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Abstract 
Over the past decade, open-source software use has grown. Today, many com-
panies including Google, Microsoft, Meta, RedHat, MongoDB, and Apache are 
major participants of open-source contributions. With the increased use of 
open-source software or integration of open-source software into custom- 
developed software, the quality of this software component increases in im-
portance. This study examined a sample of open-source applications from 
GitHub. Static software analytics were conducted, and each application was 
classified for its risk level. In the analyzed applications, it was found that 90% 
of the applications were classified as low risk or moderate low risk indicating 
a high level of quality for open-source applications. 
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1. Introduction and Objective 

If software is open-source, its source code is freely available to its users. Its users 
have the ability to take this source code, modify it, and distribute their own ver-
sions of the program. The users also have the ability to distribute as many copies 
of the original program as they want. Anyone can use the software for any pur-
pose. There are no licensing fees or other restrictions on the software. The aver-
age percentage of open-source software in codebases of proprietary applications 
has grown from 36% to 57% [1]. A large number of applications now contain 
more open-source code than proprietary code [2]. Since open-source is growing 
in popularity, the quality characteristics of the software are critical to companies. 
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According to a security firm, Synopsys, at least 84% of codebases have at least 
one open-source vulnerability, and 48% have high-risk vulnerabilities, which 
have known exploits or are classified as allowing remote code execution [3]. 

There are a number of key challenges of open-source software including con-
trolling long-term maintenance, managing evolution costs, and ensuring ac-
ceptable levels of quality. This research was an exploratory study of open-source 
software quality. The study objective sought to answer the question, “How risky 
is open-source software?” The use of open-source software does not pose risks 
that are fundamentally different from the risks presented by the use of proprie-
tary or self-developed software. However, the acquisition and use of open-source 
software necessitates implementation of unique risk management practices. 

2. Methodology 

In order to study open-source software, forty open-source applications (See Ta-
ble 5) were downloaded from GitHub. The business nature of these applications 
is enterprise resource planning, accounting, scheduling, and gaming. The sample 
contained applications written in Java, C++, and C. The forty applications con-
tain over four million lines of code. The applications were parsed, and static 
analysis using McCabe IQ was conducted. McCabe software security, quality, 
testing, release, and configuration management solutions and McCabe IQ have 
been used to analyze the security, quality, and testing of business-critical soft-
ware [4]. For each application: 

1) A profile was built with software metrics for the application, risk compo-
nent, outlier component, and extreme complex component. 

2) Software analytics were applied to generate descriptive statistical modeling. 
3) A risk scorecard using supervised induction was used for data mining to 

identify a risk classification for each application. 
Table 1 contains the family of McCabe software metrics that were used to 

conduct risk analysis. McCabe’s cyclomatic complexity, v(g), is a traditional 
software metric associated with software quality, risk, and testability. For the risk 
component, a software module with a v(g) > 10 is considered too complex and 
unreliable [5]. Ev(g) is another traditional software metric associated with soft-
ware quality. It measures the structuredness of software code which is how the 
module’s logic conforms to single entry, single exit constructs of structure pro-
gramming. In McCabe IQ, an ev(g) > 3 is considered too complex and less 
maintainable [5]. Table 1 also describes two additional sets of McCabe metrics. 
There are three design metrics, S0, S1, and iv(g). Design complexity, S0, measures 
the size or magnitude of a design. A larger design is considered complex and 
implies high levels of integration in the design. Those integration levels are 
measured by integration complexity, S1 and module design complexity, iv(g). 
Module design complexity measures low-level integration which is the integra-
tion test requirement between a superordinate module and its called imme-
diate subordinates. Integration complexity measures the test requirement of a  
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Table 1. McCabe software metrics. 

Metric Symbol Description Calculation Value Range 

# of methods 
(modules) 

n 
The total number of methods  
in the application 

Count of methods in the 
application 

1 ≤ n ≤ ∞ 

Design  
complexity 

S0 
The size or volume of the  
application design 

S0 = ∑iv 1 ≤ S0 ≤ ∞ 

Integration 
complexity 

S1 
The size of the high level  
integration basis set of subtrees 

S1 = S0 − n + 1 1 ≤ S1 ≤ ∞ 

Cyclomatic 
complexity 

v or vg 

The number of decision  
predicates in the module; the  
size of a basis set of paths for  
unit level testing 

# design predicates + 1;  
v = e − n + 2 where e is 
the # of edges and n is 
the number of nodes  
in a flowgraph 

1 ≤ v ≤ ∞ 
v > 10 is considered 
risky; higher v is 
riskier 

Essential  
complexity 

ev or evg 

How well structured is the code; 
how easily is the code  
modularized (decomposed);  
how easily is the code maintained 

The v of a reduced  
flowgraph where only 
single-entry, single-exit 
constructs are logically 
eliminated 

1 ≤ ev ≤ v; 
ev = 1 is considered 
good, higher ev is 
riskier 

Module design 
complexity 

iv or ivg 

The number of decision  
predicates (plus 1) that  
significantly impact calls to  
subroutines; the size of a basis set 
of paths for low level integration 
testing; iv risk is based on where 
the module is located; a  
management module should  
have a high iv, higher iv is riskier 

The v of a reduced  
flowgraph where design 
predicates that do not 
significantly impact calls 
to subroutine are  
logically eliminated 

1 ≤ iv ≤ v 

Local data  
complexity 

ldv 
(sdvlocal data) 

The number of decision  
predicates (plus 1) that  
significantly impact the use of 
local data; the size of a basis set  
of paths for local data testing 

The v of a reduced  
flowgraph where design 
predicates that do not 
significantly impact the 
use of local data 

0 ≤ ldv ≤ v; 
lower ldv is riskier 

Public global 
data complexity 

pgdv (sdvglobal data) 

The number of decision  
predicates (plus 1) that  
significantly impact the use of 
public global data; the size of a 
basis set of paths for public  
data testing 

The v of a reduced  
flowgraph where design 
predicates that do not 
significantly impact the 
use of public global data 

0 ≤ pgdv ≤ v;  
higher pgdv is 
riskier 

Parameter data 
complexity 

pdv (sdvparameter data) 

The number of decision  
predicates (plus 1) that  
significantly impact the use of 
parameter data; the size of a  
basis set of paths for parameter 
data testing 

The v of a reduced  
flowgraph where design 
predicates that do not 
significantly impact the 
use of parameter data 

0 ≤ pdv ≤ v; lower 
pdv is riskier 
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superordinate module and its multi-level, subtree subordinates. When integra-
tion testing requirements increase, the risk associated with the design grows [6]. 

Table 1 also includes an extended set of McCabe data metrics—local, public 
global, and parameter data complexities. These software metrics represent ex-
tensions of cyclomatic complexity into a module’s data component. Local data 
complexity, ldv(g), measures the use of local data. High use of local data is a pos-
itive design concept and indicates less risk for a module since the data is not 
shared with other modules. Public global data complexity, pgdv(g), measures the 
use of global data. In contrast to local data, high use of public global data is a 
negative design conceptsince the data is shared among numerous other modules. 
Parameter data complexity, pdv(g), is the third data software metric. While pa-
rameter data complexity is a type of global data use, it is less risky due to the ex-
plicit nature of its use. Parameter data is explicitly stated in a call between a su-
perordinate module and its subordinate modules. This approach is less risky 
since it is known which subordinate modules use the parameter data. In general, 
as the magnitude of McCabe metrics increases, the quality of the software mod-
ule decreases, and the risk associated with the software module increases. The 
exceptions to this pattern are ldv(g) and pdv(g). As the use of data is restricted to 
a module or its use is explicitly stated, the quality of the software module in-
creases, and the risk associated with the software module decreases. 

For the outlier component, the study utilized Deming’s statistical quality con-
trol concepts. In addition to McCabe’s criteria, v > 10, the outlier component 
utilized 3σ to determine outliers in the sample. These modules would be subject 
to Deming’s plan-do-study-act [7]. In order to reduce the risk of complex mod-
ules, a software engineering plans to find high risk modules (plan), identifies 
them (do), studies their logic (study), and refactors (act) them to reduce the de-
cision logic complexity and risk. The basis for the extreme complex component 
is McCabe’s categorization of cyclomatic complexity to the Department of Ho-
meland Security [8]: 
• 1 - 10: simple procedure, little risk 
• 11 - 20: more complex, moderate risk 
• 21 - 50: complex, high risk 
• >50: untestable code, very high risk 

3. Findings 

The first task in this study was to parse and conduct static metric analysis using 
McCabe IQ. Forty applications were downloaded from GitHub for this task. For 
each application, a profile was built with software metrics for the total applica-
tion and the risk (v > 10), outlier (v > 3σ), and extreme (v > 50) components. 
Table 2 contains a profile for an application named, Git. Git is written in the C 
language and is 193,694 lines of executable code. It is a business scheduling ap-
plication. 

Review the software metrics for Git in Table 2. The column labeled Profile  
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Table 2. Git profile. 

Application Profile Git (C) 

Item # Static Metrics Profile 
Risk  

(v > 10) 
Risk % 

Outlier 
[v > 14] 

Outlier % 
Extreme 

v > 50 
Extreme 
v > 50% 

 

Number of modules 7108 639 9% 123 1.7% 43 0.60% 

Design Complexity, S0 30,624 11,006 36% 4235 13.8% 2201 7.19% 

Integration Complexity, S1 23,517 10,368 44% 4113 17.5% 2159 9.18% 

1 

Cyclomatic complexity (v): 
       

Total cyclomatic complexity 42,345 16,349 39% 6345 15% 3194 7.54% 

Average cyclomatic complexity 2.2 25.6 1138% 51.6 2295% 74.3 3305% 

Standard deviation—cyclomatic complexity 4.0 16.5 414% 21.9 551% 23.0 578% 

Maximum—cyclomatic complexity 159 159 
 

159 
 

159 
 

2 

Essential complexity (ev): 
       

Total essential complexity 22,396 8278 37% 3000 13% 1471 6.57% 

Average essential complexity 3.2 13.0 411% 24.4 774% 34.2 1086% 

Standard deviation—essential complexity 4.9 10.5 215% 16.4 337% 20.7 426% 

Maximum—essential complexy 134 134 
 

134 
 

134 
 

Maintenance coefficient (ev/v) 0.53 0.51 
 

0.47 
 

0.46 
 

3 

Module design complexity (iv): 
       

Total module design complexity 30,624 11,006 36% 4235 14% 2201 7.19% 

Average module design complexity 4.3 17.2 400% 34.4 799% 51.2 1188% 

Standard deviation—module design complexity 6.0 12.9 214% 19.9 331% 24.2 402% 

Maximum—module design complexity 142 142 
 

142 
 

142 
 

Management coefficient (iv/v) 0.72 0.67 
 

0.67 
 

0.69 
 

4 

Local data complexity (ldv): 
       

Total local data complexity 28,827 6921 24% 2209 8% 989 3% 

Average local data complexity 1.2 10.8 915% 18.0 1517% 23.0 1942% 

Standard deviation—local data complexity 3.5 12.7 359% 21.3 601% 25.1 707% 

Maximum—local data complexity 139 121 
 

121 
 

94 
 

ldv density (ldv/v) 0.68 0.42 
 

0.35 
 

0.31 
 

5 

Global data complexity (pgdv): 
       

Total global data complexity 8281 1976 24% 644 8% 285 3% 

Average global data complexity 1.2 3.1 265% 5.2 449% 6.6 569% 

Standard deviation—global data complexity 3.0 6.1 207% 9.2 311% 10.1 341% 

Maximum—global data complexity 52 52 
 

52 
 

52 
 

pgdv density (pgdv/v) 0.20 0.12 
 

0.10 
 

0.09 
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Continued 

6 

Parameter data complexity (pdv): 
       

Total parameter data complexity 25,192 4413 18% 1137 5% 612 2.43% 

Average parameter data complexity 3.5 6.9 195% 9.2 261% 14.2 402% 

Standard deviation—parameter data complexity 4.7 7.9 170% 13.0 279% 18.6 399% 

Maximum—parameter data complexity 113 63 
 

63 
 

63 
 

pdv density (pdv/v) 0.59 0.27 
 

0.18 
 

0.19 
 

 
(accented in green) represents the total application; the column labeled Risk 
(accented in orange) represents the portion of modules that are high risk with 
v(g) > 10; the column labeled Outlier (accented in blue) represents the portion of 
modules that are considered statistical outliers with an average ev(g) more than 
3σ above the average v(g) for the application. There are 639 modules, or 9% of 
the application, in the risk profile (v(g) > 10). There are 123 modules in the out-
lier profile, or 1.7% of the application. An examination of other McCabe metrics 
reveals how the risk of the Git application is assessed. The average v(g) for the 
application is 2.2 which is below the threshold hold of poor-quality software, 
v(g) > 10. However, when examining the risk and outlier profiles, the average 
v(g) increases to 25.6 and 51.6, respectively. These components of Git exhibit 
low quality and high risk for testability. When examining the ev(g) measure-
ments, Git’s application profile shows a low magnitude of 3.2. When examining 
the risk and outlier profiles, the average ev(g) increases to 13.0 and 24.4, respec-
tively. These measurements of coding quality reveal low quality and high risk. A 
similar pattern for the remaining McCabe is observed. Module design, local data, 
public global data, and parameter data significantly increase in magnitude (low 
quality) in the risk and outlier profiles. 

Regarding this pattern, the question to be explored is “How can this pattern 
be used to represent quality and a risk score for an application?” In order to do 
so, an applied classification algorithm or supervised induction was used for data 
mining to build a risk scorecard for each application’s risk component (v > 10). 
Table 3 contains risk classification criteria applied to the sample applications. 
Risk classification utilizes a business analytics descriptive approach. The intent is 
to know what is happening with an application and understand underlying 
trends and causes of quality level and risks. 

Quartiles and interquartile range help identify spread with a subset of data. 
The quartile is a quarter of the number of data points given with a data set. 
Quartiles are determined by first scoring the data and then splitting the sorted 
data into four disjoint smaller data sets. In Table 3, risk classification criteria are 
assigned for quartiles, representing low risk, moderate low risk, moderate high 
risk and high-risk classifications. The first attribute used for risk classification 
is %nrisk. This attribute is the percentage of the application that falls into the risk 
range (v > 10). The higher the percentage, the greater portion of the application 
falls within the risk domain, and the poorer the quality and higher the risk. The  
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Table 3. Risk classification criteria. 

Metric 
Quartile 1 Quartile 2 Quartile 3 Quartile 4 

Low Risk Moderate Low Risk Moderate High Risk High Risk 

%nrisk %nrisk ≤ 2.5% 2.5% < %nrisk ≤ 5.0% 5.0% < %nrisk ≤ 7.5% %nrisk > 7.5% 

µv µv ≤ 10 10 < µv ≤ 20 20 < µv ≤ 30 µv > 30 

%S0 
%S1 

ev density 
iv density 

(1-ldv) density 
pgdv density 

(1-pdv) density 

0 < metric ≤ 25% 25% < metric ≤ 50% 50% < metric ≤ 75% 75% < metric ≤ 100% 

Source code risk 
score 

0 < risk score ≤ 17.5 17.5 < risk score ≤ 25.0 
25.0 < risk score ≤ 

32.5 
32.5 < risk score ≤ 40 

 
second attribute (the second row in the table) used for risk classification is µvrisk. 
Higher v(g) values are associated with poorer testability quality and higher risk. 
µvrisk is divided into equal groups of 10 units each with the last grouping being 
open ended. The third row in the table specifies how the remaining McCabe 
metrics map to quality and risk. Transformations of S0, S1, ev(g), iv(g), ldv(g), 
pgdv(g), and pdv(g) are defined so that equal quartile separation is achieved for 
groups between 0 and 100%. In general, the values for these attributes imply the 
following: 
• %S0: When %S0 increases, quality decreases and risk increases. 
• %S1: When %S1 increases, quality decreases and risk increases. 
• ev density: When ev/v increases, quality decreases and risk increases. 
• iv density: When iv/v increases, quality decreases and risk increases. 
• ldv density: When ldv/v increases, quality increases and risk decreases. 
• pgdv density: When pgdv/v increases, quality decreases and risk increases. 
• pdv: When pdv/v increases, quality increases and risk decreases. 

The final table row defines the risk scorecard quantity for risk classification 
using nine attributes. Table 4 illustrates the application of the risk classification 
algorithm applied to Git. 

Note that in the table, density ldv and density pdv are subtracted from one. 
This transformation is applied so that the magnitude of these attributes aligns 
with the other attributes. By transforming density ldv and density pdv, the high-
er the value, the poor the quality and the higher the risk. When any of the 
attributes increase, the quality of the application declines. Also, note that avg v is 
weighed twice. Weighting v reinforces the importance of the published research 
significance of v > 10 being associated with low quality and testability of soft-
ware. 
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Table 4. Risk classification example. 

Git Risk Classification 

 Metric Risk Value Quartile 

1 % #modules 9% 1 

2 %S0 36% 2 

3 %S1 44% 2 

4 avg v (weighted double) 25.59 6 

5 density ev 0.51 3 

6 density iv 0.67 3 

7 (1-density ldv) 0.58 3 

8 density pgdv 0.12 1 

9 (1-density pdv) 0.41 2 

static risk score 23 

static risk classification moderate low risk 

4. Analysis 

The above risk classification algorithm was applied to the sample applications. 
Table 5 contains the results. Four of the applications are classified as moderate 
high risk. Twenty-eight applications are classified as moderate low risk, and 
eight applications are classified as low risk. No applications are classified as high 
risk. Of the eight applications classified as low risk, seven did not contain a “risk 
profile” which means there are no modules with a v > 10 in these applications. If 
an application has no “risk profile”, it follows that it does not have “Outlier” and 
“v > 50” profiles. These applications are not included in Table 5. 

 
Table 5. Open-Source application risk classification. 

Application Risk (v > 10) 
  

Application Language #Mod Risk% µv Δµv µev µiv 
Risk 
Score 

Risk  
Classification 

UK_Player C 6 6% 46.8 858% 17.2 19.7 30 moderate high 

Tmux C 164 15% 23.5 523% 10.5 20.4 28 moderate high 

Ofbiz Java 943 7% 23.5 523% 10.5 20.4 26 moderate high 

solitaire C++ 4 6% 22.0 573% 9.0 20.0 26 moderate high 

Scorpio Java 1344 5% 22.7 605% 10.1 19.5 25 moderate low 

Blueseer Java 666 10% 16.0 295% 4.9 12.6 25 moderate low 

Adempiere Java 1109 2% 26.5 1078% 9.1 17.3 24 moderate low 

Idempiere Java 941 2% 22.8 879% 10.4 19.5 24 moderate low 

Schedulis Java 118 3% 17.1 590% 11.0 13.6 24 moderate low 

Nacos_Develop Java 105 2% 15.9 654% 6.8 13.6 24 moderate low 
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Continued 

Gaussian_YOLOv3 C 36 9% 18.5 249% 5.8 13.6 24 moderate low 

Darknet C 36 9% 18.3 245% 5.7 13.4 24 moderate low 

phone_info C++ 4 1% 24.3 1005% 7.8 16.8 24 moderate low 

sudokumaster C++ 2 2% 11.5 356% 9.0 6.0 24 moderate low 

Wumpus Java 6 7% 17.5 442% 6.2 10.5 24 moderate low 

Git C 639 9% 25.6 330% 13.0 17.2 23 moderate low 

Dbeaver Java 512 2% 17.4 729% 8.3 13.9 23 moderate low 

Axelor Java 171 3% 16.4 447% 6.9 14.0 23 moderate low 

Mes Java 63 1% 14.7 717% 7.4 13.1 23 moderate low 

RedDragonERP Java 15 0.3% 23.0 1555% 14.9 21.4 23 moderate low 

Redisson Java 41 0.5% 18.2 1155% 11.0 13.6 23 moderate low 

OpenRefine Java 195 4% 17.9 367% 11.5 14.3 23 moderate low 

Portfolio Java 171 2% 16.3 826% 6.9 14.0 22 moderate low 

Scr_Cpy C 3 2% 29.7 963% 17.7 23.0 21 moderate low 

Eladmin Java 3 1% 17.0 750% 8.0 16.7 21 moderate low 

JMX_Exporter Java 4 3% 22.8 832% 8.8 19.3 21 moderate low 

Java.Battleship Java 8 12% 14.5 334% 3.5 5.0 21 moderate low 

Libevent C 111 7% 17.5 357% 9.3 11.6 20 moderate low 

Spring_All Java 1 0.1% 11.0 787% 10.0 10.0 20 moderate low 

space_blok C++ 3 1% 12.7 545% 5.7 4.7 20 moderate low 

weekly_planner C++ 1 1% 11.0 450% 1.0 1.0 20 moderate low 

Metafresh Java 1033 1% 17.8 947% 8.0 14.6 19 moderate low 

maps_samples C++ 9 1% 13.4 570% 5.6 7.4 12 low 

5. Conclusions 

This exploratory study sought to assess the quality of open-source software. 
Forty applications were downloaded, and static software metric analysis was 
conducted on each application. Using McCabe software metrics, a risk scorecard 
algorithm was applied to assign a risk classification to each software application. 
In summary, the risk classification distribution for the sample is as follows: 
• High risk: 0% 
• Moderate high risk: 10% 
• Moderate low risk: 70% 
• Low risk: 20% 

In conclusion, the study showed that open-source software exhibits a high de-
gree of quality as 90% of the applications are “moderate low risk or low risk” 
classified. The implication is that the use of open-source software in commercial 
business software is a compelling high-quality approach for commercial devel-
opment and deployment of applications. 
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