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Abstract 
Debugging software code has been a challenge for software developers since 
the early days of computer programming. A simple need, because the world is 
run by software. So perhaps the biggest engineering challenge is finding ways 
to make software more reliable. This review provides an overview of techniques 
developed over time in the field of software model checking to solve the prob-
lem of detecting errors in program code. In addition, the challenges posed by 
this technology are discussed and ways to mitigate them in future research 
and applications are proposed. A comprehensive examination of the various 
model verification methods used to detect program code errors is intended to 
lay the foundation for future research in this area. 
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1. Introduction 

This article traced the history of program verification to the mid-sixties [1], when 
the founding fathers of Computer Science such as Robert Floyd, Tony Hoare 
and Edsger Dijkstra realized that one of the most important challenges compu-
ting faced was to tame complexity. So, they devised a methodology to study the 
property of a system. One way to study the properties of a program is to treat it 
as a black box and execute it. The merit of this approach is its ease of implemen-
tation while its drawback is that it can only reveal how the program behaves for 
a particular input value. To guarantee that some property is held on a different 
input, one would have to execute the program over every possible input. To solve 
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the problem, the research community decided to open up the black box. This led 
to the development of higher-level programming languages with precise seman-
tics using mathematical objects to reason about program properties such as op-
erational semantics, denotational semantics and axiomatic semantics as pointed 
out by [2]. Having laid down the foundation for describing program semantics, 
researchers began to follow two distinct but overlapping paths. The first was the 
design of a programming language of increasing sophistication, which promoted 
various styles of programming, while the second was the development of techniques 
for reasoning about the properties of programs. 

Meanwhile, the Peer Review method used for software verification [3] is a me-
thod carried out by a team of software engineers who preferably have not been 
involved in the development of the software under review. They analyse code 
statically without executing it. The shortcoming of this method is that the errors 
discovered are errors in coding standards, style and readability, but does not dis-
play errors in program behaviour. Another verification method is testing. It is a 
dynamic technique that runs the software. Testing takes the piece of software un-
der consideration and provides its compiled code with an input called tests. The 
main advantage of testing is that it can be applied to all sorts of software ranging 
from application software, to compiler and operating systems. However, a prob-
lem with testing according to [3] and [4] is that testing can never be complete, 
that is, it can only show the presence of errors, and it does not show the absence 
of errors. Also, determining when the testing operation is to stop is a challenge. 
Due to this problem, [5] stated that early discovery of errors makes development 
cheaper. 

Static code analysis is another method of debugging by examining code before 
a program is run. It is implemented by analyzing a set of codes against a set of 
coding rules using automatic tools. [6] mentioned some static analysis tools that 
have emerged over the years such as Coverity, FindBugs, C++Test and JTest re-
spectively, enabling common programming errors and style violations to be seen 
in the early stages of development. The two major challenges of static code anal-
ysis according to [7] are false positives and false negatives. False positive indi-
cates the presence of a defect or vulnerability that is not actually present in the 
code while false negatives indicate that the code is free from defects or vulnera-
bilities when, in fact, it is not. 

In the quest of making progress in developing tools for verifying requirements 
and design, the techniques organized themselves into distinct sub-areas under 
the general heading of formal methods such as: Type checking which define a set 
of values to be assigned to a variable, the operations that can be performed on a 
variable, the way a variable is stored in the memory and done automatically within 
the compiler [8]. Program analysis: A technology that is concerned with approxi-
mation about the program automatically, detecting invariants in a program and 
run-time errors such as division by zero, array bound overflow and arithmetic 
overflow.  

Theorem prover: Technology for simplifying proof in response to proofs 
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by hand using a Floyd-Hoare style logic [9]. This discipline concentrates on 
the construction of models by successive refinements, symbolic techniques in 
the performance of constraint solver that underlie effective symbolic representa-
tion for propositional logic, as well as Binary Decision Diagram (BDD) and for the 
combination of first-order theories of equality with un-interpreted function [10] 
[11]. Model Checking: Checks the properties of models of program, usually, these 
models denote finite state machines and the properties to be checked are tem-
poral properties [8]. Also, Ben-Ari [12] describes model checking as one of the 
most powerful formal methods that generate all possible states of a program and 
check whether the correctness specifications hold in each state. 

This article focuses on model checking and the application of model checking 
involves the following phases according to [13]. 

1) First, it is needed to formally specify the system to check, written in a for-
mal language such as temporal logic or process algebra. 

2) The requirements of the system are also specified in the same language as 
the specification or in a different one. 

3) A model of the system is generated from the formal specification usually, 
finite state automata or a labelled transition system. 

4) Finally, the satisfaction or refutation of the properties is checked against the 
model. 

However, each sub-area has its own community and philosophy. But what 
unifies this sub-area is that to prove the program never enters an undesirable state. 
To prove that, one has to compute from the program’s description the set of poss-
ible states the program may ever enter. [1] documented that this set is not com-
putable, what needs to be done is to demonstrate by construction the existence 
of a safe set that contains all the states the program may enter, but does not con-
tain an undesirable state. From this point on, the sub-areas diverged in the kinds 
of error states and the programs being analyzed as shown in Table 1. 

This review is based on software model checking which is the algorithmic anal-
ysis of programs to prove properties of their execution. More recently, software 
model checking has been influenced by three parallel but somewhat distinct de-
velopments. First, the development of program logic and associated decision pro-
cedures, this provided a framework and basic algorithmic tools to reason about 
infinite state spaces. Second, automatic model-checking techniques for temporal 
logic, this provided basic algorithmic tools for state-space exploration. Third, 
compiler analysis, formalized by abstract interpretation, provided connections be-
tween the logical world of infinite state spaces and the algorithmic world of finite 
representations [1]. While the second categories focus on symbolic model check-
ing which has been an active area of research in the field of computer science for 
several decades, this study intends to review the state-of-the-art of symbolic model 
checking, especially the use of machine learning techniques to improve the sca-
lability of symbolic model checking. 

The remaining part of this review is organized as follows. Section 2 contains 
software model-checking techniques for dealing with error detection in program  

https://doi.org/10.4236/jsea.2023.166010


E. O. Aliyu 
 

 

DOI: 10.4236/jsea.2023.166010 173 Journal of Software Engineering and Applications 
 

Table 1. Features of formal methods. 

Distinguishing  
Features of Sub-area 

Type System Program Analysis Theorem Prover Model Checking 

Program Code Applicable Applicable Not applicable Not applicable 

Model (Abstraction) Not applicable Control-Flow Graph (CFG) Model construction Finite-State Machine (FSM) 

Type Checking Applicable Not applicable Not applicable Not applicable 

Invariant Checking Not applicable Applicable Applicable Applicable 

Functional Correctness Not applicable Applicable Not applicable Not applicable 

Temporal Properties Not applicable Not applicable Not applicable Applicable 

Symbolic Execution Not applicable Not applicable Applicable Applicable 

Precision Not applicable Not applicable Applicable Applicable 

Scalability Not applicable Applicable Applicable Not applicable 

Exhaustive Not applicable Applicable Applicable Applicable 

Efficiency Not applicable Applicable Not applicable Not applicable 

Undesirable State Type error Spurious error Invalid query Spurious/coarse abstraction 

Counter-example Not applicable Not applicable Applicable Applicable 

Refinement Not applicable Not applicable Applicable Applicable 

Proposed Properties Not applicable Applicable Not applicable Applicable 

Inner Properties Applicable Not applicable Applicable Not applicable 

 
codes. Section 3 analyse the situation of the symbolic model checking. Section 4 
contains a discussion of challenges and future prospects. Section 5 presents the 
conclusion. 

2. Software Model-Checking Techniques for Dealing with  
Error Detection in Program Codes 

Several notions have emerged in the field of software model checking to deal 
with properties of a system. Typically, software model checking was based on ex-
plicit enumeration. That is, it manipulates individual states of the program that 
are stored in a large hash table (that is, states are stored as bit vectors). The state 
space graph is explored with depth-first search, looking for violation of safety 
property. An overview of general approach is presented in Figure 1. 

In the literature, different approaches that brought enhancement in the field 
of software model checking are depicted in Table 2. 

2.1. Explicit-State Model Checking 

Explicit-state model checking is a formal verification technique that checks 
whether a system model satisfies a desired property by exploring all possible 
states of the system. One significant limitation of explicit-state model checking is 
the state explosion problem, which occurs when the number of possible states or 
transitions in the system grows exponentially with the size of the system. This  
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Figure 1. Model-checking approach. 
 

Table 2. Different approaches in software model checking. 

Approaches Knowledge Source Strength Limitation 

Explicit-state Model 
Checking 

State graph or state transition 
system 

Detect errors in highly concurrent design State explosion problem. 

Symbolic Model 
Checking (Boolean 
Encoding for State 
Machine and Set of 
States) 

Ordered Binary Decision  
Diagram (OBDD) + Fix-point 
characterization of temporal 
operators 

1) It can handle systems with large state 
spaces more efficiently. 
2) It can verify properties that are  
specified in rich formal languages, such  
as temporal logic or mu-calculus spaces 
more efficiently. 
3) It can verify systems that have  
unbounded data domains, such as  
integer and real variables. 
4) It can verify parameterized systems, 
where the number of components or 
processes in the system is not fixed. 

Many functions do not have a 
succinct BDD representation. 

Model Checking with 
Abstraction 

Predicate abstraction 
Ability to balance the trade-off between 
accuracy and efficiency in formal  
verification. 

1) Risk of losing important  
information or details that are 
necessary for detecting certain 
types of errors or properties. 
2) Difficulty of ensuring the 
soundness and completeness  
of the verification results. 

Bounded Model 
Checking 

Formal language such as 
temporal logic or automata, 
and the design or  
implementation of the  
system being verified 

1) Effectively handle systems with a large 
number of states and transitions. 
2) Detect errors and violations quickly, 
without having to explore the entire state 
space of the system. 

1) Cannot detect errors or violations 
that occur beyond the bound. 
2) If the model does not accurately 
capture the behavior of the system, 
BMC may produce false negatives 
or false positives, which can lead 
to incorrect verification results. 
3) State explosion problem. 

Dynamic Model 
Checking 

Program code and its  
associated documentation, 
such as requirements and 
design specifications 

1) It can handle systems with dynamic  
or continuous behavior, such as control 
systems, analog circuits, and hybrid  
systems. 
2) It detects errors and violations in 
real-time during system execution. 

1) It only verifies the behavior of 
the system during execution. 
2) It requires a set of inputs that 
exercise the system’s behavior 
adequately. 
3) It suffers from the state  
explosion problem. 

Model 
Checking 

Tool

Model (System 
Requirement)

Yes, if model satisfies 
specification, Else 
counter-example

Specification 
(System Property)
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can make explicit-state model checking infeasible or impractical for verifying 
large and complex systems. 

In the sequel, various techniques to improve space consumption in explicit state 
model checkers were introduced such as: Reduction based techniques—consists 
of partial-order reduction, symmetry reduction or minimization based on beha-
vioural equivalences such as simulation or bi-simulation, behavioural equiva-
lences such as similarity or bi-similarity. Furthermore, compositional techniques 
were also introduced to reduce the safety verification problem on the original 
program to prove properties on subprograms, such that the results of model check-
ing the subprograms can be combined to deduce the safety of the original pro-
gram. Then, the idea of search heuristic in the field of artificial intelligence was 
introduced to find bugs quickly [1]. In addition, there was a special case of enu-
merative verification known as systematic execution exploration which checks the 
runtime system of a programming language implementation to implement enu-
merative state space exploration. [1] stated that the benefit of this approach was 
that it sidesteps the need to be able to formally represent the semantics of the 
programming language and machine instructions as a transition relation, but the 
number of states is still too large to be handled by the model checker. 

In [9], a method of constructing concurrent program automatically using 
branching time temporal logic was proposed. They specified the behaviour of a 
finite number of fixed processes 1 np p  running in parallel using Computa-
tion Tree Logic (CTL) and applied Tableau-Based decision procedure for satis-
fiability of CTL formula. Model-checking algorithm (that is, Tableau-Based 
decision procedure) automatically factors out the synchronization skeletons 
of the individual processes from the global system flow-graph defined by the 
model. 

Another study [14] described as a set of Communicating Sequential Processes 
(CSPs), where a translator transformed the description program into an Inter-
preted Petri-Nets (IPNs). To verify the conformity of the described system, the 
model was treated by an analyzer (CESAR) given the specification in branching 
time logic which expressed invariant, liveness and response to some action proper-
ties. 

Also, [15] improved on the work carried out in [14] by developing automatic 
verification of finite-state concurrent systems using temporal logic specifications 
and moved fairness requirements into the semantic of Computation Tree Logic 
(CTL).  

Model Checking Using Net Unfolding were proposed in [16] and made pre-
cise effort about the arbitrary interleaving of concurrent actions with certain proper-
ties such as reachability and mutual exclusion with the development of a new 
model-checking algorithm based on net unfolding to improve the model-checking 
algorithm developed by [17] which required exponential time. 

In [18], presented the development of SPIN model checker to prove the cor-
rectness interaction between processes. The system model was described in Process 
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Metalanguage (PROMELA) for modelling process synchronization and coordi-
nation while specification properties are written in Linear Temporal Logic (LTL) 
formula. 

2.2. Symbolic Model Checking 

The need to overcome state-explosion-problem led to research on symbolic al-
gorithms which manipulate representations of sets of states, rather than indi-
vidual state, and perform state exploration through the symbolic transformation 
of these representations [1] [19]. One strength of symbolic model checking is 
that it can handle systems with large state spaces more efficiently than expli-
cit-state model checking. The first to create a publicly available symbolic model 
checker called Symbolic Model Verifier (SMV) based on Binary Decision Dia-
grams (BDDs) was Ken McMillan, at Carnegie-Mellon University (CMU). The 
demerit of BDDs was its sensitivity to orderings of variables, that is, the order in 
which variables are encountered from the root to the leaves of the BDD can vary 
dramatically with different orderings. 

The issue of scalability is addressed in [20] with explicit state model checker 
by extending Java Pathfinder model checker with symbolic execution and Satis-
fiability (SAT) solver. 

In [21], looked into the issue of modeling complex data structures such as ar-
rays with the development of a prototype implementation called SMT-CBMC ap-
proach. 

Improving the scalability of the composite model-checking algorithms to ve-
rify source code level sequential programs is investigated in [22] against program-
ming bug such as array bound violation, use of uninitialized variables, memory 
leaks, locking rule violations and division by zero with the objectives of combining 
multiple symbolic representation at Boolean, integer and Boolean combination 
of Linear constraints on reals to model programs defined using Composite Sym-
bolic Formula (CSF). 

Context-enhanced directed model-checking techniques introduced in [23] to 
tackle state explosion problem. The goal is to find error states in concurrent sys-
tems with the objectives of developing a heuristic search to explore those parts of 
the state space belonging to the same part of the system using the notion of in-
terference context. 

In [24], proposed Configurable Program Analysis Checker (CPACHECKER) 
with the development of Event Condition Action (ECA) systems using Binary 
Decision Diagrams (BDDs). 

The issue of static verification techniques of Boolean formula satisfiability 
solvers were proposed in [25] such as, Satisfiability Theory (SAT) and Satisfia-
bility Modulo Theory (SMT) solvers that operate on conjunctive normal form 
and first order logic formulae respectively to validate programs with the develop-
ment of And-Inverter-Graph (AIG), encoding the problem definition in a pro-
gram. 
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2.3. Model Checking with Abstraction 

Model checking with abstraction is a technique that involves simplifying the 
formal model of a system being verified by abstracting away some details that are 
not relevant to the property being verified. Cousot [26] described abstract inter-
pretation to be either partial or preorder. Being partial meaning that it is consi-
dered a subset of the concrete semantics. This is regarded as abstraction from 
below (Under-approximation). Preorder meaning that abstractions are “from 
above” that is, the abstract semantics describes a superset or logical consequence 
of the concrete semantics which is known as over-approximation. 

One major improvement in this area was achieved through Satisfiability Mod-
ulo Theories (SMT); an algorithm that computes an abstraction of a program 
with respect to a given abstract interpretation by replacing loops and function 
calls in the Control Flow Graph (CFG) by their symbolic transformer [19] [27]. 

The work of [28] focused on model checking C programs, which are noto-
riously difficult to verify due to their complexity and the potential for errors in 
memory management. To address these challenges, the authors propose a me-
thod that uses both Boolean and Cartesian abstraction. Boolean abstraction in-
volves replacing program variables with Boolean variables, which allows for effi-
cient verification of properties that depend only on the truth values of the va-
riables. Cartesian abstraction, on the other hand, involves partitioning the state 
space of the program into a finite set of Cartesian product abstractions, which 
can be used to efficiently verify complex temporal properties. 

In [29], proposed an automatic method for generating predicate abstractions 
of C programs using a combination of abstract interpretation and decision tree 
learning. The authors first use abstract interpretation to generate a set of abstract 
states that over-approximate the behavior of the program. They then use deci-
sion tree learning to identify predicates that can be used to partition the abstract 
states into smaller sets that correspond to different program behaviors. 

Predicate Abstraction for Software Verification by [30], proposed a method 
for automatically generating predicate abstractions using a combination of ab-
stract interpretation and refinement The authors first use abstract interpretation 
to generate a set of abstract states that over-approximate the behavior of the pro-
gram. They then use a refinement process to generate a more precise set of pre-
dicates that can be used to partition the abstract states into smaller sets that cor-
respond to different program behaviors. 

The paper “Model Checking Software at Compile Time” by [31] describes a 
novel approach to integrating model checking into the software development 
process at compile time, rather than after the software has been developed and 
compiled. It involves the automatic generation of a model of the software system 
at compile time, based on the source code of the program. This model is then 
used to perform model checking to verify the correctness of the software with 
respect to a given specification. 

In [32], a methodology that combines automated verification techniques, such 
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as model checking, with automated repair techniques, such as program synthesis 
were presented. The proposed methodology consists of three main phases: veri-
fication, diagnosis, and repair. In the verification phase, the software is analyzed 
using model checking to identify any errors or bugs. In the diagnosis phase, the 
errors are further analyzed to determine the root cause of the problem. Finally, 
in the repair phase, a repair algorithm is used to automatically generate corrected 
code to fix the identified errors. 

Symbolic abstraction algorithm called symba were introduced in [33] using 
the power of SMT solver (Z3), encoded all execution as a formula in Quan-
tifier Free-Linear Real Arithmetic (QF-LRA), a commonly used theory for en-
coding program execution. 

Model Checking with Abstraction by [34], proposed a method for verifying 
multi-agent systems using bounded model checking and abstraction techniques. 
The approach involves modeling the agents as finite-state machines, and using 
abstraction techniques to reduce the complexity of the model. The model is then 
checked for correctness using bounded model checking. 

2.4. Bounded Model Checking 

According to [19], satisfiability solver was observed to handle much larger for-
mulas than BDDs. This led to the development of Bounded Model Checking 
(BMC) at Carnegie-Mellon University CMU in late 1990s. Bounded Model Check-
ing (BMC) unrolls the control flow graph for a fixed number of steps, and checks 
if the error location can be reached within this number of steps and satisfiability 
of this constraint is checked by a constraint solver using backtracking. 

However, the limitation of this technique according to [1] was the scalability 
performance of constraint solvers for non-linear arithmetic. Additionally, [35] 
stated that the disadvantage of bounded model checking is that the method lacks 
completeness and the types of properties that can currently be checked are very 
limited. 

In [21], addressed the issue of modeling complex data structures such as ar-
rays with the development of a prototype implementation called SMT-CBMC ap-
proach. Experimental results show that 1) encoding technique generated more 
compact formula than CBMC when arrays are involved in the input program; 
2) On problems involving complex interactions of arithmetic and arrays mani-
pulation, SMT-CBMC outperforms CBMC as the size of the arrays occurring in 
the input program increases. 

Bounded Model Checking (BMC) for C and C++ programming languages were 
introduced in [36] using Low Level Virtual Machine (LLVM) complier front-end 
such as clang or llvm-gcc to translate C and C++ programs into LLVM’s Interme-
diate Representation (LLVM-IR); usually in Static Single Assignment (SSA) form, 
LLVM-IR program is then converted into LLBMC’s Internal Logical Representa-
tion (ILR). The result shown that LLBMC performed favourably compare to 
CBMC and ESBMC in terms of detecting an error such as arithmetic overflow, 
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invalid memory allocations, invalid memory access, invalid free and memory 
leak detection. 

2.5. Dynamic Model Checking 

Dynamic model checking is a technique for verifying the correctness of software 
systems by analyzing their behavior during execution. Unlike static analysis 
techniques, which analyze the source code of a program without actually run-
ning it, dynamic model checking involves running the program on sample 
inputs or test cases and observing its behavior to detect errors or violations of 
specified properties. As mentioned in “Model Checking” by [37], dynamic mod-
el checking can be particularly effective in detecting errors in complex systems 
where static analysis may be impractical or ineffective. Also, as discussed in 
“Model Checking Software: A Survey” by [11], dynamic model checking can 
handle systems with non-deterministic behaviour by generating and exploring 
all possible execution paths, and verifying that the properties of interest hold for 
each path.  

Dynamic model checking by [38] proposed a new approach to model check-
ing that involves dynamically executing the program under test and monitoring 
its behavior in real-time. This approach allows for more comprehensive testing 
of the software’s behavioral correctness, as it can capture non-deterministic be-
havior and edge cases that may not be revealed by traditional model-checking tech-
niques. 

Dynamic model checking with evolving software and specifications by [39], 
proposed an approach to dynamic model checking that can handle evolving 
software and specifications. The authors’ approach involves using a combination 
of dynamic model checking and dynamic symbolic execution. Dynamic model 
checking involves running the program under test and checking for violations of 
certain properties, while dynamic symbolic execution involves exploring the 
program’s execution paths to generate test inputs that can achieve higher cover-
age. The authors demonstrate the effectiveness of their approach by applying it 
to several case studies, including a web application and a mobile phone applica-
tion. 

Dynamic model checking for concurrent software by [40] proposed a dynamic 
model-checking approach specifically for concurrent software. The authors’ ap-
proach involves a combination of dynamic model checking and path-based 
symbolic execution. Dynamic model checking is used to explore the execution of 
the program and detect errors such as deadlocks and race conditions, while 
path-based symbolic execution is used to generate test cases that explore differ-
ent paths through the program. The authors show the effectiveness of their ap-
proach by applying it to several case studies, including a file server and a memo-
ry allocator. 

In [41], proposed a dynamic model-checking approach for software product 
lines. The authors’ approach involves using a feature model to guide the testing 
process. The feature model captures the possible feature combinations of the soft-
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ware product line, and the dynamic model-checking approach is used to explore 
the possible execution paths of the software products based on these feature com-
binations. The authors also use slicing techniques to reduce the number of paths 
explored during the testing process. The authors demonstrate the effectiveness of 
their approach by applying it to several case studies, including a file system and a 
configuration tool.  

3. State-of-the-Art of Symbolic Model Checking 

Symbolic model checking as mentioned in section two is a technique for verify-
ing the correctness of software systems by analyzing a symbolic representation of 
the program’s behavior. This technique analyzes a symbolic representation of the 
system’s behavior and checks whether it satisfies a given set of properties [35]. 
The symbolic representation is constructed using a set of symbolic variables and 
their constraints, which allows for the exploration of all possible paths in the sys-
tem’s behavior without having to explicitly execute the system. 

For example, suppose we want to verify a simple counter that counts from 0 to 
3 and then resets to 0. We can represent the counter using a symbolic variable x, 
which takes values from 0 to 3.  

We can define the constraints on x as follows: 
If x is 0, then the counter increments to 1. 
If x is 1, then the counter increments to 2. 
If x is 2, then the counter increments to 3. 
If x is 3, then the counter resets to 0. 
We can encode these constraints as a Boolean formula using a temporal logic 

such as Linear Temporal Logic (LTL): 

( )( ) ( )( ) ( )( ) ( )( )( )0 1 1 2 2 3 3 0G x X x x X x x X x x X x= → = ∧ = → = ∧ = → = ∧ = → =  (1) 

This formula states that for all future states G, if the current state is x = 0, then 
the next state must be x = 1, and so on. We can use a symbolic model checker to 
check whether this formula is satisfied by the symbolic representation of the 
counter. If the formula is satisfied, then we can conclude that the counter satis-
fies the given properties. If the formula is not satisfied, then we can use the coun-
terexample generated by the symbolic model checker to diagnose and fix the bug 
in the counter. 

Symbolic model checking is useful because it can handle complex systems 
with a large number of states and transitions. It can also find subtle bugs that 
may be difficult to detect through manual testing or other verification tech-
niques. Additionally, symbolic model checking can be used to generate counte-
rexamples, which are concrete executions of the system that violate a given 
property. These counterexamples can be used to diagnose and fix the bugs in the 
system. 

However, it has been successfully applied to a variety of domains, including soft-
ware, hardware, communication protocols, and distributed systems. Its purpose 
is to provide a rigorous and automated approach to verify the correctness of com-
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plex systems. 

3.1. Recent Advancement in Symbolic Model Checking 

While Section 2 provides examples of recent research papers that have made sig-
nificant contributions to the technique, this section discusses recent advancements 
in the technique, including new algorithms, tools, or applications as well as the 
technique’s capabilities and limitations. 

As mentioned above that symbolic model checking can be used in different 
domains, including software, hardware, communication protocols, and distributed 
systems. Here, a few examples of several new algorithms, tools, and applications 
of symbolic model checking that have been proposed for software verification and 
testing in recent years is as follows: 

1) The Symbolic Execution Intermediate Language (SEIL): It is a program-
ming language for specifying symbolic execution of software. It is a high-level 
language that can be used to describe symbolic execution of complex software 
systems. The SEIL tool was developed by [42] and can be used to generate test 
cases automatically. 

2) AFLSmart: The AFLSmart tool is a mutation-based testing framework that 
uses symbolic execution to generate test cases. It is an extension of the AFL fuzzer 
and can handle complex software systems. The AFLSmart tool was proposed by 
[43] and has been shown to be effective in detecting subtle bugs in real-world 
software. 

3) JPF-SymSpark: The Java PathFinder (JPF) tool is a symbolic model checker 
for Java programs. JPF-SymSpark is an extension of JPF that uses symbolic ex-
ecution to generate test cases for Apache Spark applications. It was proposed by 
[44] and has been shown to be effective in detecting bugs in real-world Spark 
applications. 

4) Symbiotic: Symbiotic is a tool for symbolic verification of C and C++ pro-
grams. It uses a combination of program slicing and symbolic execution to check 
for memory safety, concurrency bugs, and other types of bugs. Symbiotic was 
proposed by [45] and has been shown to be effective in finding bugs in large C 
and C++ codebases. 

5) SymDIVINE: SymDIVINE is a tool for the verification of distributed soft-
ware systems. It uses a combination of symbolic execution and model checking 
to check for safety and liveness properties. SymDIVINE was proposed by [46] 
and has been shown to be effective in detecting subtle bugs in distributed soft-
ware systems. 

Symbolic model checking is a powerful verification and testing method, but it 
also has advantages and disadvantages. Here are a few of them: 

3.2. Capabilities of Symbolic Model Checking 

1) Automatic test case generation: Symbolic model checking can automatically 
generate test cases that cover different execution paths and edge cases in the 
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software. This can help identify bugs and ensure that the software behaves cor-
rectly in all scenarios [47]. 

2) Scalability: Symbolic model checking can handle large and complex soft-
ware systems with many possible execution paths and inputs. It can also handle 
programs with dynamic memory allocation and recursion, which are difficult to 
test with traditional methods [45]. 

3) Precision: Symbolic model checking can analyze the software behavior pre-
cisely and exhaustively. It can check for correctness properties such as absence of 
runtime errors, assertion violations, deadlocks, and data races [48]. 

3.3. Limitations of Symbolic Model Checking 

1) State space explosion: Symbolic model checking suffers from the state space 
explosion problem, which arises when the number of possible program states and 
transitions is very large. This can cause the model checker to run out of memory 
or take a very long time to complete [17] [49]. 

2) Incomplete specifications: Symbolic model checking relies on formal speci-
fications to check the correctness of the software. If the specification is incom-
plete or incorrect, the model checker may not be able to detect all the possible 
bugs in the software [50]. 

3) Input generation: Symbolic model checking can generate test cases auto-
matically, but it may not be able to generate inputs that are representative of 
real-world usage scenarios. This can limit the effectiveness of the test cases in 
detecting bugs in the software [51]. 

4) Limited support for non-determinism: Symbolic model checking assumes 
that the program behavior is deterministic, but many software systems exhibit 
non-deterministic behavior. This can limit the applicability of symbolic model 
checking to certain types of software systems [24]. 

3.3.1. State Space Explosion 
As mentioned above that the challenge of state space explosion in software mod-
el checking refers to the problem of dealing with a very large number of possible 
program states and transitions, which makes it difficult to verify the correctness 
of the software exhaustively. This problem arises because symbolic model-checking 
algorithms typically operate on a symbolic representation of the program that 
captures all possible executions of the program, rather than executing the pro-
gram concretely. 

To address the challenge of state space explosion, researchers have developed 
several techniques: 

1) Abstraction: This involves reducing the size of the state space by ignoring 
some details of the program that are not relevant for verifying the desired prop-
erty. For example, some variables can be abstracted away or combined into equi-
valence classes to reduce the number of possible states [52]. 

2) Incremental checking: This involves dividing the verification problem into 
smaller subproblems that can be checked separately. For example, the program 
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can be divided into modules or functions, and each module or function can be 
checked independently [53]. 

3) Model checking with partial order reduction: This technique reduces the 
size of the state space by exploiting the fact that many program executions are 
equivalent up to a certain point. By reducing the number of equivalent execu-
tions that are explored, this technique can reduce the overall size of the state 
space [54]. 

4) Heuristics and optimizations: Researchers have developed various heuris-
tics and optimizations to improve the efficiency of symbolic model-checking al-
gorithms. For example, techniques such as state caching and lazy evaluation can 
reduce the amount of redundant work that the model checker has to do [49]. 

5) Symbolic model checking with machine learning techniques: Machine 
learning techniques such as decision trees and regression models have been used 
to learn the structure of the system and guide the symbolic model-checking 
process. For example, in the work “Guiding Symbolic Execution towards Unex-
plored Code” by [55], a decision tree is used to guide symbolic execution towards 
unexplored code paths, reducing the number of explored paths and increasing 
the efficiency of the analysis. 

Another example is the work “Speeding up Symbolic Model Checking with 
Machine Learning” by [56], where a regression model is used to predict the rea-
chability of states in the system, reducing the number of states to be explored. 

“DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems” 
by [57]. This work proposes a framework for testing deep learning systems using 
multi-granularity testing criteria. The approach uses machine learning to gener-
ate test cases and evaluate the testing criteria. 

In [58], the authors propose a framework for learning-based testing that uses 
a variety of machine learning techniques to generate test cases, execute the test 
cases, and analyze the results of the test cases. The authors evaluate the frame-
work on a case study of a real world IoT software and show that the framework 
can be used to find a significant number of defects in the system. 

“Learning to Verify Safety Properties” by [59]. This work proposes a learn-
ing-based approach for verifying safety properties of software systems. The ap-
proach uses machine learning to learn the properties of the system under test 
and verify them against a set of safety properties. 

Neural-Guided Deductive Search (NGDS) was proposed in [60]. The authors 
synthesize real-time programs from a small number of examples with significantly 
less time and space overhead than traditional deductive search techniques. 

3.3.2. Incomplete Specifications 
The challenge of incomplete specifications in software model checking refers to 
the problem of verifying software that does not have a complete specification, i.e. 
a complete and formal description of the expected behavior of the software. This 
problem arises because model checking algorithms typically rely on a formal 
specification of the desired behavior of the software in order to check whether 
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the actual behavior of the software satisfies the specification. 
To address the challenge of incomplete specifications, researchers have de-

veloped several techniques: 
1) Abductive reasoning: This involves inferring the missing parts of the speci-

fication based on the observed behavior of the software. For example, if the soft-
ware always returns a certain value under certain conditions, we can infer that 
this behavior is part of the specification [48]. 

2) Falsification: This involves searching for inputs that cause the software to 
violate the specification. By finding counterexamples to the specification, we can 
identify parts of the specification that are missing or incorrect [61]. 

3) Model-based testing: This involves generating test cases based on a model 
of the software, rather than the software itself. By generating tests from the model, 
we can ensure that the tests cover all possible behaviors of the software that are 
relevant to the specification [62]. 

4) Runtime verification: This involves monitoring the behavior of the software 
during execution and checking whether the observed behavior satisfies the spe-
cification. This approach is useful when the software is too complex or too diffi-
cult to model accurately [63]. 

3.3.3. Input Generation 
The challenge of input generation in software model checking refers to the 
problem of generating inputs that can trigger interesting behaviors in the soft-
ware, such as error conditions or violations of the desired properties. This prob-
lem arises because model-checking algorithms typically rely on a set of inputs to 
explore the state space of the software and check whether it satisfies the desired 
properties. 

To address the challenge of input generation, researchers have developed sev-
eral techniques: 

1) Randomized testing: This involves generating inputs randomly and testing 
the software with these inputs. By generating a large number of random inputs, 
we can increase the chances of finding interesting behaviors in the software [64]. 

2) Search-based testing: This involves using search algorithms to find inputs 
that are likely to trigger interesting behaviors in the software. By searching the 
space of possible inputs, we can find inputs that are more likely to uncover er-
rors or violations of the desired properties [65]. 

3) Symbolic execution: This involves using a symbolic representation of the 
program to explore the space of possible inputs and generate inputs that satisfy 
certain conditions or constraints. By generating inputs symbolically, we can ex-
plore a large number of possible inputs without actually executing the software 
with each input [66]. 

4) Model-based fuzzing: This involves generating inputs based on a model of 
the software, rather than the software itself. By generating inputs from the mod-
el, we can ensure that the inputs cover all possible behaviors of the software that 
are relevant to the desired properties [67]. 
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3.3.4. Limited Support for Non-Determinism 
The challenge of limited support for non-determinism in software model check-
ing refers to the problem of verifying software that exhibits non-deterministic 
behavior, where the behavior of the software depends on factors outside the 
control of the software, such as timing, external events, or user input. This prob-
lem arises because model-checking algorithms typically assume a deterministic 
model of the software, where the behavior of the software is fully determined by 
its inputs and the internal state. 

To address the challenge of limited support for non-determinism, researchers 
have developed several techniques: 

1) Probabilistic model checking: This involves extending model-checking al-
gorithms to handle non-deterministic behavior by using probabilistic models, 
where the behavior of the software is described in terms of probabilities rather 
than deterministic transitions. By modeling non-determinism probabilistically, 
we can capture the inherent uncertainty in the behavior of the software [68]. 

2) Runtime verification: This involves monitoring the behavior of the software 
during execution and checking whether the observed behavior satisfies the desired 
properties. By monitoring the software at runtime, we can capture non-deterministic 
behavior that is difficult to model statically. 

3) Symbolic execution with concolic testing: This involves using symbolic ex-
ecution to explore the space of possible executions of the software, while also 
generating concrete inputs that satisfy certain conditions or constraints. By ge-
nerating inputs that capture non-deterministic behavior, we can explore a larger 
space of possible behaviors than with purely symbolic execution [69]. 

4) Model-based testing with adaptive input generation: This involves generat-
ing inputs based on a model of the software, while also adapting the input gen-
eration process to capture non-deterministic behavior. By adapting the input 
generation process, we can explore a larger space of possible behaviors and cap-
ture non-deterministic behavior that is difficult to model statically [70]. 

4. Discussion: Challenges and Future Prospects 
4.1. Summary of Challenges  

From the current symbolic model-checking techniques and approaches identi-
fied, one interesting method that has been commonly applied to address the li-
mitations is symbolic execution. Studies [71] [72] [73] show that many systems 
exhibit non-determinism behaviour. One such example is complex data struc-
tures that involve non-linear operations, such as matrices and polynomials. 

Matrices, for example, can be represented as multi-dimensional arrays, and op-
erations on matrices often involve non-linear operations such as matrix multip-
lication and matrix inversion. Symbolic execution can generate constraints on 
the values stored in matrix elements, but analyzing the constraints can be com-
putationally expensive due to the non-linear nature of the operations. 

Similarly, polynomials involve non-linear operations such as multiplication and 
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exponentiation, which can make symbolic execution of programs involving po-
lynomials challenging. However, recent research Baldoni et al. (2020) has shown 
that techniques such as SMT-based constraint solving and approximation can be 
used to overcome some of the challenges of symbolic execution for non-linear 
operations. 

It is stated in [74] that “Hybrid approaches can overcome the limitations of 
symbolic execution for non-linear operations by leveraging the strengths of oth-
er techniques” such as abstract interpretation or model checking. 

However, one gap in using machine learning techniques with symbolic model 
checking is the potential loss of precision or soundness in the analysis. Machine 
learning models can be biased or incomplete, and may not capture all the rele-
vant features or behaviors of the system under verification. This can lead to missed 
errors or false positives, which can be problematic for safety-critical systems. 

For example, in the work “A Critical Survey of Machine Learning-Assisted 
Verification” by [75], the authors note that machine learning models can suffer 
from overfitting, where they memorize the training data rather than learning 
general patterns, leading to poor performance on new, unseen data. They also 
highlight the challenge of incorporating domain knowledge and constraints into 
machine learning models, which can affect their accuracy and usefulness for ve-
rification tasks. 

Another gap is the potential increase in computational overhead and com-
plexity when integrating machine learning with symbolic model checking. Ma-
chine learning models can be computationally expensive to train and evaluate, 
and may require large amounts of memory and storage. This can limit their sca-
lability and practicality for real-world verification tasks. 

4.2. Future Prospects 

So far, software model-checking techniques for dealing with errors in software 
programs were introduced. Symbolic execution can be applied to a wide range of 
complex data structures but there are still some data structures involving non-linear 
operations that present challenges for symbolic execution. As mentioned by [74] 
that hybrid approach can be used to combat the problem, this study proposed 
dynamic symbolic execution which combines concrete execution with symbolic 
execution and concolic testing that combines symbolic execution with concrete 
testing to test cases that maximize code coverage. 

Besides the above, recent studies [55] [56] [57] [76] [77] [78] demonstrated 
the use of machine learning for software model checking. However, further re-
search and development in integrating machine learning with symbolic model 
checking, to ensure that the combined approach is accurate, scalable, and effi-
cient needs more exploration. 

In general, the challenges to model-checking software highlight the ongoing 
need for research and innovation in this field. As software systems continue to 
grow in complexity and importance, there will be a growing need for effective 
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and efficient verification techniques to ensure their correctness and reliability. 

5. Conclusions 

In this article, a review of recent techniques for error detection in program codes 
using model-checking technology was considered. First, an overview of the 
model-checking process and its importance in software verification is presented. 
Followed several techniques that have been developed to address some of the li-
mitations of traditional model-checking techniques, including abstraction tech-
niques, dynamic model checking, and model checking for software product lines. 

Also, it highlighted some of the challenges and future prospects for mod-
el-checking software, including the state space explosion problem, incomplete 
and incorrect specifications, scalability, and the need to develop new algorithms 
and techniques to handle new types of software systems. 

Based on this review of these techniques, model checking is a powerful and 
effective technique for detecting errors in program codes, but it also has some 
limitations that need to be addressed. However, with ongoing research and in-
novation, model checking will continue to be an important tool in the software 
verification process, helping to ensure the correctness and reliability of complex 
software systems. 
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