
Journal of Software Engineering and Applications, 2023, 16, 170-192
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2023.166010 Jun. 28, 2023 170 Journal of Software Engineering and Applications

Review of Software Model-Checking
Techniques for Dealing with Error
Detection in Program Codes

Ednah Olubunmi Aliyu

Department of Computer Science, Adekunle Ajasin University, Akungba-Akoko, Nigeria

Abstract
Debugging software code has been a challenge for software developers since
the early days of computer programming. A simple need, because the world is
run by software. So perhaps the biggest engineering challenge is finding ways
to make software more reliable. This review provides an overview of techniques
developed over time in the field of software model checking to solve the prob-
lem of detecting errors in program code. In addition, the challenges posed by
this technology are discussed and ways to mitigate them in future research
and applications are proposed. A comprehensive examination of the various
model verification methods used to detect program code errors is intended to
lay the foundation for future research in this area.

Keywords
Software Model Checking, Symbolic Execution, State Explosion, Abstraction,
Test Case Generations

1. Introduction

This article traced the history of program verification to the mid-sixties [1], when
the founding fathers of Computer Science such as Robert Floyd, Tony Hoare
and Edsger Dijkstra realized that one of the most important challenges compu-
ting faced was to tame complexity. So, they devised a methodology to study the
property of a system. One way to study the properties of a program is to treat it
as a black box and execute it. The merit of this approach is its ease of implemen-
tation while its drawback is that it can only reveal how the program behaves for
a particular input value. To guarantee that some property is held on a different
input, one would have to execute the program over every possible input. To solve

How to cite this paper: Aliyu, E.O. (2023)
Review of Software Model-Checking Tech-
niques for Dealing with Error Detection in
Program Codes. Journal of Software Engi-
neering and Applications, 16, 170-192.
https://doi.org/10.4236/jsea.2023.166010

Received: April 17, 2023
Accepted: June 25, 2023
Published: June 28, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2023.166010
https://www.scirp.org/
https://orcid.org/0000-0001-7278-3452
https://doi.org/10.4236/jsea.2023.166010
http://creativecommons.org/licenses/by/4.0/

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 171 Journal of Software Engineering and Applications

the problem, the research community decided to open up the black box. This led
to the development of higher-level programming languages with precise seman-
tics using mathematical objects to reason about program properties such as op-
erational semantics, denotational semantics and axiomatic semantics as pointed
out by [2]. Having laid down the foundation for describing program semantics,
researchers began to follow two distinct but overlapping paths. The first was the
design of a programming language of increasing sophistication, which promoted
various styles of programming, while the second was the development of techniques
for reasoning about the properties of programs.

Meanwhile, the Peer Review method used for software verification [3] is a me-
thod carried out by a team of software engineers who preferably have not been
involved in the development of the software under review. They analyse code
statically without executing it. The shortcoming of this method is that the errors
discovered are errors in coding standards, style and readability, but does not dis-
play errors in program behaviour. Another verification method is testing. It is a
dynamic technique that runs the software. Testing takes the piece of software un-
der consideration and provides its compiled code with an input called tests. The
main advantage of testing is that it can be applied to all sorts of software ranging
from application software, to compiler and operating systems. However, a prob-
lem with testing according to [3] and [4] is that testing can never be complete,
that is, it can only show the presence of errors, and it does not show the absence
of errors. Also, determining when the testing operation is to stop is a challenge.
Due to this problem, [5] stated that early discovery of errors makes development
cheaper.

Static code analysis is another method of debugging by examining code before
a program is run. It is implemented by analyzing a set of codes against a set of
coding rules using automatic tools. [6] mentioned some static analysis tools that
have emerged over the years such as Coverity, FindBugs, C++Test and JTest re-
spectively, enabling common programming errors and style violations to be seen
in the early stages of development. The two major challenges of static code anal-
ysis according to [7] are false positives and false negatives. False positive indi-
cates the presence of a defect or vulnerability that is not actually present in the
code while false negatives indicate that the code is free from defects or vulnera-
bilities when, in fact, it is not.

In the quest of making progress in developing tools for verifying requirements
and design, the techniques organized themselves into distinct sub-areas under
the general heading of formal methods such as: Type checking which define a set
of values to be assigned to a variable, the operations that can be performed on a
variable, the way a variable is stored in the memory and done automatically within
the compiler [8]. Program analysis: A technology that is concerned with approxi-
mation about the program automatically, detecting invariants in a program and
run-time errors such as division by zero, array bound overflow and arithmetic
overflow.

Theorem prover: Technology for simplifying proof in response to proofs

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 172 Journal of Software Engineering and Applications

by hand using a Floyd-Hoare style logic [9]. This discipline concentrates on
the construction of models by successive refinements, symbolic techniques in
the performance of constraint solver that underlie effective symbolic representa-
tion for propositional logic, as well as Binary Decision Diagram (BDD) and for the
combination of first-order theories of equality with un-interpreted function [10]
[11]. Model Checking: Checks the properties of models of program, usually, these
models denote finite state machines and the properties to be checked are tem-
poral properties [8]. Also, Ben-Ari [12] describes model checking as one of the
most powerful formal methods that generate all possible states of a program and
check whether the correctness specifications hold in each state.

This article focuses on model checking and the application of model checking
involves the following phases according to [13].

1) First, it is needed to formally specify the system to check, written in a for-
mal language such as temporal logic or process algebra.

2) The requirements of the system are also specified in the same language as
the specification or in a different one.

3) A model of the system is generated from the formal specification usually,
finite state automata or a labelled transition system.

4) Finally, the satisfaction or refutation of the properties is checked against the
model.

However, each sub-area has its own community and philosophy. But what
unifies this sub-area is that to prove the program never enters an undesirable state.
To prove that, one has to compute from the program’s description the set of poss-
ible states the program may ever enter. [1] documented that this set is not com-
putable, what needs to be done is to demonstrate by construction the existence
of a safe set that contains all the states the program may enter, but does not con-
tain an undesirable state. From this point on, the sub-areas diverged in the kinds
of error states and the programs being analyzed as shown in Table 1.

This review is based on software model checking which is the algorithmic anal-
ysis of programs to prove properties of their execution. More recently, software
model checking has been influenced by three parallel but somewhat distinct de-
velopments. First, the development of program logic and associated decision pro-
cedures, this provided a framework and basic algorithmic tools to reason about
infinite state spaces. Second, automatic model-checking techniques for temporal
logic, this provided basic algorithmic tools for state-space exploration. Third,
compiler analysis, formalized by abstract interpretation, provided connections be-
tween the logical world of infinite state spaces and the algorithmic world of finite
representations [1]. While the second categories focus on symbolic model check-
ing which has been an active area of research in the field of computer science for
several decades, this study intends to review the state-of-the-art of symbolic model
checking, especially the use of machine learning techniques to improve the sca-
lability of symbolic model checking.

The remaining part of this review is organized as follows. Section 2 contains
software model-checking techniques for dealing with error detection in program

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 173 Journal of Software Engineering and Applications

Table 1. Features of formal methods.

Distinguishing
Features of Sub-area

Type System Program Analysis Theorem Prover Model Checking

Program Code Applicable Applicable Not applicable Not applicable

Model (Abstraction) Not applicable Control-Flow Graph (CFG) Model construction Finite-State Machine (FSM)

Type Checking Applicable Not applicable Not applicable Not applicable

Invariant Checking Not applicable Applicable Applicable Applicable

Functional Correctness Not applicable Applicable Not applicable Not applicable

Temporal Properties Not applicable Not applicable Not applicable Applicable

Symbolic Execution Not applicable Not applicable Applicable Applicable

Precision Not applicable Not applicable Applicable Applicable

Scalability Not applicable Applicable Applicable Not applicable

Exhaustive Not applicable Applicable Applicable Applicable

Efficiency Not applicable Applicable Not applicable Not applicable

Undesirable State Type error Spurious error Invalid query Spurious/coarse abstraction

Counter-example Not applicable Not applicable Applicable Applicable

Refinement Not applicable Not applicable Applicable Applicable

Proposed Properties Not applicable Applicable Not applicable Applicable

Inner Properties Applicable Not applicable Applicable Not applicable

codes. Section 3 analyse the situation of the symbolic model checking. Section 4
contains a discussion of challenges and future prospects. Section 5 presents the
conclusion.

2. Software Model-Checking Techniques for Dealing with
Error Detection in Program Codes

Several notions have emerged in the field of software model checking to deal
with properties of a system. Typically, software model checking was based on ex-
plicit enumeration. That is, it manipulates individual states of the program that
are stored in a large hash table (that is, states are stored as bit vectors). The state
space graph is explored with depth-first search, looking for violation of safety
property. An overview of general approach is presented in Figure 1.

In the literature, different approaches that brought enhancement in the field
of software model checking are depicted in Table 2.

2.1. Explicit-State Model Checking

Explicit-state model checking is a formal verification technique that checks
whether a system model satisfies a desired property by exploring all possible
states of the system. One significant limitation of explicit-state model checking is
the state explosion problem, which occurs when the number of possible states or
transitions in the system grows exponentially with the size of the system. This

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 174 Journal of Software Engineering and Applications

Figure 1. Model-checking approach.

Table 2. Different approaches in software model checking.

Approaches Knowledge Source Strength Limitation

Explicit-state Model
Checking

State graph or state transition
system

Detect errors in highly concurrent design State explosion problem.

Symbolic Model
Checking (Boolean
Encoding for State
Machine and Set of
States)

Ordered Binary Decision
Diagram (OBDD) + Fix-point
characterization of temporal
operators

1) It can handle systems with large state
spaces more efficiently.
2) It can verify properties that are
specified in rich formal languages, such
as temporal logic or mu-calculus spaces
more efficiently.
3) It can verify systems that have
unbounded data domains, such as
integer and real variables.
4) It can verify parameterized systems,
where the number of components or
processes in the system is not fixed.

Many functions do not have a
succinct BDD representation.

Model Checking with
Abstraction

Predicate abstraction
Ability to balance the trade-off between
accuracy and efficiency in formal
verification.

1) Risk of losing important
information or details that are
necessary for detecting certain
types of errors or properties.
2) Difficulty of ensuring the
soundness and completeness
of the verification results.

Bounded Model
Checking

Formal language such as
temporal logic or automata,
and the design or
implementation of the
system being verified

1) Effectively handle systems with a large
number of states and transitions.
2) Detect errors and violations quickly,
without having to explore the entire state
space of the system.

1) Cannot detect errors or violations
that occur beyond the bound.
2) If the model does not accurately
capture the behavior of the system,
BMC may produce false negatives
or false positives, which can lead
to incorrect verification results.
3) State explosion problem.

Dynamic Model
Checking

Program code and its
associated documentation,
such as requirements and
design specifications

1) It can handle systems with dynamic
or continuous behavior, such as control
systems, analog circuits, and hybrid
systems.
2) It detects errors and violations in
real-time during system execution.

1) It only verifies the behavior of
the system during execution.
2) It requires a set of inputs that
exercise the system’s behavior
adequately.
3) It suffers from the state
explosion problem.

Model
Checking

Tool

Model (System
Requirement)

Yes, if model satisfies
specification, Else
counter-example

Specification
(System Property)

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 175 Journal of Software Engineering and Applications

can make explicit-state model checking infeasible or impractical for verifying
large and complex systems.

In the sequel, various techniques to improve space consumption in explicit state
model checkers were introduced such as: Reduction based techniques—consists
of partial-order reduction, symmetry reduction or minimization based on beha-
vioural equivalences such as simulation or bi-simulation, behavioural equiva-
lences such as similarity or bi-similarity. Furthermore, compositional techniques
were also introduced to reduce the safety verification problem on the original
program to prove properties on subprograms, such that the results of model check-
ing the subprograms can be combined to deduce the safety of the original pro-
gram. Then, the idea of search heuristic in the field of artificial intelligence was
introduced to find bugs quickly [1]. In addition, there was a special case of enu-
merative verification known as systematic execution exploration which checks the
runtime system of a programming language implementation to implement enu-
merative state space exploration. [1] stated that the benefit of this approach was
that it sidesteps the need to be able to formally represent the semantics of the
programming language and machine instructions as a transition relation, but the
number of states is still too large to be handled by the model checker.

In [9], a method of constructing concurrent program automatically using
branching time temporal logic was proposed. They specified the behaviour of a
finite number of fixed processes 1 np p running in parallel using Computa-
tion Tree Logic (CTL) and applied Tableau-Based decision procedure for satis-
fiability of CTL formula. Model-checking algorithm (that is, Tableau-Based
decision procedure) automatically factors out the synchronization skeletons
of the individual processes from the global system flow-graph defined by the
model.

Another study [14] described as a set of Communicating Sequential Processes
(CSPs), where a translator transformed the description program into an Inter-
preted Petri-Nets (IPNs). To verify the conformity of the described system, the
model was treated by an analyzer (CESAR) given the specification in branching
time logic which expressed invariant, liveness and response to some action proper-
ties.

Also, [15] improved on the work carried out in [14] by developing automatic
verification of finite-state concurrent systems using temporal logic specifications
and moved fairness requirements into the semantic of Computation Tree Logic
(CTL).

Model Checking Using Net Unfolding were proposed in [16] and made pre-
cise effort about the arbitrary interleaving of concurrent actions with certain proper-
ties such as reachability and mutual exclusion with the development of a new
model-checking algorithm based on net unfolding to improve the model-checking
algorithm developed by [17] which required exponential time.

In [18], presented the development of SPIN model checker to prove the cor-
rectness interaction between processes. The system model was described in Process

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 176 Journal of Software Engineering and Applications

Metalanguage (PROMELA) for modelling process synchronization and coordi-
nation while specification properties are written in Linear Temporal Logic (LTL)
formula.

2.2. Symbolic Model Checking

The need to overcome state-explosion-problem led to research on symbolic al-
gorithms which manipulate representations of sets of states, rather than indi-
vidual state, and perform state exploration through the symbolic transformation
of these representations [1] [19]. One strength of symbolic model checking is
that it can handle systems with large state spaces more efficiently than expli-
cit-state model checking. The first to create a publicly available symbolic model
checker called Symbolic Model Verifier (SMV) based on Binary Decision Dia-
grams (BDDs) was Ken McMillan, at Carnegie-Mellon University (CMU). The
demerit of BDDs was its sensitivity to orderings of variables, that is, the order in
which variables are encountered from the root to the leaves of the BDD can vary
dramatically with different orderings.

The issue of scalability is addressed in [20] with explicit state model checker
by extending Java Pathfinder model checker with symbolic execution and Satis-
fiability (SAT) solver.

In [21], looked into the issue of modeling complex data structures such as ar-
rays with the development of a prototype implementation called SMT-CBMC ap-
proach.

Improving the scalability of the composite model-checking algorithms to ve-
rify source code level sequential programs is investigated in [22] against program-
ming bug such as array bound violation, use of uninitialized variables, memory
leaks, locking rule violations and division by zero with the objectives of combining
multiple symbolic representation at Boolean, integer and Boolean combination
of Linear constraints on reals to model programs defined using Composite Sym-
bolic Formula (CSF).

Context-enhanced directed model-checking techniques introduced in [23] to
tackle state explosion problem. The goal is to find error states in concurrent sys-
tems with the objectives of developing a heuristic search to explore those parts of
the state space belonging to the same part of the system using the notion of in-
terference context.

In [24], proposed Configurable Program Analysis Checker (CPACHECKER)
with the development of Event Condition Action (ECA) systems using Binary
Decision Diagrams (BDDs).

The issue of static verification techniques of Boolean formula satisfiability
solvers were proposed in [25] such as, Satisfiability Theory (SAT) and Satisfia-
bility Modulo Theory (SMT) solvers that operate on conjunctive normal form
and first order logic formulae respectively to validate programs with the develop-
ment of And-Inverter-Graph (AIG), encoding the problem definition in a pro-
gram.

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 177 Journal of Software Engineering and Applications

2.3. Model Checking with Abstraction

Model checking with abstraction is a technique that involves simplifying the
formal model of a system being verified by abstracting away some details that are
not relevant to the property being verified. Cousot [26] described abstract inter-
pretation to be either partial or preorder. Being partial meaning that it is consi-
dered a subset of the concrete semantics. This is regarded as abstraction from
below (Under-approximation). Preorder meaning that abstractions are “from
above” that is, the abstract semantics describes a superset or logical consequence
of the concrete semantics which is known as over-approximation.

One major improvement in this area was achieved through Satisfiability Mod-
ulo Theories (SMT); an algorithm that computes an abstraction of a program
with respect to a given abstract interpretation by replacing loops and function
calls in the Control Flow Graph (CFG) by their symbolic transformer [19] [27].

The work of [28] focused on model checking C programs, which are noto-
riously difficult to verify due to their complexity and the potential for errors in
memory management. To address these challenges, the authors propose a me-
thod that uses both Boolean and Cartesian abstraction. Boolean abstraction in-
volves replacing program variables with Boolean variables, which allows for effi-
cient verification of properties that depend only on the truth values of the va-
riables. Cartesian abstraction, on the other hand, involves partitioning the state
space of the program into a finite set of Cartesian product abstractions, which
can be used to efficiently verify complex temporal properties.

In [29], proposed an automatic method for generating predicate abstractions
of C programs using a combination of abstract interpretation and decision tree
learning. The authors first use abstract interpretation to generate a set of abstract
states that over-approximate the behavior of the program. They then use deci-
sion tree learning to identify predicates that can be used to partition the abstract
states into smaller sets that correspond to different program behaviors.

Predicate Abstraction for Software Verification by [30], proposed a method
for automatically generating predicate abstractions using a combination of ab-
stract interpretation and refinement The authors first use abstract interpretation
to generate a set of abstract states that over-approximate the behavior of the pro-
gram. They then use a refinement process to generate a more precise set of pre-
dicates that can be used to partition the abstract states into smaller sets that cor-
respond to different program behaviors.

The paper “Model Checking Software at Compile Time” by [31] describes a
novel approach to integrating model checking into the software development
process at compile time, rather than after the software has been developed and
compiled. It involves the automatic generation of a model of the software system
at compile time, based on the source code of the program. This model is then
used to perform model checking to verify the correctness of the software with
respect to a given specification.

In [32], a methodology that combines automated verification techniques, such

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 178 Journal of Software Engineering and Applications

as model checking, with automated repair techniques, such as program synthesis
were presented. The proposed methodology consists of three main phases: veri-
fication, diagnosis, and repair. In the verification phase, the software is analyzed
using model checking to identify any errors or bugs. In the diagnosis phase, the
errors are further analyzed to determine the root cause of the problem. Finally,
in the repair phase, a repair algorithm is used to automatically generate corrected
code to fix the identified errors.

Symbolic abstraction algorithm called symba were introduced in [33] using
the power of SMT solver (Z3), encoded all execution as a formula in Quan-
tifier Free-Linear Real Arithmetic (QF-LRA), a commonly used theory for en-
coding program execution.

Model Checking with Abstraction by [34], proposed a method for verifying
multi-agent systems using bounded model checking and abstraction techniques.
The approach involves modeling the agents as finite-state machines, and using
abstraction techniques to reduce the complexity of the model. The model is then
checked for correctness using bounded model checking.

2.4. Bounded Model Checking

According to [19], satisfiability solver was observed to handle much larger for-
mulas than BDDs. This led to the development of Bounded Model Checking
(BMC) at Carnegie-Mellon University CMU in late 1990s. Bounded Model Check-
ing (BMC) unrolls the control flow graph for a fixed number of steps, and checks
if the error location can be reached within this number of steps and satisfiability
of this constraint is checked by a constraint solver using backtracking.

However, the limitation of this technique according to [1] was the scalability
performance of constraint solvers for non-linear arithmetic. Additionally, [35]
stated that the disadvantage of bounded model checking is that the method lacks
completeness and the types of properties that can currently be checked are very
limited.

In [21], addressed the issue of modeling complex data structures such as ar-
rays with the development of a prototype implementation called SMT-CBMC ap-
proach. Experimental results show that 1) encoding technique generated more
compact formula than CBMC when arrays are involved in the input program;
2) On problems involving complex interactions of arithmetic and arrays mani-
pulation, SMT-CBMC outperforms CBMC as the size of the arrays occurring in
the input program increases.

Bounded Model Checking (BMC) for C and C++ programming languages were
introduced in [36] using Low Level Virtual Machine (LLVM) complier front-end
such as clang or llvm-gcc to translate C and C++ programs into LLVM’s Interme-
diate Representation (LLVM-IR); usually in Static Single Assignment (SSA) form,
LLVM-IR program is then converted into LLBMC’s Internal Logical Representa-
tion (ILR). The result shown that LLBMC performed favourably compare to
CBMC and ESBMC in terms of detecting an error such as arithmetic overflow,

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 179 Journal of Software Engineering and Applications

invalid memory allocations, invalid memory access, invalid free and memory
leak detection.

2.5. Dynamic Model Checking

Dynamic model checking is a technique for verifying the correctness of software
systems by analyzing their behavior during execution. Unlike static analysis
techniques, which analyze the source code of a program without actually run-
ning it, dynamic model checking involves running the program on sample
inputs or test cases and observing its behavior to detect errors or violations of
specified properties. As mentioned in “Model Checking” by [37], dynamic mod-
el checking can be particularly effective in detecting errors in complex systems
where static analysis may be impractical or ineffective. Also, as discussed in
“Model Checking Software: A Survey” by [11], dynamic model checking can
handle systems with non-deterministic behaviour by generating and exploring
all possible execution paths, and verifying that the properties of interest hold for
each path.

Dynamic model checking by [38] proposed a new approach to model check-
ing that involves dynamically executing the program under test and monitoring
its behavior in real-time. This approach allows for more comprehensive testing
of the software’s behavioral correctness, as it can capture non-deterministic be-
havior and edge cases that may not be revealed by traditional model-checking tech-
niques.

Dynamic model checking with evolving software and specifications by [39],
proposed an approach to dynamic model checking that can handle evolving
software and specifications. The authors’ approach involves using a combination
of dynamic model checking and dynamic symbolic execution. Dynamic model
checking involves running the program under test and checking for violations of
certain properties, while dynamic symbolic execution involves exploring the
program’s execution paths to generate test inputs that can achieve higher cover-
age. The authors demonstrate the effectiveness of their approach by applying it
to several case studies, including a web application and a mobile phone applica-
tion.

Dynamic model checking for concurrent software by [40] proposed a dynamic
model-checking approach specifically for concurrent software. The authors’ ap-
proach involves a combination of dynamic model checking and path-based
symbolic execution. Dynamic model checking is used to explore the execution of
the program and detect errors such as deadlocks and race conditions, while
path-based symbolic execution is used to generate test cases that explore differ-
ent paths through the program. The authors show the effectiveness of their ap-
proach by applying it to several case studies, including a file server and a memo-
ry allocator.

In [41], proposed a dynamic model-checking approach for software product
lines. The authors’ approach involves using a feature model to guide the testing
process. The feature model captures the possible feature combinations of the soft-

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 180 Journal of Software Engineering and Applications

ware product line, and the dynamic model-checking approach is used to explore
the possible execution paths of the software products based on these feature com-
binations. The authors also use slicing techniques to reduce the number of paths
explored during the testing process. The authors demonstrate the effectiveness of
their approach by applying it to several case studies, including a file system and a
configuration tool.

3. State-of-the-Art of Symbolic Model Checking

Symbolic model checking as mentioned in section two is a technique for verify-
ing the correctness of software systems by analyzing a symbolic representation of
the program’s behavior. This technique analyzes a symbolic representation of the
system’s behavior and checks whether it satisfies a given set of properties [35].
The symbolic representation is constructed using a set of symbolic variables and
their constraints, which allows for the exploration of all possible paths in the sys-
tem’s behavior without having to explicitly execute the system.

For example, suppose we want to verify a simple counter that counts from 0 to
3 and then resets to 0. We can represent the counter using a symbolic variable x,
which takes values from 0 to 3.

We can define the constraints on x as follows:
If x is 0, then the counter increments to 1.
If x is 1, then the counter increments to 2.
If x is 2, then the counter increments to 3.
If x is 3, then the counter resets to 0.
We can encode these constraints as a Boolean formula using a temporal logic

such as Linear Temporal Logic (LTL):

()() ()() ()() ()()()0 1 1 2 2 3 3 0G x X x x X x x X x x X x= → = ∧ = → = ∧ = → = ∧ = → = (1)

This formula states that for all future states G, if the current state is x = 0, then
the next state must be x = 1, and so on. We can use a symbolic model checker to
check whether this formula is satisfied by the symbolic representation of the
counter. If the formula is satisfied, then we can conclude that the counter satis-
fies the given properties. If the formula is not satisfied, then we can use the coun-
terexample generated by the symbolic model checker to diagnose and fix the bug
in the counter.

Symbolic model checking is useful because it can handle complex systems
with a large number of states and transitions. It can also find subtle bugs that
may be difficult to detect through manual testing or other verification tech-
niques. Additionally, symbolic model checking can be used to generate counte-
rexamples, which are concrete executions of the system that violate a given
property. These counterexamples can be used to diagnose and fix the bugs in the
system.

However, it has been successfully applied to a variety of domains, including soft-
ware, hardware, communication protocols, and distributed systems. Its purpose
is to provide a rigorous and automated approach to verify the correctness of com-

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 181 Journal of Software Engineering and Applications

plex systems.

3.1. Recent Advancement in Symbolic Model Checking

While Section 2 provides examples of recent research papers that have made sig-
nificant contributions to the technique, this section discusses recent advancements
in the technique, including new algorithms, tools, or applications as well as the
technique’s capabilities and limitations.

As mentioned above that symbolic model checking can be used in different
domains, including software, hardware, communication protocols, and distributed
systems. Here, a few examples of several new algorithms, tools, and applications
of symbolic model checking that have been proposed for software verification and
testing in recent years is as follows:

1) The Symbolic Execution Intermediate Language (SEIL): It is a program-
ming language for specifying symbolic execution of software. It is a high-level
language that can be used to describe symbolic execution of complex software
systems. The SEIL tool was developed by [42] and can be used to generate test
cases automatically.

2) AFLSmart: The AFLSmart tool is a mutation-based testing framework that
uses symbolic execution to generate test cases. It is an extension of the AFL fuzzer
and can handle complex software systems. The AFLSmart tool was proposed by
[43] and has been shown to be effective in detecting subtle bugs in real-world
software.

3) JPF-SymSpark: The Java PathFinder (JPF) tool is a symbolic model checker
for Java programs. JPF-SymSpark is an extension of JPF that uses symbolic ex-
ecution to generate test cases for Apache Spark applications. It was proposed by
[44] and has been shown to be effective in detecting bugs in real-world Spark
applications.

4) Symbiotic: Symbiotic is a tool for symbolic verification of C and C++ pro-
grams. It uses a combination of program slicing and symbolic execution to check
for memory safety, concurrency bugs, and other types of bugs. Symbiotic was
proposed by [45] and has been shown to be effective in finding bugs in large C
and C++ codebases.

5) SymDIVINE: SymDIVINE is a tool for the verification of distributed soft-
ware systems. It uses a combination of symbolic execution and model checking
to check for safety and liveness properties. SymDIVINE was proposed by [46]
and has been shown to be effective in detecting subtle bugs in distributed soft-
ware systems.

Symbolic model checking is a powerful verification and testing method, but it
also has advantages and disadvantages. Here are a few of them:

3.2. Capabilities of Symbolic Model Checking

1) Automatic test case generation: Symbolic model checking can automatically
generate test cases that cover different execution paths and edge cases in the

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 182 Journal of Software Engineering and Applications

software. This can help identify bugs and ensure that the software behaves cor-
rectly in all scenarios [47].

2) Scalability: Symbolic model checking can handle large and complex soft-
ware systems with many possible execution paths and inputs. It can also handle
programs with dynamic memory allocation and recursion, which are difficult to
test with traditional methods [45].

3) Precision: Symbolic model checking can analyze the software behavior pre-
cisely and exhaustively. It can check for correctness properties such as absence of
runtime errors, assertion violations, deadlocks, and data races [48].

3.3. Limitations of Symbolic Model Checking

1) State space explosion: Symbolic model checking suffers from the state space
explosion problem, which arises when the number of possible program states and
transitions is very large. This can cause the model checker to run out of memory
or take a very long time to complete [17] [49].

2) Incomplete specifications: Symbolic model checking relies on formal speci-
fications to check the correctness of the software. If the specification is incom-
plete or incorrect, the model checker may not be able to detect all the possible
bugs in the software [50].

3) Input generation: Symbolic model checking can generate test cases auto-
matically, but it may not be able to generate inputs that are representative of
real-world usage scenarios. This can limit the effectiveness of the test cases in
detecting bugs in the software [51].

4) Limited support for non-determinism: Symbolic model checking assumes
that the program behavior is deterministic, but many software systems exhibit
non-deterministic behavior. This can limit the applicability of symbolic model
checking to certain types of software systems [24].

3.3.1. State Space Explosion
As mentioned above that the challenge of state space explosion in software mod-
el checking refers to the problem of dealing with a very large number of possible
program states and transitions, which makes it difficult to verify the correctness
of the software exhaustively. This problem arises because symbolic model-checking
algorithms typically operate on a symbolic representation of the program that
captures all possible executions of the program, rather than executing the pro-
gram concretely.

To address the challenge of state space explosion, researchers have developed
several techniques:

1) Abstraction: This involves reducing the size of the state space by ignoring
some details of the program that are not relevant for verifying the desired prop-
erty. For example, some variables can be abstracted away or combined into equi-
valence classes to reduce the number of possible states [52].

2) Incremental checking: This involves dividing the verification problem into
smaller subproblems that can be checked separately. For example, the program

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 183 Journal of Software Engineering and Applications

can be divided into modules or functions, and each module or function can be
checked independently [53].

3) Model checking with partial order reduction: This technique reduces the
size of the state space by exploiting the fact that many program executions are
equivalent up to a certain point. By reducing the number of equivalent execu-
tions that are explored, this technique can reduce the overall size of the state
space [54].

4) Heuristics and optimizations: Researchers have developed various heuris-
tics and optimizations to improve the efficiency of symbolic model-checking al-
gorithms. For example, techniques such as state caching and lazy evaluation can
reduce the amount of redundant work that the model checker has to do [49].

5) Symbolic model checking with machine learning techniques: Machine
learning techniques such as decision trees and regression models have been used
to learn the structure of the system and guide the symbolic model-checking
process. For example, in the work “Guiding Symbolic Execution towards Unex-
plored Code” by [55], a decision tree is used to guide symbolic execution towards
unexplored code paths, reducing the number of explored paths and increasing
the efficiency of the analysis.

Another example is the work “Speeding up Symbolic Model Checking with
Machine Learning” by [56], where a regression model is used to predict the rea-
chability of states in the system, reducing the number of states to be explored.

“DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems”
by [57]. This work proposes a framework for testing deep learning systems using
multi-granularity testing criteria. The approach uses machine learning to gener-
ate test cases and evaluate the testing criteria.

In [58], the authors propose a framework for learning-based testing that uses
a variety of machine learning techniques to generate test cases, execute the test
cases, and analyze the results of the test cases. The authors evaluate the frame-
work on a case study of a real world IoT software and show that the framework
can be used to find a significant number of defects in the system.

“Learning to Verify Safety Properties” by [59]. This work proposes a learn-
ing-based approach for verifying safety properties of software systems. The ap-
proach uses machine learning to learn the properties of the system under test
and verify them against a set of safety properties.

Neural-Guided Deductive Search (NGDS) was proposed in [60]. The authors
synthesize real-time programs from a small number of examples with significantly
less time and space overhead than traditional deductive search techniques.

3.3.2. Incomplete Specifications
The challenge of incomplete specifications in software model checking refers to
the problem of verifying software that does not have a complete specification, i.e.
a complete and formal description of the expected behavior of the software. This
problem arises because model checking algorithms typically rely on a formal
specification of the desired behavior of the software in order to check whether

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 184 Journal of Software Engineering and Applications

the actual behavior of the software satisfies the specification.
To address the challenge of incomplete specifications, researchers have de-

veloped several techniques:
1) Abductive reasoning: This involves inferring the missing parts of the speci-

fication based on the observed behavior of the software. For example, if the soft-
ware always returns a certain value under certain conditions, we can infer that
this behavior is part of the specification [48].

2) Falsification: This involves searching for inputs that cause the software to
violate the specification. By finding counterexamples to the specification, we can
identify parts of the specification that are missing or incorrect [61].

3) Model-based testing: This involves generating test cases based on a model
of the software, rather than the software itself. By generating tests from the model,
we can ensure that the tests cover all possible behaviors of the software that are
relevant to the specification [62].

4) Runtime verification: This involves monitoring the behavior of the software
during execution and checking whether the observed behavior satisfies the spe-
cification. This approach is useful when the software is too complex or too diffi-
cult to model accurately [63].

3.3.3. Input Generation
The challenge of input generation in software model checking refers to the
problem of generating inputs that can trigger interesting behaviors in the soft-
ware, such as error conditions or violations of the desired properties. This prob-
lem arises because model-checking algorithms typically rely on a set of inputs to
explore the state space of the software and check whether it satisfies the desired
properties.

To address the challenge of input generation, researchers have developed sev-
eral techniques:

1) Randomized testing: This involves generating inputs randomly and testing
the software with these inputs. By generating a large number of random inputs,
we can increase the chances of finding interesting behaviors in the software [64].

2) Search-based testing: This involves using search algorithms to find inputs
that are likely to trigger interesting behaviors in the software. By searching the
space of possible inputs, we can find inputs that are more likely to uncover er-
rors or violations of the desired properties [65].

3) Symbolic execution: This involves using a symbolic representation of the
program to explore the space of possible inputs and generate inputs that satisfy
certain conditions or constraints. By generating inputs symbolically, we can ex-
plore a large number of possible inputs without actually executing the software
with each input [66].

4) Model-based fuzzing: This involves generating inputs based on a model of
the software, rather than the software itself. By generating inputs from the mod-
el, we can ensure that the inputs cover all possible behaviors of the software that
are relevant to the desired properties [67].

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 185 Journal of Software Engineering and Applications

3.3.4. Limited Support for Non-Determinism
The challenge of limited support for non-determinism in software model check-
ing refers to the problem of verifying software that exhibits non-deterministic
behavior, where the behavior of the software depends on factors outside the
control of the software, such as timing, external events, or user input. This prob-
lem arises because model-checking algorithms typically assume a deterministic
model of the software, where the behavior of the software is fully determined by
its inputs and the internal state.

To address the challenge of limited support for non-determinism, researchers
have developed several techniques:

1) Probabilistic model checking: This involves extending model-checking al-
gorithms to handle non-deterministic behavior by using probabilistic models,
where the behavior of the software is described in terms of probabilities rather
than deterministic transitions. By modeling non-determinism probabilistically,
we can capture the inherent uncertainty in the behavior of the software [68].

2) Runtime verification: This involves monitoring the behavior of the software
during execution and checking whether the observed behavior satisfies the desired
properties. By monitoring the software at runtime, we can capture non-deterministic
behavior that is difficult to model statically.

3) Symbolic execution with concolic testing: This involves using symbolic ex-
ecution to explore the space of possible executions of the software, while also
generating concrete inputs that satisfy certain conditions or constraints. By ge-
nerating inputs that capture non-deterministic behavior, we can explore a larger
space of possible behaviors than with purely symbolic execution [69].

4) Model-based testing with adaptive input generation: This involves generat-
ing inputs based on a model of the software, while also adapting the input gen-
eration process to capture non-deterministic behavior. By adapting the input
generation process, we can explore a larger space of possible behaviors and cap-
ture non-deterministic behavior that is difficult to model statically [70].

4. Discussion: Challenges and Future Prospects
4.1. Summary of Challenges

From the current symbolic model-checking techniques and approaches identi-
fied, one interesting method that has been commonly applied to address the li-
mitations is symbolic execution. Studies [71] [72] [73] show that many systems
exhibit non-determinism behaviour. One such example is complex data struc-
tures that involve non-linear operations, such as matrices and polynomials.

Matrices, for example, can be represented as multi-dimensional arrays, and op-
erations on matrices often involve non-linear operations such as matrix multip-
lication and matrix inversion. Symbolic execution can generate constraints on
the values stored in matrix elements, but analyzing the constraints can be com-
putationally expensive due to the non-linear nature of the operations.

Similarly, polynomials involve non-linear operations such as multiplication and

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 186 Journal of Software Engineering and Applications

exponentiation, which can make symbolic execution of programs involving po-
lynomials challenging. However, recent research Baldoni et al. (2020) has shown
that techniques such as SMT-based constraint solving and approximation can be
used to overcome some of the challenges of symbolic execution for non-linear
operations.

It is stated in [74] that “Hybrid approaches can overcome the limitations of
symbolic execution for non-linear operations by leveraging the strengths of oth-
er techniques” such as abstract interpretation or model checking.

However, one gap in using machine learning techniques with symbolic model
checking is the potential loss of precision or soundness in the analysis. Machine
learning models can be biased or incomplete, and may not capture all the rele-
vant features or behaviors of the system under verification. This can lead to missed
errors or false positives, which can be problematic for safety-critical systems.

For example, in the work “A Critical Survey of Machine Learning-Assisted
Verification” by [75], the authors note that machine learning models can suffer
from overfitting, where they memorize the training data rather than learning
general patterns, leading to poor performance on new, unseen data. They also
highlight the challenge of incorporating domain knowledge and constraints into
machine learning models, which can affect their accuracy and usefulness for ve-
rification tasks.

Another gap is the potential increase in computational overhead and com-
plexity when integrating machine learning with symbolic model checking. Ma-
chine learning models can be computationally expensive to train and evaluate,
and may require large amounts of memory and storage. This can limit their sca-
lability and practicality for real-world verification tasks.

4.2. Future Prospects

So far, software model-checking techniques for dealing with errors in software
programs were introduced. Symbolic execution can be applied to a wide range of
complex data structures but there are still some data structures involving non-linear
operations that present challenges for symbolic execution. As mentioned by [74]
that hybrid approach can be used to combat the problem, this study proposed
dynamic symbolic execution which combines concrete execution with symbolic
execution and concolic testing that combines symbolic execution with concrete
testing to test cases that maximize code coverage.

Besides the above, recent studies [55] [56] [57] [76] [77] [78] demonstrated
the use of machine learning for software model checking. However, further re-
search and development in integrating machine learning with symbolic model
checking, to ensure that the combined approach is accurate, scalable, and effi-
cient needs more exploration.

In general, the challenges to model-checking software highlight the ongoing
need for research and innovation in this field. As software systems continue to
grow in complexity and importance, there will be a growing need for effective

https://doi.org/10.4236/jsea.2023.166010

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 187 Journal of Software Engineering and Applications

and efficient verification techniques to ensure their correctness and reliability.

5. Conclusions

In this article, a review of recent techniques for error detection in program codes
using model-checking technology was considered. First, an overview of the
model-checking process and its importance in software verification is presented.
Followed several techniques that have been developed to address some of the li-
mitations of traditional model-checking techniques, including abstraction tech-
niques, dynamic model checking, and model checking for software product lines.

Also, it highlighted some of the challenges and future prospects for mod-
el-checking software, including the state space explosion problem, incomplete
and incorrect specifications, scalability, and the need to develop new algorithms
and techniques to handle new types of software systems.

Based on this review of these techniques, model checking is a powerful and
effective technique for detecting errors in program codes, but it also has some
limitations that need to be addressed. However, with ongoing research and in-
novation, model checking will continue to be an important tool in the software
verification process, helping to ensure the correctness and reliability of complex
software systems.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Henzinger, T.A., Jhala, R., Majumdar, R. and Sutre G. (2002) Lazy Abstraction.

Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Portland, 16-18 January 2002, 58-70.
https://doi.org/10.1145/503272.503279

[2] Louden, K.C. (1993) Programming Languages Principles and Practice. URL.

[3] Baier, C. and Katoen, J. (2008) Principle of Model Checking. MIT Press, Cambridge.

[4] Aggarwal, K.K. and Yogesh, S. (2001) Software Engineering. 3rd Edition, New Age
International Ltd, New Delhi.

[5] Van-Hung, D. (2005) Model-Checking and the SPIN Model Checker. International
Institute for Software Technology, Macau.

[6] Mount, S. (2013) A Language-Independent Static Checking System for Coding Con-
ventions. Ph.D. Thesis, University of Wolverhampton, Wolverhampton.
https://www.semanticscholar.org/paper/A-language-independent-static-checking-s
ystem-for-Mount/a13e0e45b0c16ac8dda081666b9d2037c44e6b10

[7] Li, Y., Jiang, X., Zhang, Y., Xie, T. and Zhang, L. (2017) An Empirical Study on the
limitations of Static Code Analysis for Vulnerability Detection. IEEE Transactions
on Software Engineering, 43, 462-477.

[8] Abrial, J. (2009) Modelling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge.

[9] Clarke, E.M. (2008) The Birth of Model Checking. In: Grumberg, O. and Veith, H.,

https://doi.org/10.4236/jsea.2023.166010
https://doi.org/10.1145/503272.503279
https://www.semanticscholar.org/paper/A-language-independent-static-checking-system-for-Mount/a13e0e45b0c16ac8dda081666b9d2037c44e6b10
https://www.semanticscholar.org/paper/A-language-independent-static-checking-system-for-Mount/a13e0e45b0c16ac8dda081666b9d2037c44e6b10

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 188 Journal of Software Engineering and Applications

Eds., 25 Years of Model Checking, Springer, Berlin, 1-26.

[10] Strunk, E.A., Aiello, M.A. and Knight, J.C. (2006) A Survey of Tools for Model Check-
ing and Model-Based Development. Technical Report, Department of Computer
Science, University of Virginia, Charlottesville.

[11] Jhala, R. and Majumdar, R. (2009) Software Model Checking. ACM Computing Sur-
veys, 41, 1-54. https://doi.org/10.1145/1592434.1592438

[12] Ben-Ari, M. (2008) Principles of SPIN Model Checker. Springer-Verlag, London.

[13] Valero, M. (2005) Modal Abstraction and Replication of Processes with Data. Sprin-
ger, Berlin.
https://pdfs.semanticscholar.org/804b/02fd88d199360b65fb6efe13e93e84428596.pdf

[14] Queille, J.P. and Sifakis, J. (1982) Specification and Verification of Concurrent Sys-
tem in CESAR. In: Dezani-Ciancaglini, M. and Montanari, U. Eds., Programming
1982: International Symposium on Programming, Springer, Berlin, 337-351.
https://link.springer.com/chapter/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22

[15] Clarke, E.M., Emerson, E.A. and Sistla, A.P. (1986) Automatic Verification of Fi-
nite-StateConcurrent Systems Using Temporal Logic Specifications. ACM Transac-
tions on Programming Languages and Systems, 8, 244-263.
https://doi.org/10.1145/5397.5399

[16] Esparza, J. (1994) Model Checking Using Net Unfolding. Science of Computer Pro-
gramming, 23, 151-195. https://doi.org/10.1016/0167-6423(94)00019-0

[17] McMillan, K.L. (1992) Symbolic Model Checking: An Approach to the State Explo-
sion Problem. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, 1-212.

[18] Yin, X. (2006) An Introduction to the SPIN Model Checker. Tools for Model Check-
ing and Model-Based Development Project Report: Tool Description and Analysis.

[19] Biere, A. (2008) Tutorial on Model Checking: Modelling and Verification in Com-
puter Science. In: Horimoto, K., Regensburger, G., Rosenkranz, M. and Yoshida, H.,
Eds., AB 2008: Algebraic Biology, Lecture Notes in Computer Science, Springer, Ber-
lin, 16-21. https://link.springer.com/chapter/10.1007/978-3-540-85101-1_2
https://doi.org/10.1007/978-3-540-85101-1_2

[20] Khurshid, S., Pasareanu, C.S. and Visser, W. (2003) Generalized Symbolic Execu-
tion for Model Checking and Testing. In: Garavel, H. and Hatcliff, J., Eds., TACAS
2003: Tools and Algorithms for the Construction and Analysis of Systems, Springer,
Berlin, 553-568. https://doi.org/10.1007/3-540-36577-X_40

[21] Armando, A., Mantovani, J. and Platania, L. (2006) Bounded Model Checking of Soft-
ware Using SMT Solvers Instead of SAT Solvers. In: Valmari, A., Ed., SPIN 2006:
Model Checking Software, Springer, Berlin, 146-162.
https://doi.org/10.1007/11691617_9

[22] Yang, Z., Wang, C., Gupta, A. and Ivančić, F. (2008) Model Checking Sequential
Software Programs via Mixed Symbolic Analysis. ACM Transaction on Design Au-
tomation of Electronic System, 14, 1-26. https://doi.org/10.1145/1455229.1455239

[23] Wehrle, M. and Kupferschmid, S. (2010) Context-Enhanced Directed Model Check-
ing. In: Van De Pol, J. and Weber, M., Eds., SPIN 2010: Model Checking Software,
Springer, Berlin, 88-105. https://doi.org/10.1007/978-3-642-16164-3_7
https://link.springer.com/chapter/10.1007/978-3-642-16164-3_7

[24] Eyer, D. and Stahlbauer, A. (2013) BDD-Based Software Model Checking with
CPACHECKER. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T. and Antoš,
D., Eds., MEMICS 2012: Mathematical and Engineering Methods in Computer

https://doi.org/10.4236/jsea.2023.166010
https://doi.org/10.1145/1592434.1592438
https://pdfs.semanticscholar.org/804b/02fd88d199360b65fb6efe13e93e84428596.pdf
https://link.springer.com/chapter/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1145/5397.5399
https://doi.org/10.1016/0167-6423(94)00019-0
https://link.springer.com/chapter/10.1007/978-3-540-85101-1_2
https://doi.org/10.1007/978-3-540-85101-1_2
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/11691617_9
https://doi.org/10.1145/1455229.1455239
https://doi.org/10.1007/978-3-642-16164-3_7
https://link.springer.com/chapter/10.1007/978-3-642-16164-3_7

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 189 Journal of Software Engineering and Applications

Science, Springer, Berlin, 1-11. https://doi.org/10.1007/978-3-642-36046-6_1
https://link.springer.com/chapter/10.1007/978-3-642-36046-6_1

[25] Noureddine, M. and Zaraket, F.A. (2016) Model Checking Software with First Or-
der Logic Specifications Using AIG Solvers. IEEE Transactions on Software Engineer-
ing, 42, 741-763. https://scholar.google.com/citations?user=iLJ3TyQAAAAJ&hl=en
https://doi.org/10.1109/TSE.2016.2520468

[26] Cousot, P. (2001) Abstract Interpretation Based Formal Methods and Future Chal-
lenge.
https://www.di.ens.fr/~cousot/publications.www/Cousot-LNCS2000-sv-sb.pdf

[27] Abraham, E. and Kremer, G. (2017) Satisfiability Checking: Theory and Applica-
tion. Springer International Publishing, New York.

[28] Ball, T., Podelski, A. and Rajamani, S.K. (2000) Boolean and Cartesian Abstraction
for Model Checking C Programs. In: Margaria, T. and Yi, W., Eds., TACAS 2001: Tools
and Algorithms for the Construction and Analysis of Systems, Springer, Berlin, 268-283.
https://link.springer.com/chapter/10.1007/3-540-45319-9_19
https://doi.org/10.1007/3-540-45319-9_19

[29] Ball, T., Majumdar, R., Millstein, T. and Rajamani, S.K. (2001) Automatic Predicate
Abstraction of C Programs. Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, Snowbird, June 2001, 203-213.
https://doi.org/10.1145/378795.378846

[30] Flanagan, C. and Qadeer, S. (2002) Predicate Abstraction for Software Verification.
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming, Portland, 16-18 January 2002, 191-202.
https://doi.org/10.1145/503272.503291

[31] Fehnker, A., Brauer, J., Huuck, R. and Seefried, S. (2008) Goanna: Syntactic Soft-
ware Model Checking. In: Cha, S., Choi, J.Y., Kim, M., Lee, I. and Viswanathan, M.,
Eds., ATVA 2008: Automated Technology for Verification and Analysis, Springer,
Berlin, 216-221. https://link.springer.com/chapter/10.1007/978-3-540-88387-6_17

[32] Griesmayer, A. (2007) Debugging Software from Verification to Repair. Ph.D. Thesis,
Graz University of Technology, Austria, 1-108

[33] Li, Y. (2014) Symbolic Abstraction with SMT Solvers. Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming, San Diego, 22-24 Janu-
ary 2014, 607-618. https://doi.org/10.1145/2535838.2535857

[34] Lomuscio, A. and Michaliszyn, J. (2015) Verifying Multi-Agent Systems by Model
Checking Three-valued Abstractions. Proceedings of the 2015 International Confe-
rence on Autonomous Agents and Multiagent, Istanbul, 4-8 May 2015, 189-198.

[35] Clarke, E., Biere, A., Rami, R. and Zhu, Y. (2001) Bounded Model Checking Using
Satisfiability Solving. Formal Method in System Design, 19, 7-34.
https://doi.org/10.1023/A:1011276507260

[36] Merz, F., Falke, S. and Sinz, C. (2012) LLBMC: Bounded Model Checking of C and
C++ Programs Using a Compiler IR. In: Joshi, R., Müller, P. and Podelski, A., Eds.,
VSTTE 2012: Verified Software: Theories, Tools, Experiments, Springer, Berlin,
146-161. https://doi.org/10.1007/978-3-642-27705-4_12

[37] Peled, D. (2001) Model Checking. Department of Computer Science, Bar llan Uni-
versity, Ramat Gan.

[38] Guo, H.Y., Wu, M., Zhou, L.D., Hu, G., Yang, J.F. and Zhang L. (2011) Practical
Software Model Checking via Dynamic Interface Reduction. Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, Cascais, 23-26

https://doi.org/10.4236/jsea.2023.166010
https://doi.org/10.1007/978-3-642-36046-6_1
https://link.springer.com/chapter/10.1007/978-3-642-36046-6_1
https://scholar.google.com/citations?user=iLJ3TyQAAAAJ&hl=en
https://doi.org/10.1109/TSE.2016.2520468
https://www.di.ens.fr/%7Ecousot/publications.www/Cousot-LNCS2000-sv-sb.pdf
https://link.springer.com/chapter/10.1007/3-540-45319-9_19
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/503272.503291
https://link.springer.com/chapter/10.1007/978-3-540-88387-6_17
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-642-27705-4_12

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 190 Journal of Software Engineering and Applications

October 2011, 265-278. https://doi.org/10.1145/2043556.2043582

[39] Nguyen, V.Y. and Ruys, T.C. (2013) Selected Dynamic Issues in Software Model
Checking. International Journal on Software Tools for Technology Transfer, 15,
337-362. https://doi.org/10.1007/s10009-012-0261-y

[40] Gupta, A., Kahlon, V., Qadeer, S. and Touili, T. (2018) Model Checking Concurrent
Programs. In: Clarke, E., Henzinger, T., Veith, H. and Bloem, R., Eds., Handbook of
Model Checking, Springer, Cham, 573-611.
https://doi.org/10.1007/978-3-319-10575-8_18

[41] Santos, I.S., Rocha, L.S., Santos-Neto, P.A. and Andrade, R.M.C. (2016) Model Ve-
rification of Dynamic Software Product Lines. Proceedings of the XXX Brazilian
Symposium on Software Engineering, Maringá, 19-23 September 2016, 113-122.
https://doi.org/10.1145/2973839.2973852

[42] Avgerinos, T., Rebert, A., Cha, S.K. and Brumley, D. (2014) Enhancing Symbolic
Execution with Veritesting. Proceedings of the 36th International Conference on
Software Engineering, Hyderabad, 31 May-7 June 2014, 1083-1094.
https://doi.org/10.1145/2568225.2568293

[43] Bohme, M., Pham, V.T. and Roychoudhury, A. (2017) Coverage-Based Greybox
Fuzzing as Markov Chain. IEEE Transactions on Software Engineering, 45, 489-506.
https://doi.org/10.1109/TSE.2017.2785841

[44] Gulzar, M.A., Musuvathi, M. and Kim, M. (2020) BigTest: A Symbolic Execution Based
Systematic Test Generation Tool for Apache Spark. Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Companion Proceedings,
Seoul South, 27 June-19 July 2020, 61-64. https://doi.org/10.1145/3377812.3382145

[45] Chalupa, M., Jasek, T., Movak, J., Rechtackova, A., Sokova, V. and Strejcek, J. (2021)
Symbiotic 8: Beyond Symbolic Execution. In: Groote, J.F. and Larsen, K.G., Eds.,
TACAS 2021: Tools and Algorithms for the Construction and Analysis of Systems,
Springer, Cham, 453-457. https://doi.org/10.1007/978-3-030-72013-1_31

[46] Mrazek, J., Bauch, P., Lauko, H. and Barnat, J. (2016) SymDIVINE: Tool for Con-
trol-Explicit Data-Symbolic State Space Exploration. In: Bošnački, D. and Wijs, A.,
Eds., SPIN 2016: Model Checking Software, Springer, Cham, 208-213.
https://doi.org/10.1007/978-3-319-32582-8_14

[47] Visser, W., Pasareanu, C.S. and Khurshid, S. (2004) Test Input Generation with Java
Pathfinder. ACM SIGSOFT Software Engineering Notes, 29, 97-107.
https://doi.org/10.1145/1013886.1007526

[48] Penczek, W., Szreter, M., Gerth, R. and Kuiper, R. (2000) Improving Partial Order
Reductions for Universal Branching Time Properties. Fundameta Informaticae,
43, 245-267. https://doi.org/10.3233/FI-2000-43123413

[49] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L. and Hwang, L.J. (1992) Sym-
bolic Model Checking: 1020 States and Beyond. Information and Computation, 98,
142-170. https://doi.org/10.1016/0890-5401(92)90017-A

[50] Havelund, K. and Pressburger, T. (1999) Model Checking Java Programs Using Java
PathFinder. International Journal on Software Tools for Technology Transfer, 2,
366-381. https://doi.org/10.1007/s100090050043

[51] Cadar, C., Dunbar, D. and Engler, D.R. (2008) KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation, San
Diego, 8-10 December 2008, 209-224.

[52] Clarke, E.M., Grumberg, O., Kroening D., Peled, D. and Veith H. (2018) Model
Checking. 2nd Edition, MIT Press, Cambridge.

https://doi.org/10.4236/jsea.2023.166010
https://doi.org/10.1145/2043556.2043582
https://doi.org/10.1007/s10009-012-0261-y
https://doi.org/10.1007/978-3-319-10575-8_18
https://doi.org/10.1145/2973839.2973852
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1145/3377812.3382145
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1007/978-3-319-32582-8_14
https://doi.org/10.1145/1013886.1007526
https://doi.org/10.3233/FI-2000-43123413
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/s100090050043

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 191 Journal of Software Engineering and Applications

[53] McMillan, K.L. (1999) Symbolic Model Checking. In: Inan, M.K. and Kurshan, R.P.,
Eds., Verification of Digital and Hybrid Systems, Springer, Berlin, 117-137.
https://doi.org/10.1007/978-3-642-59615-5_6

[54] Godefroid, P. (1996) Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. Springer, Berlin.
https://doi.org/10.1007/3-540-60761-7

[55] Sen, K., Marinov, D., Agha, G. and Sridharan, M. (2016) Guiding Symbolic Execu-
tion towards Unexplored Code. Proceedings of the 2016 ACM SIGPLAN Internation-
al Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions, Amsterdam, 2-4 November 2016, 753-771.

[56] Bao, X., Yin, H., Chen, X. and Zhang, L. (2018) Speeding Up Symbolic Model
Checking with Machine Learning. Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, Montpellier, 3-7 September 2018,
570-580.

[57] Ma, L., Zhang, F.Y., et al. (2018) DeepGauge: Multi-Granularity Testing Criteria for
Deep Learning Systems. ArXiv: 1803.07519.

[58] Durrelli, V.H.S., Durelli, R.S., Borges, S.S., Endo, A.T., Eler, M.M., Dias, D.R.C. and
Guimaraes, M.P. (2019) Machine Learning Applied to Software Testing: A Systematic
Mapping Study. IEEE Transactions on Realiability, 68, 1189-1212.
https://doi.org/10.1109/TR.2019.2892517

[59] Vardhan, A., Sen, K., Viswanathan, M. and Agha, G. (2004) Learning to Verify Safety
Properties. In: Davies, J., Schulte, W. and Barnett, M., Eds., ICFEM 2004: Formal Me-
thods and Software Engineering, Springer, Berlin, 274-289.
https://doi.org/10.1007/978-3-540-30482-1_26

[60] Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P. and Gulwani, S. (2018) Neur-
al-Guided Deductive Search for Real-Time Program Synthesis from Examples. ArXiv:
1804.01186. https://arxiv.org/abs/1804.01186

[61] Gennari, J., Gurfinkel, A., Kahsai, T., Navas, J.A. and Schwartz, E.J. (2018) Executa-
ble Counterexamples in Software Model Checking. In: Piskac, R. and Rümmer, P.,
Eds., VSTTE 2018: Verified Software: Theories, Tools and Experiments, Vol. 11294,
Springer, Cham, 17-37. https://doi.org/10.1007/978-3-030-03592-1_2

[62] Utting, M. and Legeard, B. (2006) Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann, San Francisco.

[63] Havelund, K. and Rosu, G. (2002) Monitoring Programs Using Rewriting. Proceed-
ings of the 14th International Conference on Computer Aided Verification, Copen-
hagen, 27-31 July 2002, 450-462.

[64] Pacheco, C., Lahiri, S.K., Ernst, M.D. and Ball, T. (2007) Feedback-Directed Ran-
dom Test Generation. 29th International Conference on Software Engineering, Min-
neapolis, MN, 20-26 May 2007, 75-84. https://doi.org/10.1109/ICSE.2007.37

[65] Harman, M. and Sthamer, H. (2002) Search-Based Software Testing. Proceedings of
the 2002 International Symposium on Software Testing and Analysis, Roma, 22-24
July 2002, 249-258.

[66] King, J.C. (1976) Symbolic Execution and Program Testing. Communications of the
ACM, 19, 385-394. https://doi.org/10.1145/360248.360252

[67] Liang, G., Liao, L., Xu, X., Du, J., Li, G. and Zhao, H. (2013) Effective Fuzzing Based
on Dynamic Taint Analysis. 2013 Ninth International Conference on Computation-
al Intelligence and Security, Emeishan, 14-15 December 2013, 615-619.
https://doi.org/10.1109/CIS.2013.135

https://doi.org/10.4236/jsea.2023.166010
https://doi.org/10.1007/978-3-642-59615-5_6
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.1007/978-3-540-30482-1_26
https://arxiv.org/abs/1804.01186
https://doi.org/10.1007/978-3-030-03592-1_2
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/CIS.2013.135

E. O. Aliyu

DOI: 10.4236/jsea.2023.166010 192 Journal of Software Engineering and Applications

[68] Kwiatkowska, M., Norman, G. and Parker, D. (2018) Probabilistic Model Checking:
Advances and Applications. In: Drechsler, R., Ed., Formal System Verification, Sprin-
ger, Cham, 73-121. https://doi.org/10.1007/978-3-319-57685-5_3

[69] Sen, K., Marinov, D. and Agha, G. (2005) CUTE: A Concolic Unit Testing Engine for
C. Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (ESEC/FSE-13), Chicago, 5-9 September 2005, 263-272.

[70] Satpathy, M. and Ramesh, S. (2007) Test Case Generation from Formal Models
through Abstraction Refinement and Model Checking. Proceedings of the 3rd In-
ternational Workshop on Advances in Model-Based Testing, London, 9-12 July 2007,
85-94. https://doi.org/10.1145/1291535.1291544

[71] Emerson, E.A. and Namjoshi, K.S. (1998) Automatic Verification of Finite-State Con-
current Systems Using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8, 244-263.

[72] Lamport, L. (1986) On Interprocess Communication. Distributed Computing, 1,
77-85. https://doi.org/10.1007/BF01786227

[73] Alur, R., Bodík, R., Juniwal, G. and Seshia, S.A. (2015) Synthesis of Cyber-Physical Sys-
tems. Proceedings of the IEEE, 103, 1589-1609.

[74] Gurfinkel, A. and Chaki, S. (2015) Combining Static Analysis and Model Checking
for Program Analysis. Formal Methods in System Design, 47, 62-91.

[75] Zhang, L., Chen, Y., Zhang, Y. and Liu, Y. (2020) A Critical Survey of Machine
Learning-Assisted Verification. IEEE Transactions on Software Engineering, 47,
1064-1087.

[76] Pei, K., Cao, Y., Yang, J. and Jia, Z. (2017) Deep Learning-Based Software-Defined
Networking for IoT Security. IEEE Network, 31, 80-85.

[77] Gao, Y., Wei, Y., Sun, J. and Zhang, X. (2019) Learning-Based Abstraction Refine-
ment for Software Model Checking. Frontiers of Information Technology and Elec-
tronic Engineering, 20, 372-382.

[78] Zhang, X., Liu, Y., Huang, L. and Zhang, Y. (2021) Reinforcement Learning-Based
Heuristic for Accelerating Software Model Checking. Journal of Systems and Soft-
ware, 174, Article ID: 110950.

https://doi.org/10.4236/jsea.2023.166010
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1145/1291535.1291544
https://doi.org/10.1007/BF01786227

	Review of Software Model-Checking Techniques for Dealing with Error Detection in Program Codes
	Abstract
	Keywords
	1. Introduction
	2. Software Model-Checking Techniques for Dealing with Error Detection in Program Codes
	2.1. Explicit-State Model Checking
	2.2. Symbolic Model Checking
	2.3. Model Checking with Abstraction
	2.4. Bounded Model Checking
	2.5. Dynamic Model Checking

	3. State-of-the-Art of Symbolic Model Checking
	3.1. Recent Advancement in Symbolic Model Checking
	3.2. Capabilities of Symbolic Model Checking
	3.3. Limitations of Symbolic Model Checking
	3.3.1. State Space Explosion
	3.3.2. Incomplete Specifications
	3.3.3. Input Generation
	3.3.4. Limited Support for Non-Determinism

	4. Discussion: Challenges and Future Prospects
	4.1. Summary of Challenges
	4.2. Future Prospects

	5. Conclusions
	Conflicts of Interest
	References

