
Journal of Software Engineering and Applications, 2023, 16, 144-153
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2023.165008 May 31, 2023 144 Journal of Software Engineering and Applications

Software Metric Analysis of Open-Source
Business Software

Charles W. Butler

Department of Computer Information Systems, Colorado State University, Fort Collins, USA

Abstract
Over the past decade, open-source software use has grown. Today, many com-
panies including Google, Microsoft, Meta, RedHat, MongoDB, and Apache are
major participants of open-source contributions. With the increased use of
open-source software or integration of open-source software into custom-
developed software, the quality of this software component increases in im-
portance. This study examined a sample of open-source applications from
GitHub. Static software analytics were conducted, and each application was
classified for its risk level. In the analyzed applications, it was found that 90%
of the applications were classified as low risk or moderate low risk indicating
a high level of quality for open-source applications.

Keywords
Open-Source Software, Software Quality, Software Risks, Cyclomatic
Complexity, Essential Complexity, Module Design Complexity, Design
Complexity, Integration Complexity, Local Data Complexity, Public Global
Data Complexity, Parameter Data Complexity, Risk Score, Risk Classification

1. Introduction and Objective

If software is open-source, its source code is freely available to its users. Its users
have the ability to take this source code, modify it, and distribute their own ver-
sions of the program. The users also have the ability to distribute as many copies
of the original program as they want. Anyone can use the software for any pur-
pose. There are no licensing fees or other restrictions on the software. The aver-
age percentage of open-source software in codebases of proprietary applications
has grown from 36% to 57% [1]. A large number of applications now contain
more open-source code than proprietary code [2]. Since open-source is growing
in popularity, the quality characteristics of the software are critical to companies.

How to cite this paper: Butler, C.W. (2023)
Software Metric Analysis of Open-Source
Business Software. Journal of Software
Engineering and Applications, 16, 144-153.
https://doi.org/10.4236/jsea.2023.165008

Received: April 23, 2023
Accepted: May 28, 2023
Published: May 31, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2023.165008
https://www.scirp.org/
https://doi.org/10.4236/jsea.2023.165008
http://creativecommons.org/licenses/by/4.0/

C. W. Butler

DOI: 10.4236/jsea.2023.165008 145 Journal of Software Engineering and Applications

According to a security firm, Synopsys, at least 84% of codebases have at least
one open-source vulnerability, and 48% have high-risk vulnerabilities, which
have known exploits or are classified as allowing remote code execution [3].

There are a number of key challenges of open-source software including con-
trolling long-term maintenance, managing evolution costs, and ensuring ac-
ceptable levels of quality. This research was an exploratory study of open-source
software quality. The study objective sought to answer the question, “How risky
is open-source software?” The use of open-source software does not pose risks
that are fundamentally different from the risks presented by the use of proprie-
tary or self-developed software. However, the acquisition and use of open-source
software necessitates implementation of unique risk management practices.

2. Methodology

In order to study open-source software, forty open-source applications (See Ta-
ble 5) were downloaded from GitHub. The business nature of these applications
is enterprise resource planning, accounting, scheduling, and gaming. The sample
contained applications written in Java, C++, and C. The forty applications con-
tain over four million lines of code. The applications were parsed, and static
analysis using McCabe IQ was conducted. McCabe software security, quality,
testing, release, and configuration management solutions and McCabe IQ have
been used to analyze the security, quality, and testing of business-critical soft-
ware [4]. For each application:

1) A profile was built with software metrics for the application, risk compo-
nent, outlier component, and extreme complex component.

2) Software analytics were applied to generate descriptive statistical modeling.
3) A risk scorecard using supervised induction was used for data mining to

identify a risk classification for each application.
Table 1 contains the family of McCabe software metrics that were used to

conduct risk analysis. McCabe’s cyclomatic complexity, v(g), is a traditional
software metric associated with software quality, risk, and testability. For the risk
component, a software module with a v(g) > 10 is considered too complex and
unreliable [5]. Ev(g) is another traditional software metric associated with soft-
ware quality. It measures the structuredness of software code which is how the
module’s logic conforms to single entry, single exit constructs of structure pro-
gramming. In McCabe IQ, an ev(g) > 3 is considered too complex and less
maintainable [5]. Table 1 also describes two additional sets of McCabe metrics.
There are three design metrics, S0, S1, and iv(g). Design complexity, S0, measures
the size or magnitude of a design. A larger design is considered complex and
implies high levels of integration in the design. Those integration levels are
measured by integration complexity, S1 and module design complexity, iv(g).
Module design complexity measures low-level integration which is the integra-
tion test requirement between a superordinate module and its called imme-
diate subordinates. Integration complexity measures the test requirement of a

https://doi.org/10.4236/jsea.2023.165008

C. W. Butler

DOI: 10.4236/jsea.2023.165008 146 Journal of Software Engineering and Applications

Table 1. McCabe software metrics.

Metric Symbol Description Calculation Value Range

of methods
(modules)

n
The total number of methods
in the application

Count of methods in the
application

1 ≤ n ≤ ∞

Design
complexity

S0
The size or volume of the
application design

S0 = ∑iv 1 ≤ S0 ≤ ∞

Integration
complexity

S1
The size of the high level
integration basis set of subtrees

S1 = S0 − n + 1 1 ≤ S1 ≤ ∞

Cyclomatic
complexity

v or vg

The number of decision
predicates in the module; the
size of a basis set of paths for
unit level testing

design predicates + 1;
v = e − n + 2 where e is
the # of edges and n is
the number of nodes
in a flowgraph

1 ≤ v ≤ ∞
v > 10 is considered
risky; higher v is
riskier

Essential
complexity

ev or evg

How well structured is the code;
how easily is the code
modularized (decomposed);
how easily is the code maintained

The v of a reduced
flowgraph where only
single-entry, single-exit
constructs are logically
eliminated

1 ≤ ev ≤ v;
ev = 1 is considered
good, higher ev is
riskier

Module design
complexity

iv or ivg

The number of decision
predicates (plus 1) that
significantly impact calls to
subroutines; the size of a basis set
of paths for low level integration
testing; iv risk is based on where
the module is located; a
management module should
have a high iv, higher iv is riskier

The v of a reduced
flowgraph where design
predicates that do not
significantly impact calls
to subroutine are
logically eliminated

1 ≤ iv ≤ v

Local data
complexity

ldv
(sdvlocal data)

The number of decision
predicates (plus 1) that
significantly impact the use of
local data; the size of a basis set
of paths for local data testing

The v of a reduced
flowgraph where design
predicates that do not
significantly impact the
use of local data

0 ≤ ldv ≤ v;
lower ldv is riskier

Public global
data complexity

pgdv (sdvglobal data)

The number of decision
predicates (plus 1) that
significantly impact the use of
public global data; the size of a
basis set of paths for public
data testing

The v of a reduced
flowgraph where design
predicates that do not
significantly impact the
use of public global data

0 ≤ pgdv ≤ v;
higher pgdv is
riskier

Parameter data
complexity

pdv (sdvparameter data)

The number of decision
predicates (plus 1) that
significantly impact the use of
parameter data; the size of a
basis set of paths for parameter
data testing

The v of a reduced
flowgraph where design
predicates that do not
significantly impact the
use of parameter data

0 ≤ pdv ≤ v; lower
pdv is riskier

https://doi.org/10.4236/jsea.2023.165008

C. W. Butler

DOI: 10.4236/jsea.2023.165008 147 Journal of Software Engineering and Applications

superordinate module and its multi-level, subtree subordinates. When integra-
tion testing requirements increase, the risk associated with the design grows [6].

Table 1 also includes an extended set of McCabe data metrics—local, public
global, and parameter data complexities. These software metrics represent ex-
tensions of cyclomatic complexity into a module’s data component. Local data
complexity, ldv(g), measures the use of local data. High use of local data is a pos-
itive design concept and indicates less risk for a module since the data is not
shared with other modules. Public global data complexity, pgdv(g), measures the
use of global data. In contrast to local data, high use of public global data is a
negative design conceptsince the data is shared among numerous other modules.
Parameter data complexity, pdv(g), is the third data software metric. While pa-
rameter data complexity is a type of global data use, it is less risky due to the ex-
plicit nature of its use. Parameter data is explicitly stated in a call between a su-
perordinate module and its subordinate modules. This approach is less risky
since it is known which subordinate modules use the parameter data. In general,
as the magnitude of McCabe metrics increases, the quality of the software mod-
ule decreases, and the risk associated with the software module increases. The
exceptions to this pattern are ldv(g) and pdv(g). As the use of data is restricted to
a module or its use is explicitly stated, the quality of the software module in-
creases, and the risk associated with the software module decreases.

For the outlier component, the study utilized Deming’s statistical quality con-
trol concepts. In addition to McCabe’s criteria, v > 10, the outlier component
utilized 3σ to determine outliers in the sample. These modules would be subject
to Deming’s plan-do-study-act [7]. In order to reduce the risk of complex mod-
ules, a software engineering plans to find high risk modules (plan), identifies
them (do), studies their logic (study), and refactors (act) them to reduce the de-
cision logic complexity and risk. The basis for the extreme complex component
is McCabe’s categorization of cyclomatic complexity to the Department of Ho-
meland Security [8]:
• 1 - 10: simple procedure, little risk
• 11 - 20: more complex, moderate risk
• 21 - 50: complex, high risk
• >50: untestable code, very high risk

3. Findings

The first task in this study was to parse and conduct static metric analysis using
McCabe IQ. Forty applications were downloaded from GitHub for this task. For
each application, a profile was built with software metrics for the total applica-
tion and the risk (v > 10), outlier (v > 3σ), and extreme (v > 50) components.
Table 2 contains a profile for an application named, Git. Git is written in the C
language and is 193,694 lines of executable code. It is a business scheduling ap-
plication.

Review the software metrics for Git in Table 2. The column labeled Profile

https://doi.org/10.4236/jsea.2023.165008

C. W. Butler

DOI: 10.4236/jsea.2023.165008 148 Journal of Software Engineering and Applications

Table 2. Git profile.

Application Profile Git (C)

Item # Static Metrics Profile
Risk

(v > 10)
Risk %

Outlier
[v > 14]

Outlier %
Extreme

v > 50
Extreme
v > 50%

Number of modules 7108 639 9% 123 1.7% 43 0.60%

Design Complexity, S0 30,624 11,006 36% 4235 13.8% 2201 7.19%

Integration Complexity, S1 23,517 10,368 44% 4113 17.5% 2159 9.18%

1

Cyclomatic complexity (v):

Total cyclomatic complexity 42,345 16,349 39% 6345 15% 3194 7.54%

Average cyclomatic complexity 2.2 25.6 1138% 51.6 2295% 74.3 3305%

Standard deviation—cyclomatic complexity 4.0 16.5 414% 21.9 551% 23.0 578%

Maximum—cyclomatic complexity 159 159

159

159

2

Essential complexity (ev):

Total essential complexity 22,396 8278 37% 3000 13% 1471 6.57%

Average essential complexity 3.2 13.0 411% 24.4 774% 34.2 1086%

Standard deviation—essential complexity 4.9 10.5 215% 16.4 337% 20.7 426%

Maximum—essential complexy 134 134

134

134

Maintenance coefficient (ev/v) 0.53 0.51

0.47

0.46

3

Module design complexity (iv):

Total module design complexity 30,624 11,006 36% 4235 14% 2201 7.19%

Average module design complexity 4.3 17.2 400% 34.4 799% 51.2 1188%

Standard deviation—module design complexity 6.0 12.9 214% 19.9 331% 24.2 402%

Maximum—module design complexity 142 142

142

142

Management coefficient (iv/v) 0.72 0.67

0.67

0.69

4

Local data complexity (ldv):

Total local data complexity 28,827 6921 24% 2209 8% 989 3%

Average local data complexity 1.2 10.8 915% 18.0 1517% 23.0 1942%

Standard deviation—local data complexity 3.5 12.7 359% 21.3 601% 25.1 707%

Maximum—local data complexity 139 121

121

94

ldv density (ldv/v) 0.68 0.42

0.35

0.31

5

Global data complexity (pgdv):

Total global data complexity 8281 1976 24% 644 8% 285 3%

Average global data complexity 1.2 3.1 265% 5.2 449% 6.6 569%

Standard deviation—global data complexity 3.0 6.1 207% 9.2 311% 10.1 341%

Maximum—global data complexity 52 52

52

52

pgdv density (pgdv/v) 0.20 0.12

0.10

0.09

https://doi.org/10.4236/jsea.2023.165008

C. W. Butler

DOI: 10.4236/jsea.2023.165008 149 Journal of Software Engineering and Applications

Continued

6

Parameter data complexity (pdv):

Total parameter data complexity 25,192 4413 18% 1137 5% 612 2.43%

Average parameter data complexity 3.5 6.9 195% 9.2 261% 14.2 402%

Standard deviation—parameter data complexity 4.7 7.9 170% 13.0 279% 18.6 399%

Maximum—parameter data complexity 113 63

63

63

pdv density (pdv/v) 0.59 0.27

0.18

0.19

(accented in green) represents the total application; the column labeled Risk
(accented in orange) represents the portion of modules that are high risk with
v(g) > 10; the column labeled Outlier (accented in blue) represents the portion of
modules that are considered statistical outliers with an average ev(g) more than
3σ above the average v(g) for the application. There are 639 modules, or 9% of
the application, in the risk profile (v(g) > 10). There are 123 modules in the out-
lier profile, or 1.7% of the application. An examination of other McCabe metrics
reveals how the risk of the Git application is assessed. The average v(g) for the
application is 2.2 which is below the threshold hold of poor-quality software,
v(g) > 10. However, when examining the risk and outlier profiles, the average
v(g) increases to 25.6 and 51.6, respectively. These components of Git exhibit
low quality and high risk for testability. When examining the ev(g) measure-
ments, Git’s application profile shows a low magnitude of 3.2. When examining
the risk and outlier profiles, the average ev(g) increases to 13.0 and 24.4, respec-
tively. These measurements of coding quality reveal low quality and high risk. A
similar pattern for the remaining McCabe is observed. Module design, local data,
public global data, and parameter data significantly increase in magnitude (low
quality) in the risk and outlier profiles.

Regarding this pattern, the question to be explored is “How can this pattern
be used to represent quality and a risk score for an application?” In order to do
so, an applied classification algorithm or supervised induction was used for data
mining to build a risk scorecard for each application’s risk component (v > 10).
Table 3 contains risk classification criteria applied to the sample applications.
Risk classification utilizes a business analytics descriptive approach. The intent is
to know what is happening with an application and understand underlying
trends and causes of quality level and risks.

Quartiles and interquartile range help identify spread with a subset of data.
The quartile is a quarter of the number of data points given with a data set.
Quartiles are determined by first scoring the data and then splitting the sorted
data into four disjoint smaller data sets. In Table 3, risk classification criteria are
assigned for quartiles, representing low risk, moderate low risk, moderate high
risk and high-risk classifications. The first attribute used for risk classification
is %nrisk. This attribute is the percentage of the application that falls into the risk
range (v > 10). The higher the percentage, the greater portion of the application
falls within the risk domain, and the poorer the quality and higher the risk. The

https://doi.org/10.4236/jsea.2023.165008

C. W. Butler

DOI: 10.4236/jsea.2023.165008 150 Journal of Software Engineering and Applications

Table 3. Risk classification criteria.

Metric
Quartile 1 Quartile 2 Quartile 3 Quartile 4

Low Risk Moderate Low Risk Moderate High Risk High Risk

%nrisk %nrisk ≤ 2.5% 2.5% < %nrisk ≤ 5.0% 5.0% < %nrisk ≤ 7.5% %nrisk > 7.5%

µv µv ≤ 10 10 < µv ≤ 20 20 < µv ≤ 30 µv > 30

%S0
%S1

ev density
iv density

(1-ldv) density
pgdv density

(1-pdv) density

0 < metric ≤ 25% 25% < metric ≤ 50% 50% < metric ≤ 75% 75% < metric ≤ 100%

Source code risk
score

0 < risk score ≤ 17.5 17.5 < risk score ≤ 25.0
25.0 < risk score ≤

32.5
32.5 < risk score ≤ 40

second attribute (the second row in the table) used for risk classification is µvrisk.
Higher v(g) values are associated with poorer testability quality and higher risk.
µvrisk is divided into equal groups of 10 units each with the last grouping being
open ended. The third row in the table specifies how the remaining McCabe
metrics map to quality and risk. Transformations of S0, S1, ev(g), iv(g), ldv(g),
pgdv(g), and pdv(g) are defined so that equal quartile separation is achieved for
groups between 0 and 100%. In general, the values for these attributes imply the
following:
• %S0: When %S0 increases, quality decreases and risk increases.
• %S1: When %S1 increases, quality decreases and risk increases.
• ev density: When ev/v increases, quality decreases and risk increases.
• iv density: When iv/v increases, quality decreases and risk increases.
• ldv density: When ldv/v increases, quality increases and risk decreases.
• pgdv density: When pgdv/v increases, quality decreases and risk increases.
• pdv: When pdv/v increases, quality increases and risk decreases.

The final table row defines the risk scorecard quantity for risk classification
using nine attributes. Table 4 illustrates the application of the risk classification
algorithm applied to Git.

Note that in the table, density ldv and density pdv are subtracted from one.
This transformation is applied so that the magnitude of these attributes aligns
with the other attributes. By transforming density ldv and density pdv, the high-
er the value, the poor the quality and the higher the risk. When any of the
attributes increase, the quality of the application declines. Also, note that avg v is
weighed twice. Weighting v reinforces the importance of the published research
significance of v > 10 being associated with low quality and testability of soft-
ware.

https://doi.org/10.4236/jsea.2023.165008

C. W. Butler

DOI: 10.4236/jsea.2023.165008 151 Journal of Software Engineering and Applications

Table 4. Risk classification example.

Git Risk Classification

 Metric Risk Value Quartile

1 % #modules 9% 1

2 %S0 36% 2

3 %S1 44% 2

4 avg v (weighted double) 25.59 6

5 density ev 0.51 3

6 density iv 0.67 3

7 (1-density ldv) 0.58 3

8 density pgdv 0.12 1

9 (1-density pdv) 0.41 2

static risk score 23

static risk classification moderate low risk

4. Analysis

The above risk classification algorithm was applied to the sample applications.
Table 5 contains the results. Four of the applications are classified as moderate
high risk. Twenty-eight applications are classified as moderate low risk, and
eight applications are classified as low risk. No applications are classified as high
risk. Of the eight applications classified as low risk, seven did not contain a “risk
profile” which means there are no modules with a v > 10 in these applications. If
an application has no “risk profile”, it follows that it does not have “Outlier” and
“v > 50” profiles. These applications are not included in Table 5.

Table 5. Open-Source application risk classification.

Application Risk (v > 10)

Application Language #Mod Risk% µv Δµv µev µiv
Risk
Score

Risk
Classification

UK_Player C 6 6% 46.8 858% 17.2 19.7 30 moderate high

Tmux C 164 15% 23.5 523% 10.5 20.4 28 moderate high

Ofbiz Java 943 7% 23.5 523% 10.5 20.4 26 moderate high

solitaire C++ 4 6% 22.0 573% 9.0 20.0 26 moderate high

Scorpio Java 1344 5% 22.7 605% 10.1 19.5 25 moderate low

Blueseer Java 666 10% 16.0 295% 4.9 12.6 25 moderate low

Adempiere Java 1109 2% 26.5 1078% 9.1 17.3 24 moderate low

Idempiere Java 941 2% 22.8 879% 10.4 19.5 24 moderate low

Schedulis Java 118 3% 17.1 590% 11.0 13.6 24 moderate low

Nacos_Develop Java 105 2% 15.9 654% 6.8 13.6 24 moderate low

https://doi.org/10.4236/jsea.2023.165008

C. W. Butler

DOI: 10.4236/jsea.2023.165008 152 Journal of Software Engineering and Applications

Continued

Gaussian_YOLOv3 C 36 9% 18.5 249% 5.8 13.6 24 moderate low

Darknet C 36 9% 18.3 245% 5.7 13.4 24 moderate low

phone_info C++ 4 1% 24.3 1005% 7.8 16.8 24 moderate low

sudokumaster C++ 2 2% 11.5 356% 9.0 6.0 24 moderate low

Wumpus Java 6 7% 17.5 442% 6.2 10.5 24 moderate low

Git C 639 9% 25.6 330% 13.0 17.2 23 moderate low

Dbeaver Java 512 2% 17.4 729% 8.3 13.9 23 moderate low

Axelor Java 171 3% 16.4 447% 6.9 14.0 23 moderate low

Mes Java 63 1% 14.7 717% 7.4 13.1 23 moderate low

RedDragonERP Java 15 0.3% 23.0 1555% 14.9 21.4 23 moderate low

Redisson Java 41 0.5% 18.2 1155% 11.0 13.6 23 moderate low

OpenRefine Java 195 4% 17.9 367% 11.5 14.3 23 moderate low

Portfolio Java 171 2% 16.3 826% 6.9 14.0 22 moderate low

Scr_Cpy C 3 2% 29.7 963% 17.7 23.0 21 moderate low

Eladmin Java 3 1% 17.0 750% 8.0 16.7 21 moderate low

JMX_Exporter Java 4 3% 22.8 832% 8.8 19.3 21 moderate low

Java.Battleship Java 8 12% 14.5 334% 3.5 5.0 21 moderate low

Libevent C 111 7% 17.5 357% 9.3 11.6 20 moderate low

Spring_All Java 1 0.1% 11.0 787% 10.0 10.0 20 moderate low

space_blok C++ 3 1% 12.7 545% 5.7 4.7 20 moderate low

weekly_planner C++ 1 1% 11.0 450% 1.0 1.0 20 moderate low

Metafresh Java 1033 1% 17.8 947% 8.0 14.6 19 moderate low

maps_samples C++ 9 1% 13.4 570% 5.6 7.4 12 low

5. Conclusions

This exploratory study sought to assess the quality of open-source software.
Forty applications were downloaded, and static software metric analysis was
conducted on each application. Using McCabe software metrics, a risk scorecard
algorithm was applied to assign a risk classification to each software application.
In summary, the risk classification distribution for the sample is as follows:
• High risk: 0%
• Moderate high risk: 10%
• Moderate low risk: 70%
• Low risk: 20%

In conclusion, the study showed that open-source software exhibits a high de-
gree of quality as 90% of the applications are “moderate low risk or low risk”
classified. The implication is that the use of open-source software in commercial
business software is a compelling high-quality approach for commercial devel-
opment and deployment of applications.

https://doi.org/10.4236/jsea.2023.165008

C. W. Butler

DOI: 10.4236/jsea.2023.165008 153 Journal of Software Engineering and Applications

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Gehman, C. (2019) How to Use Open Source Code in Proprietary Software.

https://www.perforce.com/blog/vcs/using-open-source-code-in-proprietary-software

[2] Zorz, Z. (2018) The Percentage of Open-Source Code in Proprietary Apps Is Rising.
Slashdot.
https://news.slashdot.org/story/18/05/22/1727216/the-percentage-of-open-source-c
ode-in-proprietary-apps-is-rising

[3] McKay, T. (2023) Open-Source Vulnerabilities Wide Spread in Codebases, Report
Finds, IT Brew.
https://www.itbrew.com/stories/2023/03/20/open-source-vulnerabilities-widespread
-in-codebases-report-finds

[4] McCabe Software (2023) http://mccabe.com/

[5] McCabe, T.J. (1976) A Complexity Measure. IEEE Transaction on Software Engi-
neering, SE-2, 308-320. https://doi.org/10.1109/TSE.1976.233837

[6] McCabe, T.J. and Butler, C.W. (1989) Design Complexity Measurement and Test-
ing. Communications of the ACM, 32, 1415-1425.
https://doi.org/10.1145/76380.76382

[7] Henshall, A. (2020) How to Use the Deming Cycle for Continuous Quality Im-
provement. https://www.process.st/deming-cycle/

[8] Wikipedia (2023) Cyclomatic Complexity.
https://en.wikipedia.org/wiki/Cyclomatic_complexity

https://doi.org/10.4236/jsea.2023.165008
https://www.perforce.com/blog/vcs/using-open-source-code-in-proprietary-software
https://news.slashdot.org/story/18/05/22/1727216/the-percentage-of-open-source-code-in-proprietary-apps-is-rising
https://news.slashdot.org/story/18/05/22/1727216/the-percentage-of-open-source-code-in-proprietary-apps-is-rising
https://www.itbrew.com/stories/2023/03/20/open-source-vulnerabilities-widespread-in-codebases-report-finds
https://www.itbrew.com/stories/2023/03/20/open-source-vulnerabilities-widespread-in-codebases-report-finds
http://mccabe.com/
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/76380.76382
https://www.process.st/deming-cycle/
https://en.wikipedia.org/wiki/Cyclomatic_complexity

	Software Metric Analysis of Open-Source Business Software
	Abstract
	Keywords
	1. Introduction and Objective
	2. Methodology
	3. Findings
	4. Analysis
	5. Conclusions
	Conflicts of Interest
	References

