Superclass that defines time functions, i.e. the evolu-
tion on time of a given parameter; an object must be instantiated from one of its 
subclasses, which contain the implementations for constant (Tfcn_Static), linear 
(Tfcn_Slope), and harmonic (Tfcn_Periodic) functions. 

• Lnode (Nodal Load): An object of this class stores the properties of the loads 
applied to a specific node, including the time function that describes their evolu-
tion. 
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• Results: An object of this class is responsible for storing the results as the 
analysis advances on time. 

4. Graphical User Interface 

To accommodate the new analysis features, the GUI of LESM went through 
some modifications with respect to previous versions [2]. It includes the addi-
tion of auxiliary dialogs for setting dynamic analysis options, creating time func-
tions, and plotting graphs. New result options were also added to display anima-
tions and envelope diagrams of internal forces. Moreover, small changes were 
made to the layout, in order to improve its organization and keep it simple and 
intuitive to be used by inexperienced students or engineers. Figure 2 shows the 
main interface of LESM highlighting new buttons added to open auxiliary di-
alogs related to dynamic analysis and a demo 3D frame model.  

The dialog for setting dynamic analysis options is shown in Figure 3. It allows 
users to opt for purely modal analysis (natural vibration frequencies and modes) 
or to include the transient response. In the case of transient analysis, the solution 
algorithm must be selected, as one of the previously described methodologies, 
together with the time discretization. The mass matrix formulation and damping 
coefficients must also be informed. In addition, initial conditions of displace-
ment/rotation and velocity can be prescribed to free DOFs, and they are dis-
played in a table. 

The creation and edition of time functions is done through the dialog shown 
in Figure 4. For each time function created, users can add several components 
from predefined function types (constant, linear, or harmonic) or from an im-
ported table of values. These added components are superimposed to form the 
desired time function. The created time functions can then be assigned to nodal 
loads in the dialog of nodal load insertion (not shown). The load components 
provided are multiplied by the value of the selected time function at each time 
step. In the dialog of nodal load insertion, it is also possible to add a concen-
trated mass to each node. 

After dynamic analysis is performed, it is possible to plot graphs for specific 
results with the resources made available in the dialog shown in Figure 5. A spe-
cific DOF is selected to show its displacement, velocity and acceleration history 
throughout the simulation, while a phase portrait diagram provides these three 
responses plotted against each other. It is also possible to visualize results in the 
frequency domain, computed with MATLAB’s built-in FFT function. In addi-
tion, the results can be filtered to show only the response due to free or forced 
vibration, besides the total response as the sum of both. Furthermore, if the solu-
tion algorithm for the analysis was set as modal superposition, each vibration 
mode can be displayed individually, so that their individual contributions can be 
studied. All these data can be exported as images, text files, or spreadsheets. 

Finally, in the results panel of the main dialog (which can be seen in Figure 
2), where users can select which result type they want to display in the model, 
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new options were added for dynamic analysis. These are the animation of the 
structure’s motion or a particular vibration mode, and also envelope diagrams of 
internal forces. Controls for speed and amplitude of motion are available for the 
animations. The envelope diagrams inform the extreme values throughout the 
transient analysis of the selected internal force at discrete positions within each 
element. 

 

 
Figure 2. Main interface of LESM highlighting new options for dynamic analysis. 
 

 
Figure 3. Auxiliary dialog for setting dynamic analysis options. 
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Figure 4. Auxiliary dialog for creating time functions. 

 

 
Figure 5. Auxiliary dialog for plotting graph results. 

5. Examples of Application 

In 2021 and 2022, LESM was introduced as an educational tool in the course 
“Dynamic of Structures—Part I”, which is part of the curriculum of the Civil 
Engineering Graduate Program at PUC-Rio. The course is offered in the first 
semester of each academic year and has a total duration of 45 hours, distributed 
in 15 weekly classes. Although there is no specific requirement to enroll in the 
course, most attendees are in the first year of their master’s studies and have no 
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experience in structural dynamics. Therefore, it addresses the basics of structural 
dynamics, by dividing the subject into three parts. The first and second parts 
involve, respectively, the study of SDOF and MDOF systems idealized as 
mass-spring-dashpot models, while the third part deals with continuous systems 
focusing on frame and truss models. Each part covers the derivation of the equa-
tions of motion, and the study of free and forced, and damped and undamped, 
vibrations. 

The incorporation of LESM into the course aims to allow students to: 
I) Become familiar with the use of software for dynamic analysis of structures 

with resources similar to what they would find in commercial programs during 
professional activities. 

II) Compare the results obtained manually from simplified mass-spring- 
dashpot models with those provided by the program for continuous frame models. 

III) Perform complete analyses of large structures. 
IV) Investigate dynamic properties of structural systems, such as damping and 

mass distribution, by changing model parameters. 
V) Explore the effects of using different numerical integration methods and 

get some calibration experience in terms of stability and efficiency. 
To introduce LESM to students, a one-hour demonstration was held after the 

basic concepts of structural dynamics were presented. The homework assign-
ments were updated so that LESM can be used as exemplified in the following 
sections. The theoretical exams remained the same as in previous years. Howev-
er, it was observed that the average score, considering the two exams, increased 
by 6% in the courses in which LESM was used (8.4/10.0 with standard deviation 
of 1.14) compared to the previous 5 years (7.9/10.0 with standard deviation of 
1.08). Although sampling of students who have used the program is still not sta-
tistically significant (13 students in total), and the atypical online format of the 
course in 2021 due to COVID-19 restrictions, this result can be interpreted as an 
indication of the increased interest of students in the subject. 

5.1. Simple Academic Frame 

The first assignment using LESM was to allow students to practice its use, in 
terms of modelling and verifying results. It aims to fulfil objective I, as described 
above. Students were required to simulate academic examples found in textbooks 
and compare the results. One of the examples is a 2D frame from [31] (Figure 6). 
It consists of two 2.54-meter long Euler-Bernoulli beam elements, one of them 
inclined at 45˚. The material has a Young’s modulus of 68,948 MPa and a density 
of 7,480,000 kg/m3, whilst the cross-sections have an area of 38.7 cm2 and a mo-
ment of inertia of 4162 cm4. The joint node is subjected to a 445 kN horizontal 
force that is suddenly applied, i.e. a Heaviside step function. The other two nodes 
are completely fixed. The system is undamped and the mass matrix is assembled 
with the consistent formulation. The envelope diagrams of internal forces are 
shown in Figure 7. The transient response of the joint node is given in Figure 8, 
comparing the reference results with those obtained with LESM. 
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Figure 6. Frame 2D model [31] to introduce LESM to students. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Envelope diagrams of (a) axial force, (b) shear force, 
and (c) bending moment. 
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Figure 8. Time evolution of the horizontal displacement (dx), vertical dis-
placement (dy), and rotation (θ) of joint node. 

5.2. Shear Building 

It is common practice to simplify structural models by reducing the number of 
DOFs, usually by considering that some elements are inextensible or infinitely 
rigid. The behavior of these simplified models can be reproduced with good ac-
curacy by mass-spring-dashpot systems. Therefore, to fulfill the aforementioned 
objective II, the results of frame and truss models obtained with LESM were 
compared to equivalent mass-spring-dashpot systems, whose equations were 
manually deduced by the students. A typical example is the multi-story shear 
building, a frame model commonly used in earthquake engineering to study the 
lateral motion of buildings subjected to seismic loads. The model assumes that 
the horizontal beams are rigid elements and the columns are inextensible. As a 
consequence, the nodes present no rotation or vertical displacement, and the 
horizontal displacement of the two nodes on each floor is the same. Therefore, 
the simplified model has only one DOF per story, which is the horizontal dis-
placement of the floor. It can be simulated as a mass-spring system in series, 
where the spring stiffness is the flexural stiffness of the two columns of each sto-
ry. 

The shear building model considered in this example (Figure 9(a)) has three 
stories, each one with height and width of 3 m. The base nodes are completely 
fixed. All other nodes have the vertical displacement constrained to account for 
the inextensibility of columns, and a concentrated mass of 5000 kg. The material 
of the horizontal beams has a very high Young’s modulus of 109 MPa to simulate 
rigid elements, while 105 MPa is considered for the material of the columns. A 
density of 8000 kg/m3 is assigned to the material of all elements. All cross- 
sections have an area of 20 cm2 and a moment of inertia of 1500 cm4. All ele-
ments are Euler-Bernoulli type and their masses are neglected. The first three 
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modes and their respective frequencies of natural vibration are given in Figures 
9(b)-(d). Furthermore, to perform a transient analysis, initial conditions were 
given to the horizontal displacements of nodes: 3 mm to the two nodes of the 
third floor, 2 mm to the mid-floor, and 1 mm to the first floor. The results pro-
vided by LESM are shown in Figure 10. The results of the modal and transient 
analyses from LESM were compared with those obtained from the equivalent 
mass-spring system. The students proceeded with a parametric analysis to report 
the effects of mass distribution on the system. 

 

 
(a)                   (b)                     (c)                        (d) 

Figure 9. Shear building showing (a) model and natural vibration modes and frequencies: (b) mode 1 - 1.15 Hz, 
(c) mode 2 - 3.22 Hz, and (d) mode 3 - 4.66 Hz. 

 

 
Figure 10. Time evolution of the displacement (d), velocity (v) and acceleration (a) of 
the horizontal motion of top right node. 
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5.3. Truss Bridge 

Simple academic models are useful for the demonstration of theoretical con-
cepts. However, they are not sufficient to prepare engineering students for the 
situations encountered in professional life. Therefore, LESM was used to allow 
students to perform complete analyses of more complex structures, such as 
bridges, buildings, and transmission towers subjected to live and wind loads. An 
example is the trussed bridge model presented in Figure 11. This 3D truss is 
made up of 206 bar elements hinged at their ends. The adopted material has a 
Young’s modulus of 200 GPa and a density of 7850 kg/m3, and the cross-sections 
have an area of 36 cm2. The nodes of the upper chords are subjected to forces 
with an amplitude of 10 kN. The time functions for the application of these 
forces replicate a load train moving across the bridge, as depicted in Figure 12. 
Other types of load conditions were also simulated, such as explosions and the 
lateral impact of a boat. Students were asked to prepare reports on modal con-
tributions under different loads and bracing configurations, as well as assessing 
the effects of damping. 

 

 
Figure 11. 3D truss model of a bridge subjected to live load. 

 

 
Figure 12. Deformed configurations of the trussed bridge at different 
times of the passage of a load train from left to right. 
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6. Conclusions 
This paper presented a new version of LESM that includes several features to 
study the vibration of framed structural models, keeping the simplicity and in-
tuitiveness of its GUI. The result is a structural analysis software that, to the best 
of the authors’ knowledge, is the only with educational purposes, graphical- 
interactive resources, free-modelling capabilities, dynamic analysis of 2D and 3D 
frames and trusses, while being open-source. It started to be used as an educa-
tional tool in an introductory course of structural dynamics. The software could 
be added to the scope of the course without major changes to its program, but 
with small adaptations, which include a demonstration of its use and the mod-
ification of some homework assignments. The adoption of LESM during classes 
also enhanced the demonstration of basic theoretical concepts. In addition, the 
better performance of students on exams since LESM was adopted indicates that 
their interest in the subject has increased. Due to the successful use of LESM at 
PUC-Rio, partner institutions have already shown interest in adopting the pro-
gram in courses related to dynamics of structures. 

It is important to mention that, although commercial software allows students 
to perform the same types of analyses as LESM, having an in-house educational 
software has several advantages besides easiness of use and price. For example, 
the software can be customized according to the needs of the course, and include 
options that would not make sense in a commercial software, such as inefficient 
or sub-optimal solution algorithms in order to allow students to make compari-
sons of results and get insights into numerical stability. A useful implementation 
that is on-hold in LESM is the possibility of assigning a time function to pre-
scribed support displacements to simulated seismic loads. Also, it is intended to 
formally consider rigid and inextensible elements instead of resorting to the 
workarounds presented in this work. Furthermore, as reported in this paper, the 
students of structural dynamics used LESM as users, not developers. Therefore, 
it is planned that, in future versions of the course, students will practice the im-
plementation of dynamic analysis methods in an open-source environment us-
ing version-control systems, such as Git. It is an authors’ hope that practices like 
this may also expand the interest of students in software development, even for 
those with little prior programming experience. Among other efforts that are 
considered for future work that go beyond structural dynamics in LESM, the ad-
dition of stability and nonlinear analyses are next objectives. These develop-
ments would enable LESM to be used in advanced courses of structural analysis. 
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Appendix 

The local mass matrix of a 3D beam element is implemented according to Equa-
tion (9) to Equation (14), where E is the material Young’s modulus, G is the ma-
terial shear modulus, SA  is the cross-section effective shear area, I is the cross- 
section moment of inertia, and J is the cross-section polar moment of inertia. The 
matrix is decomposed into an Euler-Bernoulli component, EB

eM , and a Timo-
shenko component, Tim

eM . The latter accounts for the effects of shear deforma-
tion when the element is Timoshenko type and depends on the Timoshenko pa-
rameter Ω, given in Equation (12). In the case of Euler-Bernoulli element, in 
which shear deformation is neglected ( SGA →∞ ), the Timoshenko parameter 
vanishes and, consequently, all coefficients of the Timoshenko matrix become 
null, remaining only the classical Euler-Bernoulli mass matrix of Equation (10). 

EB Tim
e e e= +M M M                         (9) 
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1 12 1 4µ θ= + Ω = + Ω                    (13) 
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