
Journal of Software Engineering and Applications, 2023, 16, 265-286
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2023.167014 Jul. 26, 2023 265 Journal of Software Engineering and Applications

An Educational GUI-Based Software for
Dynamic Analysis of Framed Structural Models

Claudio H. B. Resende1, Pedro C. Lopes2, Rafael L. Rangel3, Luis F. Paullo Muñoz1,
Luiz F. Martha1*

1Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
2Institute of Computing, Fluminense Federal University, Niterói, Brazil
3International Centre for Numerical Methods in Engineering (CIMNE), Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract
This paper introduces a new version of the open-source educational software,
LESM (Linear Elements Structure Model), developed in MATLAB for struc-
tural analysis of one-dimensional models such as frames, trusses, and grillag-
es. The updated program includes dynamic analysis, which incorporates iner-
tial and damping effects, time-dependent load conditions, and a transient
solver with multiple time integration schemes. The software assumes small
displacements and linear-elastic material behavior. The paper briefly explains
the theoretical basis for these developments and the reorganization of the
source code using Object-Oriented Programming (OOP). The updated Graph-
ical User Interface (GUI) allows interactive use of dynamic analysis features
and displays new results such as animations, envelope diagrams of internal
forces, phase portraits, and the response of degrees-of-freedom in time and
frequency domain. The new version was used in a structural dynamics course,
and new assignments were elaborated to improve students’ understanding of
the subject.

Keywords
Structural Analysis, Structural Dynamics, Educational Software, MATLAB,
Graphical User Interface

1. Introduction

The teaching of structural analysis has faced a dilemma in recent decades: how
to balance the use of manual methods and computer programs. It is known that
structural mechanics courses that are based on theoretical instruction can bene-
fit greatly from the use of software, especially from those educational-oriented,

How to cite this paper: Resende, C.H.B.,
Lopes, P.C., Rangel, R.L., Muñoz, L.F.P.
and Martha, L.F. (2023) An Educational
GUI-Based Software for Dynamic Analysis
of Framed Structural Models. Journal of
Software Engineering and Applications, 16,
265-286.
https://doi.org/10.4236/jsea.2023.167014

Received: June 7, 2023
Accepted: July 23, 2023
Published: July 26, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2023.167014
https://www.scirp.org/
https://orcid.org/0000-0002-5783-5151
https://doi.org/10.4236/jsea.2023.167014
http://creativecommons.org/licenses/by/4.0/

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 266 Journal of Software Engineering and Applications

as it keeps the course up to date with nowadays resources and, at the same time,
more attractive to students. These benefits are potentially even greater when
graphical-interactive resources are available. The employment of computer pro-
grams can complement the theory by helping students to: model and simulate
the behavior of real-world structures, besides simple academic problems; get a
physical interpretation of the governing equations by observing how the me-
chanical system behaves; acknowledge the sensitivity of the system to the input
parameters; visualize the results and learn to better criticize them. Moreover, in
hands-on programming-involving scenarios, access to the source code can pro-
vide a unique experience for students, which goes beyond the use of the software
as a “black-box”. This approach allows students to work on the implementation
of analysis methods, which is easier when the code is written in a high-level pro-
gramming language, and it is modular and well documented.

This paper describes the extension of a structural analysis software, LESM
(Linear Elements Structure Model), to include dynamic analysis. The goal of this
development was to complement a graduate course on structural dynamics at
the Department of Civil and Environmental Engineering of the Pontifical Catholic
University of Rio de Janeiro (PUC-Rio). This paper also intends to show how the
course was adapted to incorporate the use of the software as an educational tool
and how such use took place to enhance students’ understanding of the subject.

LESM is an educational project developed at PUC-Rio. The program is
open-source, written in the MATLAB script language, and it was initially de-
signed to serve as a complementary tool for undergraduate and graduate Engi-
neering courses at PUC-Rio. The first version of the program was conceived as a
non-graphical tool for static linear-elastic analysis of models composed of linear
elements, i.e. prismatic uniaxial elements with one dimension much larger than
the others, such as bars (axial behavior only) and beams (axial, flexural, and tor-
sion behaviors). These models are 2D/3D frames, 2D/3D trusses, and grillages.
The focus was to provide a didactic source code to introduce students to the im-
plementation of matrix structural analysis methods [1]. The second version in-
corporated a user-friendly Graphical User Interface (GUI) with sophisticated
mouse modelling capabilities [2], among some new analysis features [3]. That
version was introduced in a course of computer graphics for engineering and
also increased the usability of the software, allowing not only students but also
professional engineers to use the program for more practical purposes, but still
limited to static analysis.

The consideration of dynamic effects to analyze the vibration of structures
was an immediate demand. This type of analysis is relevant in many engineering
applications, and there are only a few educational-oriented programs for this
purpose with graphical-interactive features and modelling freedom, i.e. geome-
try and degrees-of-freedom (DOFs) are not fixed to pre-defined templates. Ta-
ble 1 provides a list of software developed for educational purposes with dy-
namic analysis capabilities and graphical resources. Part of these programs are
specialized in earthquake engineering [4]-[11] and are often intended to serve as

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 267 Journal of Software Engineering and Applications

virtual laboratories. Many of them are restricted to simple predefined models,
such as single degree-of-freedom (SDOF) and multiple degrees-of-freedom
(MDOF) systems [4] [5] [6] [11] [12] [13] [14] [15], or frames defined by para-
metric templates [7] [8] [9] [10]. Among those that allow free modelling of
frames, some rely on non-graphical inputs [16] [17] [18] [19] [20] and only a
few have an interactive interface for efficient pre- and post-processing [21] [22]
[23] [24]. However, even for the latter group, the models are usually restricted to
2D and the dynamic analysis options are very limited. In addition, open-source
is not a common feature of these softwares. Therefore, the third version of LESM
is devoted to filling these gaps.

Table 1. Educational software with dynamic structural analysis capabilities and graphical
resources.

Software name Platform Open source Models Reference

Abel MATLAB Yes 3D frame templates [10]

CAL/CGI FORTRAN Yes 2D frames
[16] [17]

[25]
CALSB Java No 2D frames [21]

CALSIDOF Java No SDOF systems [15]

DINEST DELPHI No SDOF systems [12]

Dynasoft Java Yes
SDOF/MDOF systems,
2D/3D frame templates

[9]

Unamed Mathematica No SDOF systems [26]

DYSSOLVE MATLAB Yes
SDOF systems,

2D frames
[27]

ENGLTHA Visual Basic No SDOF systems [11]

Frame of Mind
Java/Flash/
FORTRAN

No 2D frames [22]

Frame3DD C Yes 2D/3D frames [20]

Ftool C No 2D frames [24]

LAS Visual C# Yes 2D frames [18]

MASTAN2 MATLAB No 2D/3D frames [23]

NDOF MATLAB No MDOF systems [13]

NONLIN Visual Basic No SDOF/MDOF systems [4]

SDET Java No SDOF systems [14]

Stabil MATLAB Yes
2D/3D frames,

Continuous FEM models
[19]

Structural Control
Virtual Laboratories

Java No 2D frame templates [7] [8]

VSDL
Visual Basic/

Java
No SDOF/MDOF systems [5] [6]

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 268 Journal of Software Engineering and Applications

In the new version of LESM, inertial and damping forces of bar and beam
elements are considered in different ways according to the selected formulation
for the mass and damping matrices. Regarding flexural behavior, both Eu-
ler-Bernoulli and Timoshenko theories are available. Different solution metho-
dologies can be employed for the transient problem: a numerical time integra-
tion with one of the implemented implicit or explicit schemes, or an analytical
solution of the homogeneous equation for free vibration through a modal de-
composition. Initial conditions, load conditions subjected to customizable time
functions, and concentrated masses can be applied to free DOFs. In all cases,
small displacements and linear-elastic material behavior are assumed. The
available results are animations of the transient response or vibration modes,
envelope diagrams of internal forces, phase portraits, and the response of DOFs
in time and frequency domain.

These developments took advantage of some of the main features initially
proposed for the program. One of them is the code modularity provided by Ob-
ject-Oriented Programming (OOP). In fact, this work put to the test the extensi-
bility of the analysis module as idealized in its creation [1], and the result is very
satisfactory, as only a few modifications to the original code were required, and
most of the dynamic analysis features were placed in new classes. Another one is
the graphical interactivity provided by MATLAB, as explained in [2]. The dy-
namic analysis requires much more graphical resources than a simple static
analysis since users may want to see animations of the vibrating structures and
plots of the transient response. Furthermore, the amount of inputs and outputs
is larger, which requires an intuitive GUI to avoid the pre and post-processing
becoming confusing. The installation files and the complete source code of the
latest release version of the program are available on its website1. The project is
also hosted in a public Git repository2.

The remainder of this paper is organized as follows. Section 2 explains the
theoretical considerations of structural dynamics behind the new developments.
Section 3 describes the new data structure of the source code of the analysis
module, focusing on the organization of the OOP classes. Section 4 shows the
new graphical interface features related to dynamic analysis. Section 5 demon-
strates how the program was applied in an academic context. The paper ends
with concluding remarks and discusses future developments in Section 6.

2. Theoretical Considerations

In dynamic analysis, inertial and damping forces are considered, in addition to
the elastic forces considered in static analysis. In this case, the response of the
discretized structural model, expressed as vectors of nodal displacements and
rotations (x), velocities (x), and accelerations (x), as well as external loads
(f), are time (t) dependent. The system of dynamic equilibrium equations is giv-

1https://web.tecgraf.puc-rio.br/lesm
2https://gitlab.com/rafaelrangel/lesm

https://doi.org/10.4236/jsea.2023.167014
https://web.tecgraf.puc-rio.br/lesm
https://gitlab.com/rafaelrangel/lesm

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 269 Journal of Software Engineering and Applications

en in Equation (1), where M, C, and K are the mass, damping and stiffness ma-
trices, respectively.

() () () ()t t t t+ + = Mx Cx Kx f (1)

2.1. System Assembly

The global mass, damping and stiffness matrices of the structure are assembled
with contributions from the local matrices of each element. The local stiffness
matrix available in the program considers Euler-Bernoulli and Timoshenko
theories. Details about the element stiffness matrix formulation can be found in
the previous work [1]. The formulation of the local mass matrix and the global
damping matrix, as well as the assembly of the array of nodal loads, are briefly
discussed in the sequence.

2.1.1. Mass Matrix
Two formulation types are commonly employed for the local mass matrix of
structural elements. They are the lumped and consistent formulation. Both op-
tions are available in LESM. The lumped formulation is based on the simplifica-
tion that the total element mass is equally divided into two concentrated masses
at the end nodes. This assumption leads to a diagonal local matrix, which can
significantly reduce the computational cost in several numerical integration
schemes. Moreover, in LESM, concentrated masses contribute only to transla-
tional inertia, which relates to DOFs of displacements, not rotations. On the
other hand, the consistent formulation assumes that the element mass is distri-
buted in accordance with the shape functions that describe the displacement and
rotation fields. Hence, the local mass matrix, Me, is computed through Equation
(2), where ρ is the material density, A is the cross-section area, L is the element
length, and N is the vector of shape functions. In this case, the local mass matrix
is relative not only to translational, but also to rotational DOFs. The result of the
integral expression of Equation (2) for a generic 3D beam element, written in
such a way that it works for both Euler-Bernoulli and Timoshenko theories, is
presented in the Appendix. The matrix coefficients of a generic 3D beam are fil-
tered into the element matrix according to the selected model type, as explained
in [1].

T
0

d
L

e A xρ= ∫M N N (2)

Alternatively, customized mass matrix [28] is also available in LESM. In this
approach, the local mass matrix is a linear combination of lumped and consis-
tent formulations, as shown in Equation (3), where µ is a coefficient of propor-
tionality that must be provided by the user so that 0 ≤ µ ≤ 1.

() lump consist1e e eµ µ= − +M M M (3)

2.1.2. Damping Matrix
In LESM, a classical Rayleigh damping is assumed. In this case, the global

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 270 Journal of Software Engineering and Applications

damping matrix is considered as a linear combination of the global mass and
stiffness matrices, as expressed in Equation (4), where α and β are coefficients of
proportionality. These coefficients can be directly informed by users, or com-
puted from the critical damping factors of the first and second vibrations modes
(ξ1 and ξ2) according to Equation (5), where ω1 and ω2 are the natural angular
frequencies associated to modes 1 and 2, respectively. In this case, the critical
damping factors must be informed by the user.

α β= +C M K (4)
1

1 1 1

2 2 2

1
2

1
1
ω ω ξα
ω ω ξβ

−
    

=    
     

 (5)

2.1.3. External Load Vector
External loads can be concentrated forces and moments applied to nodes or dis-
tributed forces applied along elements. These load components are assembled
into the vector of external loads. In the case of dynamic analysis, the compo-
nents of the load vector may vary over time. In LESM, only nodal loads are al-
lowed to be time-dependent. A load matrix (F) is assembled with the load vec-
tors at each time step, as stated in Equation (6). Vector a stores user-specified
amplitudes of the nodal loads, and vector y holds discrete values of dimen-
sionless time functions that depict how each load varies over time. Note that, as
we are mostly interested in not very large problems, memory is not a major
concern, thus it is no issue to store F as a matrix. However, it is straightforward
to adapt the solvers to compute a force vector on the fly at each time step to
spare RAM usage, should it be a pressing matter in an eventual large simulation.

() ()Tt t=F ay (6)

2.2. System Solution

To obtain the solution of the system of dynamic equilibrium equations, LESM
makes available two methodologies: numerical time integration schemes, and
analytical solutions for free vibration via modal decomposition. Both are briefly
described in the sequence.

2.2.1. Numerical Integration
LESM provides different solution algorithms for numerical time integration with
both explicit and implicit schemes. Currently, there are four options: Newmark,
Wilson-θ, three-step Adams-Moulton, and 4th order Runge-Kutta. Given the
appropriate initial conditions and time step size, these algorithms calculate the
vectors of nodal displacements/rotations, velocities, and accelerations at each
time step. However, with this approach it is not possible to decouple the influ-
ence of each vibration mode on the dynamic response.

2.2.2. Modal Decomposition
This methodology allows the identification of significant vibration modes and

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 271 Journal of Software Engineering and Applications

their contributions. This is done by decoupling the system of equations, through
a basis transformation to modal space, and solving analytically each resultant
homogeneous differential equation for free vibration.

Firstly, it is necessary to obtain the natural frequencies and modes of vibra-
tion. To do this, undamped and free vibrating conditions are applied to Equa-
tion (1), leading to the generalized eigenvalue problem of Equation (7). It yields
a solution pair (2

iω , φi) for each of the n vibration modes, where n is the number
of free DOFs, φi is the ith eigenvector, which represents the normalized nodal
displacements/rotations of the ith vibration mode, and the ith eigenvalue, 2

iω , is
the squared natural frequency associated to φi. The solution of natural vibration
frequencies and modes is provided by LESM.

2 0ω− =K Mϕ (7)

To solve the transient problem by modal decomposition, the system of dynamic
equilibrium equations in Equation (1) is transformed as in Equation (8), where Φ
is the modal matrix, whose columns are composed of the eigenvectors φi, and Ω2 is
the spectral matrix, whose diagonal coefficients are composed of the eigenvalues

2
iω . Equation (8) represents an uncoupled system, where the resultant ordinary

differential equations can be solved individually even by analytical methods for f(t)
= 0. Here, each entry of the solution vector represents the time-dependent contri-
bution of a specific vibration mode to the movement of the whole structure. Nodal
displacements and rotations (and their derivatives) are computed as an interpola-
tion of the eigenvectors with each of their contributions [29].

() () () ()T 2 Tt t t t + + =  x C x x fΦ Φ Ω Φ (8)

3. Data Structure

The analysis module of the program, responsible for the computation of the re-
sults, adopts the Object-Oriented Programming (OOP) paradigm. It provides
modularity to the code and improves its extensibility. This is crucial in pro-
gramming-involving scenarios for teaching structural analysis methods, as stu-
dents can work on independent OOP classes without affecting the rest of the
program. The implementation of the dynamic analysis resources also followed
the OOP approach. Accordingly, only small modifications were needed to the
original code, as most of the dynamic analysis capabilities were placed in new
classes. In order to provide a general overview of the new code organization,
Figure 1 presents the Class Diagram of the program following the UML (Uni-
fied Modelling Language) format [30]. The UML is used to formally illustrate
the design of an object-oriented code through diagrams. Specifically, the Class
Diagram depicts the relationship between instantiated objects of the program’s
classes, as well as inheritance details about concrete subclasses that implement be-
haviors laid out by abstract superclasses. The diagram in Figure 1 also highlights, in
grey, the newly added classes with respect to the previous versions, whose diagram
was provided in [1]. The purpose of these new classes is described below:

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 272 Journal of Software Engineering and Applications

Figure 1. UML class diagram of LESM highlighting the new classes for implement-
ing dynamic analysis.

• Model: An object of this class represents the structural model by storing its

global properties and pointing to the objects that represent its components. This
class was previously called Drv and also included the methods for performing
linear-elastic static analysis.

• Drv (Driver): Superclass responsible for declaring the methods that drive the
analysis process, most of them related to the assembly of the system of equa-
tions; an object must be instantiated from one of its subclasses, which contain
the implementations for linear-elastic static (Drv_LES) and dynamic (Drv_LED)
analysis.

• Solver_LE: Superclass responsible for declaring the methods that deal specifi-
cally with the solution of the system of equilibrium equations of linear-elastic ana-
lyses (currently, the only available option). An object must be instantiated from one
of its subclasses, which contain the implementation of the solution for static analy-
sis (Solver_LES) or dynamic analysis according to the available algorithms: Modal
Superposition (Solver_LED_ModalSup), Newmark (Solver_LED_Newmark),
Wilson-θ (Solver_LED_Wilson), Adams-Moulton (Solver_LED_AM3), and
Runge-Kutta (Solver_LED_RK4).

• Tfcn (Time Function): Superclass that defines time functions, i.e. the evolu-
tion on time of a given parameter; an object must be instantiated from one of its
subclasses, which contain the implementations for constant (Tfcn_Static), linear
(Tfcn_Slope), and harmonic (Tfcn_Periodic) functions.

• Lnode (Nodal Load): An object of this class stores the properties of the loads
applied to a specific node, including the time function that describes their evolu-
tion.

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 273 Journal of Software Engineering and Applications

• Results: An object of this class is responsible for storing the results as the
analysis advances on time.

4. Graphical User Interface

To accommodate the new analysis features, the GUI of LESM went through
some modifications with respect to previous versions [2]. It includes the addi-
tion of auxiliary dialogs for setting dynamic analysis options, creating time func-
tions, and plotting graphs. New result options were also added to display anima-
tions and envelope diagrams of internal forces. Moreover, small changes were
made to the layout, in order to improve its organization and keep it simple and
intuitive to be used by inexperienced students or engineers. Figure 2 shows the
main interface of LESM highlighting new buttons added to open auxiliary di-
alogs related to dynamic analysis and a demo 3D frame model.

The dialog for setting dynamic analysis options is shown in Figure 3. It allows
users to opt for purely modal analysis (natural vibration frequencies and modes)
or to include the transient response. In the case of transient analysis, the solution
algorithm must be selected, as one of the previously described methodologies,
together with the time discretization. The mass matrix formulation and damping
coefficients must also be informed. In addition, initial conditions of displace-
ment/rotation and velocity can be prescribed to free DOFs, and they are dis-
played in a table.

The creation and edition of time functions is done through the dialog shown
in Figure 4. For each time function created, users can add several components
from predefined function types (constant, linear, or harmonic) or from an im-
ported table of values. These added components are superimposed to form the
desired time function. The created time functions can then be assigned to nodal
loads in the dialog of nodal load insertion (not shown). The load components
provided are multiplied by the value of the selected time function at each time
step. In the dialog of nodal load insertion, it is also possible to add a concen-
trated mass to each node.

After dynamic analysis is performed, it is possible to plot graphs for specific
results with the resources made available in the dialog shown in Figure 5. A spe-
cific DOF is selected to show its displacement, velocity and acceleration history
throughout the simulation, while a phase portrait diagram provides these three
responses plotted against each other. It is also possible to visualize results in the
frequency domain, computed with MATLAB’s built-in FFT function. In addi-
tion, the results can be filtered to show only the response due to free or forced
vibration, besides the total response as the sum of both. Furthermore, if the solu-
tion algorithm for the analysis was set as modal superposition, each vibration
mode can be displayed individually, so that their individual contributions can be
studied. All these data can be exported as images, text files, or spreadsheets.

Finally, in the results panel of the main dialog (which can be seen in Figure
2), where users can select which result type they want to display in the model,

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 274 Journal of Software Engineering and Applications

new options were added for dynamic analysis. These are the animation of the
structure’s motion or a particular vibration mode, and also envelope diagrams of
internal forces. Controls for speed and amplitude of motion are available for the
animations. The envelope diagrams inform the extreme values throughout the
transient analysis of the selected internal force at discrete positions within each
element.

Figure 2. Main interface of LESM highlighting new options for dynamic analysis.

Figure 3. Auxiliary dialog for setting dynamic analysis options.

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 275 Journal of Software Engineering and Applications

Figure 4. Auxiliary dialog for creating time functions.

Figure 5. Auxiliary dialog for plotting graph results.

5. Examples of Application

In 2021 and 2022, LESM was introduced as an educational tool in the course
“Dynamic of Structures—Part I”, which is part of the curriculum of the Civil
Engineering Graduate Program at PUC-Rio. The course is offered in the first
semester of each academic year and has a total duration of 45 hours, distributed
in 15 weekly classes. Although there is no specific requirement to enroll in the
course, most attendees are in the first year of their master’s studies and have no

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 276 Journal of Software Engineering and Applications

experience in structural dynamics. Therefore, it addresses the basics of structural
dynamics, by dividing the subject into three parts. The first and second parts
involve, respectively, the study of SDOF and MDOF systems idealized as
mass-spring-dashpot models, while the third part deals with continuous systems
focusing on frame and truss models. Each part covers the derivation of the equa-
tions of motion, and the study of free and forced, and damped and undamped,
vibrations.

The incorporation of LESM into the course aims to allow students to:
I) Become familiar with the use of software for dynamic analysis of structures

with resources similar to what they would find in commercial programs during
professional activities.

II) Compare the results obtained manually from simplified mass-spring-
dashpot models with those provided by the program for continuous frame models.

III) Perform complete analyses of large structures.
IV) Investigate dynamic properties of structural systems, such as damping and

mass distribution, by changing model parameters.
V) Explore the effects of using different numerical integration methods and

get some calibration experience in terms of stability and efficiency.
To introduce LESM to students, a one-hour demonstration was held after the

basic concepts of structural dynamics were presented. The homework assign-
ments were updated so that LESM can be used as exemplified in the following
sections. The theoretical exams remained the same as in previous years. Howev-
er, it was observed that the average score, considering the two exams, increased
by 6% in the courses in which LESM was used (8.4/10.0 with standard deviation
of 1.14) compared to the previous 5 years (7.9/10.0 with standard deviation of
1.08). Although sampling of students who have used the program is still not sta-
tistically significant (13 students in total), and the atypical online format of the
course in 2021 due to COVID-19 restrictions, this result can be interpreted as an
indication of the increased interest of students in the subject.

5.1. Simple Academic Frame

The first assignment using LESM was to allow students to practice its use, in
terms of modelling and verifying results. It aims to fulfil objective I, as described
above. Students were required to simulate academic examples found in textbooks
and compare the results. One of the examples is a 2D frame from [31] (Figure 6).
It consists of two 2.54-meter long Euler-Bernoulli beam elements, one of them
inclined at 45˚. The material has a Young’s modulus of 68,948 MPa and a density
of 7,480,000 kg/m3, whilst the cross-sections have an area of 38.7 cm2 and a mo-
ment of inertia of 4162 cm4. The joint node is subjected to a 445 kN horizontal
force that is suddenly applied, i.e. a Heaviside step function. The other two nodes
are completely fixed. The system is undamped and the mass matrix is assembled
with the consistent formulation. The envelope diagrams of internal forces are
shown in Figure 7. The transient response of the joint node is given in Figure 8,
comparing the reference results with those obtained with LESM.

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 277 Journal of Software Engineering and Applications

Figure 6. Frame 2D model [31] to introduce LESM to students.

(a)

(b)

(c)

Figure 7. Envelope diagrams of (a) axial force, (b) shear force,
and (c) bending moment.

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 278 Journal of Software Engineering and Applications

Figure 8. Time evolution of the horizontal displacement (dx), vertical dis-
placement (dy), and rotation (θ) of joint node.

5.2. Shear Building

It is common practice to simplify structural models by reducing the number of
DOFs, usually by considering that some elements are inextensible or infinitely
rigid. The behavior of these simplified models can be reproduced with good ac-
curacy by mass-spring-dashpot systems. Therefore, to fulfill the aforementioned
objective II, the results of frame and truss models obtained with LESM were
compared to equivalent mass-spring-dashpot systems, whose equations were
manually deduced by the students. A typical example is the multi-story shear
building, a frame model commonly used in earthquake engineering to study the
lateral motion of buildings subjected to seismic loads. The model assumes that
the horizontal beams are rigid elements and the columns are inextensible. As a
consequence, the nodes present no rotation or vertical displacement, and the
horizontal displacement of the two nodes on each floor is the same. Therefore,
the simplified model has only one DOF per story, which is the horizontal dis-
placement of the floor. It can be simulated as a mass-spring system in series,
where the spring stiffness is the flexural stiffness of the two columns of each sto-
ry.

The shear building model considered in this example (Figure 9(a)) has three
stories, each one with height and width of 3 m. The base nodes are completely
fixed. All other nodes have the vertical displacement constrained to account for
the inextensibility of columns, and a concentrated mass of 5000 kg. The material
of the horizontal beams has a very high Young’s modulus of 109 MPa to simulate
rigid elements, while 105 MPa is considered for the material of the columns. A
density of 8000 kg/m3 is assigned to the material of all elements. All cross-
sections have an area of 20 cm2 and a moment of inertia of 1500 cm4. All ele-
ments are Euler-Bernoulli type and their masses are neglected. The first three

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 279 Journal of Software Engineering and Applications

modes and their respective frequencies of natural vibration are given in Figures
9(b)-(d). Furthermore, to perform a transient analysis, initial conditions were
given to the horizontal displacements of nodes: 3 mm to the two nodes of the
third floor, 2 mm to the mid-floor, and 1 mm to the first floor. The results pro-
vided by LESM are shown in Figure 10. The results of the modal and transient
analyses from LESM were compared with those obtained from the equivalent
mass-spring system. The students proceeded with a parametric analysis to report
the effects of mass distribution on the system.

(a) (b) (c) (d)

Figure 9. Shear building showing (a) model and natural vibration modes and frequencies: (b) mode 1 - 1.15 Hz,
(c) mode 2 - 3.22 Hz, and (d) mode 3 - 4.66 Hz.

Figure 10. Time evolution of the displacement (d), velocity (v) and acceleration (a) of
the horizontal motion of top right node.

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 280 Journal of Software Engineering and Applications

5.3. Truss Bridge

Simple academic models are useful for the demonstration of theoretical con-
cepts. However, they are not sufficient to prepare engineering students for the
situations encountered in professional life. Therefore, LESM was used to allow
students to perform complete analyses of more complex structures, such as
bridges, buildings, and transmission towers subjected to live and wind loads. An
example is the trussed bridge model presented in Figure 11. This 3D truss is
made up of 206 bar elements hinged at their ends. The adopted material has a
Young’s modulus of 200 GPa and a density of 7850 kg/m3, and the cross-sections
have an area of 36 cm2. The nodes of the upper chords are subjected to forces
with an amplitude of 10 kN. The time functions for the application of these
forces replicate a load train moving across the bridge, as depicted in Figure 12.
Other types of load conditions were also simulated, such as explosions and the
lateral impact of a boat. Students were asked to prepare reports on modal con-
tributions under different loads and bracing configurations, as well as assessing
the effects of damping.

Figure 11. 3D truss model of a bridge subjected to live load.

Figure 12. Deformed configurations of the trussed bridge at different
times of the passage of a load train from left to right.

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 281 Journal of Software Engineering and Applications

6. Conclusions
This paper presented a new version of LESM that includes several features to
study the vibration of framed structural models, keeping the simplicity and in-
tuitiveness of its GUI. The result is a structural analysis software that, to the best
of the authors’ knowledge, is the only with educational purposes, graphical-
interactive resources, free-modelling capabilities, dynamic analysis of 2D and 3D
frames and trusses, while being open-source. It started to be used as an educa-
tional tool in an introductory course of structural dynamics. The software could
be added to the scope of the course without major changes to its program, but
with small adaptations, which include a demonstration of its use and the mod-
ification of some homework assignments. The adoption of LESM during classes
also enhanced the demonstration of basic theoretical concepts. In addition, the
better performance of students on exams since LESM was adopted indicates that
their interest in the subject has increased. Due to the successful use of LESM at
PUC-Rio, partner institutions have already shown interest in adopting the pro-
gram in courses related to dynamics of structures.

It is important to mention that, although commercial software allows students
to perform the same types of analyses as LESM, having an in-house educational
software has several advantages besides easiness of use and price. For example,
the software can be customized according to the needs of the course, and include
options that would not make sense in a commercial software, such as inefficient
or sub-optimal solution algorithms in order to allow students to make compari-
sons of results and get insights into numerical stability. A useful implementation
that is on-hold in LESM is the possibility of assigning a time function to pre-
scribed support displacements to simulated seismic loads. Also, it is intended to
formally consider rigid and inextensible elements instead of resorting to the
workarounds presented in this work. Furthermore, as reported in this paper, the
students of structural dynamics used LESM as users, not developers. Therefore,
it is planned that, in future versions of the course, students will practice the im-
plementation of dynamic analysis methods in an open-source environment us-
ing version-control systems, such as Git. It is an authors’ hope that practices like
this may also expand the interest of students in software development, even for
those with little prior programming experience. Among other efforts that are
considered for future work that go beyond structural dynamics in LESM, the ad-
dition of stability and nonlinear analyses are next objectives. These develop-
ments would enable LESM to be used in advanced courses of structural analysis.

Acknowledgements
This study was funded in part by the Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior (CAPES)—Finance Code 001, and the Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq)—Grant 308884/2021-3.

Conflicts of Interest
The authors declare no conflicts of interest regarding the publication of this paper.

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 282 Journal of Software Engineering and Applications

References
[1] Rangel, R.L. and Martha, L.F. (2019) LESM—An Object-Oriented Matlab Program

for Structural Analysis of Linear Element Models. Computer Applications in Engi-
neering Education, 27, 553-571. https://doi.org/10.1002/cae.22097

[2] Lopes, P.C., Rangel, R.L. and Martha, L.F. (2021) An Interactive User Interface for a
Structural Analysis Software Using Computer Graphics Techniques in MATLAB.
Computer Applications in Engineering Education, 29, 1505-1525.
https://doi.org/10.1002/cae.22406

[3] Marques, I.R., Lopes, P.C., Rangel, R.L. and Martha, L.F. (2019). Implementação de
conexão semirrígida em modelos reticulados no contexto da programação orientada
a objetos. Proceedings of the XL Ibero-Latin-American Congress on Computational
Methods in Engineering (CILAMCE), Natal, 11-14 November 2019.
https://cilamce.com.br/anais/arearestrita/apresentacoes/101/6551.pdf

[4] Charney, A.F. and Barngrover, B. (2004) NONLIN: Software for Earthquake Engi-
neering Education. In: Blandford, G.E., Ed., Structures 2004: Building on the Past,
Securing the Future, American Society of Civil Engineers, Reston, 1-12.
https://doi.org/10.1061/40700(2004)177

[5] Kumar, A., Babu, B.R., and Ramancharla, P.K. (2005) Virtual Structural Dynamics
Laboratory.
https://www.researchgate.net/profile/Pradeep-Ramancharla-2/publication/2656565
31_VIRTUAL_STRUCTUAL_DYNAMICS_LABORATORY/links/54c6f5510cf238b
b7d0a1877/VIRTUAL-STRUCTUAL-DYNAMICS-LABORATORY.pdf

[6] Munipala, A., Pasupuleti, A.D.K. and Ramancharla, P.K. (2012) Structural Dynam-
ics Virtual Laboratory: A Learning Tool Kit for Young Engineers and Practicing
Professionals. Proceeding of 15th World Conference on Earthquake Engineering,
Lisbon, 24-28 September 2012.
https://web2py.iiit.ac.in/research_centres/publications/download/inproceedings.pdf
.82d9ca034c80a240.57434545323031325f333230322e706466.pdf

[7] Gao, Y., Yang, G., Spencer Jr., B.F. and Lee, G.C. (2005) Java-Powered Virtual La-
boratories for Earthquake Engineering Education. Computer Applications in Engi-
neering Education, 13, 200-212. https://doi.org/10.1002/cae.20050

[8] Sim, S.H., Spencer Jr., B.F. and Lee, G.C. (2009) Virtual Laboratory for Experimen-
tal Structural Dynamics. Computer Applications in Engineering Education, 17,
80-88. https://doi.org/10.1002/cae.20162

[9] Panagiotopoulos, C.G. and Manolis, G.D. (2016) A Web-Based Educational Soft-
ware for Structural Dynamics. Computer Applications in Engineering Education,
24, 599-614. https://doi.org/10.1002/cae.21735

[10] Katsanos, E.I., Taskari, O.N. and Sextos, A.G. (2014) A Matlab-Based Educational
Tool for the Seismic Design of Flexibly Supported RC Buildings. Computer Appli-
cations in Engineering Education, 22, 442-451. https://doi.org/10.1002/cae.20568

[11] Clarke, R.P. (2011) ENGLTHA: An Educational Tool for Earthquake Nonlinear and
General Linear Dynamics. Computer Applications in Engineering Education, 19,
97-106. https://doi.org/10.1002/cae.20295

[12] da Silva, J.G.S, da Silva Vellasco, P.C.G. and de Almeida, N.N. (2002) DINEST: An
Educational Software for Structural Dynamic Design and Behavior. Session Interna-
tional Conference on Engineering Education, Manchester, 18-21 August 2002.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0027ed5efac580
7db2cbeac58fd07b47c60b8083

[13] Brownjohn, J.M.W and Pavic, A. (2002) NDOF: A Matlab Gui for Teaching and

https://doi.org/10.4236/jsea.2023.167014
https://doi.org/10.1002/cae.22097
https://doi.org/10.1002/cae.22406
https://cilamce.com.br/anais/arearestrita/apresentacoes/101/6551.pdf
https://doi.org/10.1061/40700(2004)177
https://www.researchgate.net/profile/Pradeep-Ramancharla-2/publication/265656531_VIRTUAL_STRUCTUAL_DYNAMICS_LABORATORY/links/54c6f5510cf238bb7d0a1877/VIRTUAL-STRUCTUAL-DYNAMICS-LABORATORY.pdf
https://www.researchgate.net/profile/Pradeep-Ramancharla-2/publication/265656531_VIRTUAL_STRUCTUAL_DYNAMICS_LABORATORY/links/54c6f5510cf238bb7d0a1877/VIRTUAL-STRUCTUAL-DYNAMICS-LABORATORY.pdf
https://www.researchgate.net/profile/Pradeep-Ramancharla-2/publication/265656531_VIRTUAL_STRUCTUAL_DYNAMICS_LABORATORY/links/54c6f5510cf238bb7d0a1877/VIRTUAL-STRUCTUAL-DYNAMICS-LABORATORY.pdf
https://web2py.iiit.ac.in/research_centres/publications/download/inproceedings.pdf.82d9ca034c80a240.57434545323031325f333230322e706466.pdf
https://web2py.iiit.ac.in/research_centres/publications/download/inproceedings.pdf.82d9ca034c80a240.57434545323031325f333230322e706466.pdf
https://doi.org/10.1002/cae.20050
https://doi.org/10.1002/cae.20162
https://doi.org/10.1002/cae.21735
https://doi.org/10.1002/cae.20568
https://doi.org/10.1002/cae.20295
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0027ed5efac5807db2cbeac58fd07b47c60b8083
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0027ed5efac5807db2cbeac58fd07b47c60b8083

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 283 Journal of Software Engineering and Applications

Simulating Structural Dynamics. IMACXXVI, Orlando, 4-7 February 2008.
https://www.researchgate.net/profile/Aleksandar-Pavic-2/publication/266181526_N
DOF_A_MATLAB_Gui_for_teaching_and_simulating_structural_dynamics/links/5
50fe8b10cf2752610a178fb/NDOF-A-MATLAB-Gui-for-teaching-and-simulating-st
ructural-dynamics.pdf

[14] Sonparote, R.S. and Mahajan, S.K. (2018) An Educational Tool to Improve Under-
standing of Structural Dynamics through Idealization of Physical Structure to Ana-
lytical Model. Computer Applications in Engineering Education, 26, 1270-1278.
https://doi.org/10.1002/cae.22006

[15] Mahajan, S.K. and Sonparote, R.S. (2018) Implementation of Comparative Visuali-
zation Pedagogy for Structural Dynamics. Computer Applications in Engineering
Education, 26, 1894-1902. https://doi.org/10.1002/cae.22024

[16] Paultre, P., Léger, P. and Proulx, J. (1990) Computer Graphics for Computer As-
sisted Learning of Structural Analysis. Computers & Structures, 36, 1159-1166.
https://doi.org/10.1016/0045-7949(90)90225-Q

[17] Paultre, P., Léger, P. and Proulx, J. (1991) Computer-Aided Education in Structural
Dynamics. Journal of Computing in Civil Engineering, 5, 374-390.
https://doi.org/10.1061/(ASCE)0887-3801(1991)5:4(374)

[18] Paultre, P., Lapointe, E., Carbonneau, C. and Proulx, J. (2016) LAS: A Programming
Language and Development Environment for Learning Matrix Structural Analysis.
Computer Applications in Engineering Education, 24, 89-100.
https://doi.org/10.1002/cae.21675

[19] François, S., et al. (2021) Stabil: An Educational Matlab Toolbox for Static and Dy-
namic Structural Analysis. Computer Applications in Engineering Education, 29,
1372-1389. https://doi.org/10.1002/cae.22391

[20] Gavin, H.P. (2022) Frame3DD. http://frame3dd.sourceforge.net

[21] Yuan, X.F. and Teng, J.G. (2002) Interactive Web-Based Package for Comput-
er-Aided Learning of Structural Behavior. Computer Applications in Engineering
Education, 10, 121-136. https://doi.org/10.1002/cae.10020

[22] Barretto, S.F.A., Piazzalunga, R. and Ribeiro, V.G. (2003) A Web-Based 2D Struc-
tural Analysis Educational Software. Computer Applications in Engineering Educa-
tion, 11, 83-92. https://doi.org/10.1002/cae.10040

[23] Ziemian, R.D. and McGuire, W. (2022) MASTAN2 v.35.
http://www.mastan2.com/about.html

[24] Lopes, P.C., Rangel, R.L., and Martha, L.F. (2020) Ftool 5.0: Nonlinear, Stability and
Natural Vibration Analyses. Proceedings of the XLI Ibero-Latin-American Congress
on Computational Methods in Engineering, ABMEC/UNILA, Foz do Iguaçú, 16-19
November 2020.
http://webserver2.tecgraf.puc-rio.br/~lfm/papers/RangelMartha-CILAMCE2020-Co
de7805.pdf

[25] Wilson, E.L. (1979) CAL—A Computer Analysis Language for Teaching Structural
Analysis. Computers & Structures, 10, 127-132.
https://doi.org/10.1016/0045-7949(79)90079-8

[26] Turker, H.T., Coskun, H. and Mertayak, C. (2016) Innovative Experimental Model
and Simulation Method for Structural Dynamic Concepts. Computer Applications
in Engineering Education, 24, 421-427. https://doi.org/10.1002/cae.21720

[27] Wang, B.P. and Apte, A. (2022) Dyssolve.
https://sites.google.com/site/dyssolve/

https://doi.org/10.4236/jsea.2023.167014
https://www.researchgate.net/profile/Aleksandar-Pavic-2/publication/266181526_NDOF_A_MATLAB_Gui_for_teaching_and_simulating_structural_dynamics/links/550fe8b10cf2752610a178fb/NDOF-A-MATLAB-Gui-for-teaching-and-simulating-structural-dynamics.pdf
https://www.researchgate.net/profile/Aleksandar-Pavic-2/publication/266181526_NDOF_A_MATLAB_Gui_for_teaching_and_simulating_structural_dynamics/links/550fe8b10cf2752610a178fb/NDOF-A-MATLAB-Gui-for-teaching-and-simulating-structural-dynamics.pdf
https://www.researchgate.net/profile/Aleksandar-Pavic-2/publication/266181526_NDOF_A_MATLAB_Gui_for_teaching_and_simulating_structural_dynamics/links/550fe8b10cf2752610a178fb/NDOF-A-MATLAB-Gui-for-teaching-and-simulating-structural-dynamics.pdf
https://www.researchgate.net/profile/Aleksandar-Pavic-2/publication/266181526_NDOF_A_MATLAB_Gui_for_teaching_and_simulating_structural_dynamics/links/550fe8b10cf2752610a178fb/NDOF-A-MATLAB-Gui-for-teaching-and-simulating-structural-dynamics.pdf
https://doi.org/10.1002/cae.22006
https://doi.org/10.1002/cae.22024
https://doi.org/10.1016/0045-7949(90)90225-Q
https://doi.org/10.1061/(ASCE)0887-3801(1991)5:4(374)
https://doi.org/10.1002/cae.21675
https://doi.org/10.1002/cae.22391
http://frame3dd.sourceforge.net/
https://doi.org/10.1002/cae.10020
https://doi.org/10.1002/cae.10040
http://www.mastan2.com/about.html
http://webserver2.tecgraf.puc-rio.br/%7Elfm/papers/RangelMartha-CILAMCE2020-Code7805.pdf
http://webserver2.tecgraf.puc-rio.br/%7Elfm/papers/RangelMartha-CILAMCE2020-Code7805.pdf
https://doi.org/10.1016/0045-7949(79)90079-8
https://doi.org/10.1002/cae.21720
https://sites.google.com/site/dyssolve/

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 284 Journal of Software Engineering and Applications

[28] Felippa, C.A. (2004) Introduction to Finite Element Methods. University of Colo-
rado, Boulder.

[29] Bathe, K.J. (2006) Finite Element Procedures. Prentice Hall, Hoboken.

[30] Booch, G., Rumbaugh, J. and Jacobson, I. (2005) The Unified Modeling Language
User Guide. Pearson Education, Upper Saddle River.

[31] Paz, M. and Kim, Y.H. (2012) Structural Dynamics: Theory and Computation.
Springer Science & Business Media, Berlin.

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 285 Journal of Software Engineering and Applications

Appendix

The local mass matrix of a 3D beam element is implemented according to Equa-
tion (9) to Equation (14), where E is the material Young’s modulus, G is the ma-
terial shear modulus, SA is the cross-section effective shear area, I is the cross-
section moment of inertia, and J is the cross-section polar moment of inertia. The
matrix is decomposed into an Euler-Bernoulli component, EB

eM , and a Timo-
shenko component, Tim

eM . The latter accounts for the effects of shear deforma-
tion when the element is Timoshenko type and depends on the Timoshenko pa-
rameter Ω, given in Equation (12). In the case of Euler-Bernoulli element, in
which shear deformation is neglected (SGA →∞), the Timoshenko parameter
vanishes and, consequently, all coefficients of the Timoshenko matrix become
null, remaining only the classical Euler-Bernoulli mass matrix of Equation (10).

EB Tim
e e e= +M M M (9)

2 2

2 2
EB

2

2

140 0 0 0 0 0 70 0 0 0 0 0
156 0 0 0 22 0 54 0 0 0 13

156 0 22 0 0 0 54 0 13 0
140 0 0 0 0 0 70 0 0

4 0 0 0 13 0 3 0
4 0 13 0 0 0 3

140 0 0 0 0 0420
156 0 0 0 22

156 0 22 0
sym. 140 0 0

4 0
4

e

L L
L L

J A J A
L L L

L L LAL

L
L

J A
L

L

ρ

 
 − 
 −
 
 
 −
 

− =  
 

− 
 − 
 
 
 
  

M (10)

1 2 3 2

1 2 3 2

4 2 4

4 2 4Tim

1 2

1 2

4

4

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0
0 0 0 0
0 0 0 0 0 0420

0 0 0
0 0

sym. 0 0 0
0

e
AL

γ γ γ γ
γ γ γ γ

γ γ γ
γ γ γρ

γ γ
γ γ

γ
γ

 
 − 
 −
 
 
 −
 

− =  
 
 
 
 
 
 
 
  

M (11)

()

()

1 22 2

2

3 42 2

9 2
24 1 6

5 136 1
2

L

LL

µµθγ γ
µ µ

µ θ
γ γ

µ µ

Ω +  −Ω
= − =   

   
Ω +   

= = −   
  

 (12)

https://doi.org/10.4236/jsea.2023.167014

C. H. B. Resende et al.

DOI: 10.4236/jsea.2023.167014 286 Journal of Software Engineering and Applications

1 12 1 4µ θ= + Ω = + Ω (13)

2

1

S

EI
GA L

Ω = (14)

https://doi.org/10.4236/jsea.2023.167014

	An Educational GUI-Based Software for Dynamic Analysis of Framed Structural Models
	Abstract
	Keywords
	1. Introduction
	2. Theoretical Considerations
	2.1. System Assembly
	2.1.1. Mass Matrix
	2.1.2. Damping Matrix
	2.1.3. External Load Vector

	2.2. System Solution
	2.2.1. Numerical Integration
	2.2.2. Modal Decomposition

	3. Data Structure
	4. Graphical User Interface
	5. Examples of Application
	5.1. Simple Academic Frame
	5.2. Shear Building
	5.3. Truss Bridge

	6. Conclusions
	Acknowledgements
	Conflicts of Interest
	References
	Appendix

