
Journal of Software Engineering and Applications, 2023, 16, 113-143
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2023.165007 May 31, 2023 113 Journal of Software Engineering and Applications

Guideline of Test Suite Construction for GUI
Software Centered on Grey-Box Approach

Mengqing TanLi1, Jiyi Xiao1, Ying Zhang2

1School of Software, University of South China, Hengyang, China
2School of Mechanical Engineering, University of South China, Hengyang, China

Abstract
In this paper, the test suite construction for GUI (Graphical User Interface)
software may be executed centered on grey-box approach with the prior test
design of window access controls for unit testing, including front-end method
of white box and follow-up black box method for integration testing. Moreo-
ver, two key opinions are proposed for the test suite construction for GUI
software, the first one is that the “Triple-step method” should be used for unit
testing with the prior disposing of data boundary value testing of input con-
trols, and another one is that the “Grey-box approach” should be applied in
integration testing for GUI software with necessary testing preparation in the
precondition. At the same time, the testing of baseline version and the incre-
mental testing should be considered for the test case construction to coordi-
nate with the whole evolution of software product today. Additionally, all our
opinion and thought are verified and tested with a typical case of GUI soft-
ware—PQMS (Product Quality Monitoring Software/System), and results in-
dicate that these methods and specific disposing are practical and effective.

Keywords
Test Suite Construction, GUI Software, Triple-Step Method,
Grey-Box Approach, Guideline

1. Introduction

GUI (Graphical User Interface) software has become the majority of current
software and played a dominant role for mobile and desktop software in update
engineering system [1], and the GUI software has covered a wide area for engi-
neering application as shown in Figure 1. Further, we believe that this trend will
be sustainable for a long period in the future. However, the testing of GUI

How to cite this paper: TanLi, M.Q., Xiao,
J.Y. and Zhang, Y. (2023) Guideline of Test
Suite Construction for GUI Software Cen-
tered on Grey-Box Approach. Journal of
Software Engineering and Applications, 16,
113-143.
https://doi.org/10.4236/jsea.2023.165007

Received: March 30, 2023
Accepted: May 28, 2023
Published: May 31, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2023.165007
https://www.scirp.org/
https://doi.org/10.4236/jsea.2023.165007
http://creativecommons.org/licenses/by/4.0/

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 114 Journal of Software Engineering and Applications

Figure 1. Popular composition of GUI software.

software has also faced some difficulties especially for the large scale software
system with many communication interfaces and data scenarios. Of course, the
difficulty of test suite construction for GUI software is the main aspect including
the problem of how to improve the testing efficiency and how to assure testing
quality. Generally, for the former, test engineer must consider how to do soft-
ware testing with less time, which the grey-box approach has been proposed for
GUI software testing in our study and testing practice [2], and for another prob-
lem, it will refer to accurately testing and BUG location for GUI software, which
FTA (Fault Tree Analysis) has used in regression testing to deal with the soft-
ware change [3]. However, concerning the core problem with test suite con-
struction, this study will mainly focus on the grey-box approach which applied
in GUI software testing.

This guideline is prepared for software companies and relative application
areas, and it is a technical guidance which its thought and essence is scientifically
summarized from testing practice and it also is derived from software program-
ming technique in fact [4] [5] [6], in which there is not a bit of practical joke and
baloney. As a result, this guideline will be illustrated and verified by a set of fac-
tual software testing examples [7]. However, this guideline must be fine-tuned in
terms of the actual situation of software companies and relative application areas
to assure the effectiveness of method application [8].

2. Related Literature and Work

Emil Alegroth, Robert Feldt [8] imply that test suite construction is done all
through the process of software testing in the case company—Spotfy, but the
importance of testing data is ignored or omitted in their observation. Ron Patton
in his writings “Software Testing” discussed the specific testing of GUI by using
one chapter [5], and proposed seven aspects about it including 1) directly per-
ceiving through the senses, 2) consistency, 3) nimbleness, 4) comfort, 5) cor-
rectness, and 6) usefulness, however the systemic approach for GUI software
testing is lack especially for specific testing phase e.g. unit testing and integration
testing. Fu Bing [6] puts forward that the test case constructing is the core mat-
ter of software testing as an effective measure for improving controllability and

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 115 Journal of Software Engineering and Applications

software should be checked and tested with test case according to the require-
ment from user. At the same time, the difficulty of software testing for GUI was
conscious in the writings of Fu Bing, and Fu Bing et al. thought that the study of
GUI testing is in the initial phase at present and existed technology cannot as-
sure the quality of factual GUI software. Additionally, the magnitude of test data
is ignored too. Li Fan [7] proposed the main content of test design for test suite
construction, and has considered the magnitude of testing sequence in software
testing activity.

As a consequence, our study and testing practice [9] [10] [11] [12] has dem-
onstrated the magnificence of data-driven in engineering application software,
and the grey-box approach is proposed for dealing with the difficulty of software
testing for GUI based on window frame in our recent research [2].

Further, the test suite construction, as the key aspect of software testing activ-
ity, should be paid more attention, so previous work [12] has investigated the
test suite construction of smoke test. Moreover, the recent study [2] has pro-
posed the grey-box technique of integration testing for GUI software, and more
recent research [3] has provided the constructing method of test suite, including
the testing method of data boundary value of input controls and the typical dis-
posing method of function and state testing using the improved STD (State
Transform Diagram).

Consequently, this study gives the guideline of test suite construction for GUI
software centered on grey-box approach, and deeply discusses the constructing
method and process including unit testing and integration testing by a typical
case of GUI software—PQMS (Product Quality Monitoring Software/System).

3. Background and Definition of Terminology

When we start a task of software testing, regardless of any testing type, the first
matter must be the construction of test case or test suite. In fact, test suite con-
struction has become the key and most important work in software testing.
However, how to construct test case or test suite for GUI software with engi-
neering method? It probably is not a very easy-to-answer problem. As such, we
would build some references in the following.

3.1. Research Methodology

Generally, software testing can be divided into four testing phases including unit
testing, integration testing, system testing and validity testing. Furthermore,
white box method and black box method are usual testing methods in software
testing. And white box method is the traditional method previously in unit test-
ing especially for logic testing, but black box method is more usually used in
function testing [5] [6] [7].

For the view of testing phase, test suite construction should generally include
test suite construction of unit testing and test suite construction of integration
testing. However, in some situations, test suite construction of system testing

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 116 Journal of Software Engineering and Applications

and test suite construction of validation testing must be considered too [6].
For the view of software production, test suite construction generally has two

aspects, i.e. test suite construction of baseline version and test suite construction
of incremental change [3].

In actual software testing, all above objects should be considered in terms of
factual requirement. In order to deeply investigate the test suite construction, we
firstly outlined a whole view of test suite construction centered on grey-box ap-
proach as shown in Figure 2 [9] [10] [11].

3.2. Software Testing for GUI Software

For GUI software, the GUI testing is a very important context and should be
taken as a high-level testing, especially in large scale GUI software system. Con-
sequently, we gave a general overview about the level of GUI testing in software
testing as shown in Figure 3.

In contrast to previous DOS software, such as the runtime software of indus-
trial control device, the GUI testing in large scale software system faced some
challenges [13] as follows:
• Functionalities of software system are much more.
• States of software system are much more and transformed with more branch

and loop.
• Data organizing type and saving mode are more complex.
• Information interchanging is done by more widely and rapidly mode such as

internet.
• Application scenarios will be happened with more layers and more entities.

Figure 2. Constructing scheme of test suite centered on grey-box approach.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 117 Journal of Software Engineering and Applications

Figure 3. The level of GUI testing in software testing.

Facing to these challenges, the test suite construction of GUI software should
consider more concerns from more requirements [14] [15] especially to streng-
then the usability of user. Firstly, the GUI testing is taken as a more important
part in GUI software testing including the testing of GUI controls and compo-
nents and the general testing of function and state, besides the traditional logic
testing.

3.3. Construction Process of Software Test Suite

The workload of test suite construction almost has the ratio of 60% in software
testing. The testing organizing of test suite construction will determine the qual-
ity and efficiency of software testing. Some basic and preparing work must be
done before starting the test suite construction, such as familiarizing the code
submitted from programmer, analyzing the requirement of testing environment
and the dependency of units, and determining the general testing strategy and
method, etc. If it is necessary, all preparing work should be organized by skilled
tester or manager. In general, the procedure of test suite construction should be
executed according to Figure 4.

3.4. Definition of Terminology

In this paper, the following terminology is used to understand the accurate
meaning of our study. For our study opinion, new software testing method
should be explored because of some old traditional methods are not fitted for the
GUI software testing, which mainly includes the “Triple-step method” in unit
testing and “Grey-box approach” in integration testing.

In order to deeply discuss the problem of the GUI software testing, the GUI
testing is defined that is taken as a high-level testing and usually implies the
software testing from GUI aspect for general GUI software. The GUI testing
based on “Sheet/Form” is factually adopted as a strategy of software testing, which
the “Sheet/Form” is taken as a single unified entity with all controls/components
and internal function disposing. Test suite construction of GUI software implies
the constructing processing of test suite for GUI software, and it should include
the dependency analysis with FTA, the writing and assigning of test case, and

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 118 Journal of Software Engineering and Applications

Figure 4. Procedure of test suite construction.

the modifying and updating of test suite, etc.

In the procedure of test suite construction for GUI software, “Triple-step me-
thod” should be adopted for unit testing in terms of the testing sequence of “data
testing → function testing → state testing”, and data boundary value testing of
GUI input controls must be done firstly to assure the correctness and accuracy
of data input, and process boundary value testing must be executed to avoid
various leaks e.g. the leakage in the “getting the best deal”, and the data interface
and format testing must be strengthened to get the good usability. Function
testing is the core task in the unit testing, and the limitation testing is generally
done in the process of function testing, which limitation testing include all ob-
liged limitation e.g. limitation of data input, limitation of function running, etc.
At the same time, the state testing should be finished in unit testing to improve
the software quality really, and “0-switch state testing” may be executed for gen-
eral GUI software which every effective single-step transformation must be com-
pletely tested [7]. Consequently, the “Grey-box approach” should be adopted for
integration testing. In general, integration testing has distinguished requirement
with the unit testing, data boundary value testing of GUI input controls should
not be repeated, and function testing only occurred among units regardless of
internal function disposing for GUI software, and state testing should be ex-
ecuted in terms of factual situation of software/system.

4. Grey-Box Approach [2]

For GUI software, the grey-box approach can be mainly used for constructing
the test suite of baseline version in integration testing and it will achieve mini-
mum of testing time for dealing with combinatory explosion of GUI testing. The
principle of grey-box approach is shown in Figure 5.

In Figure 5, the front part is interface controls of Windows GUI, i.e. “Win-
dows control 1”, “Windows control 2”, ···, “Windows control m”. And in the
center part of Figure 5, “Message handling” and “Map function” are the core
part of message disposing based on event from C1, C2, ···, Cm. As a consequence,
the function disposing unit, i.e. “Handling unit 1”, “Handling unit 2”, ···, “Han-
dling unit n”, is the actual function handling part by message map route, i.e. H1,

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 119 Journal of Software Engineering and Applications

Figure 5. The principle of grey-box approach for GUI software.

H2, ···, Hn. We insert a pole in the beginning of mapping function which it
marked with the point illustrated in Figure 5, for the section in the front of the
pole, the white-box method is used to test, and for the section behind the pole,
the black-box method is applied for actual function testing. Using this approach,
we can only test the message path {C1→H1}, {C1→H2}, {C1→……}, {C1→Hn}, it will
cover all message path {{C1→H1}, {C1→H2}, {C1→……}, {C1→Hn}}, {{C2→H1},
{C2→H2}, {C2→……}, {C2→Hn}}, {{……→H1}, {……→H2}, {……→……}, {……→Hn}},
{{Cm→H1}, {Cm→H2}, {Cm→……}, {Cm→Hn}}.

Generally, the selection of the pole position has several methods, details are
specified as follows: 1) The path aggregation point by white-box analysis. 2) The
point that message route must go through. 3) The entrance point of map func-
tion. 4) The entrance point of the initial member function.

By analysis and computation with factual example [2], we conclude that, in
integration testing for GUI Software, the application of grey-box technique will
greatly improve the testing efficiency with about four times according to testing
executed time.

5. Software Test Suite Construction of Unit Testing

In a large sense, the majority of application software at present is GUI software,
and the unit testing of GUI software is the indispensible phase. Thus, test suite
construction of unit testing is an impassible and basic work.

Generally, the unit testing of GUI software should execute “Triple-step me-
thod” as shown in Figure 6, including 1) step 1—data testing, 2) step 2—func-
tion testing, and 3) step 3—state testing. For data testing, there are boundary
value testing, data format and interface testing, and data safety testing, in which
boundary value testing should include data boundary value testing and process
boundary value testing. For function testing, it not only includes function-self
run testing but also may have the limitation testing, such as the limitation of
unpermitted empty, the input format limitation, the comparing and computing
limitation, etc. In some cases, the limitation testing can be incorporated into

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 120 Journal of Software Engineering and Applications

Figure 6. The composition of “Triple-step method”.

data testing, e.g. the testing for the control limitation is given independently. For
state testing, the improved STD should be applied with “0-switch” requirement
for general situation.

In the test suite construction of data testing, some matters should be consi-
dered as follows: 1) Sampling testing method in data boundary value testing may
be adopted in terms of the situation of factual software. 2) Data format and in-
terface testing has several types including text file, database, etc. 3) Data safety
testing is generally delayed to integration testing and system testing. 4) Usual
items of test case include “ID”, “Input”, and “Expected output”, etc., and test en-
vironment may be given if necessary.

In the test suite construction of function and state testing, some matters
should be also noticed as follows: 1) Function-self run testing should be con-
structed firstly, particularly noticing the construction for the window access
controls and white-box testing in grey-box approach. 2) Limitation testing must
be completely conducted as careful as possible. 3) Before state test suite con-
structing, all states and state-transform should be depicted correctly and com-
pletely in the improved STD. 4) Items in the table of test cases should contain
“ID”, “Start state”, “End state”, ”Input”, “Expected output” etc., and precondi-
tion should be given if necessary. 5) The ID must be unified by specification. 6)
The description of “Input” and “Expected output” must be clear and easy-to-
understand.

5.1. Test Suite Construction of Baseline Version
5.1.1. Window Access Controls or Window Controls of Function Access
Window access controls or window controls of function access is one kind of
GUI controls, which the interface control locates and is contained in the window
interface and user can access the software function by this control. For Windows
system, usual controls have the menu item of main menu, the menu item of po-
pup menu, shortcut key, toolbar, hotkey, etc.

The test suite construction of window access controls should be prior to do in
unit testing especially in preparation of integration testing for grey-box ap-
proach [2] [3], and it must be considered in specific terms including testing or-
ganizing e.g. “cross-testing” [3] [11]. The specific format of the writing of test

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 121 Journal of Software Engineering and Applications

case and test suite may be executed according to the actual situation of software
companies, and we give a basic reference format for guidance in this paper.
Consequently, a typical example of test case of the menu item testing is given in
Table 1, which is a “Basic Setting” menu of PQMS2 (Product Quality Monitor-
ing Software 2.0) [16].

Matters needed attention in writing test case of window access controls are: 1)
all test cases for a main menu should be together, 2) only highlighting the menu
item is required rather calling the function, 3) including the content checking of
window access controls e.g. the spelling of words.

5.1.2. Basic Setting Unit
For a software system, the basic setting is generally needed for the change of user
status and application status. Being different from the window access control,
the basic setting unit has the interaction of data, and its test suite construction
should include data testing and function and state testing.

1) Data testing
In general, test suite construction of the basic setting unit may be similar to

general basic “Sheet/Form” [3] including the testing of data boundary value,
process boundary value, and data format and interface etc. Here, the data boun-
dary value testing is a new testing project and testing method possibly applying
sampling testing, details may be referred to [3]. For the “Basic Setting” sheet of
PQMS2, as a typical small “Sheet/Form”, the testing of data boundary value
should be prior to be conducted for GUI software, and the specific format of test
cases is given in Table 2.

2) Function and state testing [3]
The function and state testing of the “Basic Setting” sheet is relatively simple

because less type and quantity of controls are used, and the specific format of
test cases of function testing is given as shown in Table 3.

For the state testing of this basic setting unit, the improved STD should be ap-
plied, and details are shown in Figure 7, which the event ei and action ai are
given with an attached list and all of symbol description are omitted here. Con-
sequently, the construction of test cases can be done according to this diagram,

Table 1. Test cases of the window access controls for baseline version.

ID Input Expected output

PQMS2-MEF-UNI-TC010
Starting the main menu from windows main interface,
and click and highlight the menu item of
“Basic Setting - System User - Set Authority”.

This menu item is correct and it
can be activated for highlighting.

PQMS2-MEF-UNI-TC011
Starting the main menu from windows main interface,
and click and highlight the menu item of
“Basic Setting - System User - Modify Password”.

This menu item is correct and it
can be activated for highlighting.

PQMS2-MEF-UNI-TC017
Starting the main menu from windows main interface,
and click and highlight the menu item of
“Basic Setting - Basic setting of monitoring”.

This menu item is correct and it
can be activated for highlighting.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 122 Journal of Software Engineering and Applications

Table 2. Test cases of the window access controls for baseline version.

ID Input Expected output

PQMS2-MBB-UNI-TC010

Starting the basic setting sheet of monitoring from
menu item “Basic Setting - Basic setting of
monitoring”, and in the ComBoBox of “Accuracy
of inspection data” input character “T…” by key-
board with limited seven times, and stop when
“Da” voice is listened.

Only six characters are permitted for
input in the ComBoBox of data
accuracy.

PQMS2-MBB-UNI-TC011

In the ComBoBox of “Moving mode”, input
continuously character “T…” by keyboard with
limited 51 times, and count actually if width is
shorted, and stop when “Da” voice is listened.

Only 50 characters are permitted for
input in the ComBoBox of moving
mode.

PQMS2-MBB-UNI-TC012

In the ComBoBox of “Sampling limit of counting
chart”, input continuously character “T…” by
keyboard with limited 51 times, and count actually
if width is shorted, and stop when “Da” voice is
listened.

Only 50 characters are permitted for
input in the ComBoBox of sampling
limit of counting chart.

PQMS2-MBB-UNI-TC013

In the ComBoBox of “Division or department”,
input continuously character “T…” by keyboard
with limited 51 times, and count actually if width
is shorted, and stop when “Da” voice is listened.

Only 50 characters are permitted for
input in the ComBoBox of division or
department.

PQMS2-MBB-UNI-TC014

In the ComBoBox of “Name of testing operator”,
input continuously character “T…” by keyboard
with limited 51 times, and count actually if width
is shorted, and stop when “Da” voice is listened.

Only 50 characters are permitted for
input in the ComBoBox of name of
testing operator.

and the specific format of test cases of state testing is given as shown in Table 4.

5.1.3. Initialization Unit
Because the initialization unit is driven directly by a menu item with the mem-
ber function rather than driven by controls in a “Sheet/Form”, this unit has not
data testing of input controls.

For the function and state testing, it is necessary to analyze with the improved
STD even though it may be not complex. The improved STD of initializing to
delete all inspection data from category is shown in Figure 8. Consequently, test
cases can be designed according to this improved STD with less difficulty ac-
cording above method. As such, test cases of function testing in this initializa-
tion unit are given in Table 5, and test cases of state testing are given in Table 6.

5.1.4. Basic “Sheet/Form” Unit
By a lot of testing practice, in our opinion, the GUI testing of software system
may be executed based on “Sheet/Form” [3]. In detail, all controls and compo-
nents in a “Sheet/Form” should be taken as a unified unit if the function is im-
plemented within the “Sheet/Form”. For the function of software is directly dri-
ven by a control and component in the window interface, the testing should be
similarly done in terms of the member function driven by event of the control in

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 123 Journal of Software Engineering and Applications

Table 3. Test cases of the function testing for basic setting unita.

ID Input Expected output

PQMS2-SMF-UNI-TC010

Starting “Basic setting of monitoring” sheet from the
menu item of “Basic Setting - Basic setting of monitoring”,
and input “0.001” in the ComBoBox of “Data Accuracy”,
and input “Single data - Automatic” in the ComBoBox of
“Moving mode”, and input “More than or equal to 10 and
less than 1000” in the ComBoBox of “Sampling limit of
counting chart” while the information of tester is kept
invariant, and click the “Setting” button finally.

Correctly displaying the prompt
of “The setting of control chat is
saved.” and no prompt of error
information.

PQMS2-SMF-UNI-TC011

In the “Basic setting of monitoring” sheet, input “ ” in the
“ComBoBox” of “Data Accuracy”, and input “Single
data - Automatic” in the “ComBoBox” of “Moving mode”,
and input “More than or equal to 10 and less than 1000”
in the “ComBoBox” of “Sampling limit of counting chart”
while the information of tester is kept invariant,
and click the “Setting” button finally.

Displaying the prompt of “The
setting of data accuracy is error,
and only two values, i.e. 0.01 and
0.001.”

PQMS2-SMF-UNI-TC012

In the “Basic setting of monitoring” sheet, input “0.001” in
the “ComBoBox” of “Data Accuracy”, and input “ ” in the
“ComBoBox” of “Moving mode”, and input “More than or
equal to 10 and less than 1000” in the “ComBoBox” of
“Sampling limit of counting chart” while the
information of tester is kept invariant, and click the
“Setting” button finally.

Displaying the prompt of “The
setting of moving mode is error,
and only giving the mode of
‘Single data-Automatic’”.

PQMS2-SMF-UNI-TC013

In the “Basic setting of monitoring” sheet, input “0.001” in
the “ComBoBox” of “Data Accuracy”, and input “Single
data - Automatic” in the “ComBoBox” of “Moving mode”,
and input “ ” in the “ComBoBox” of “Sampling limit of
counting chart” while the information of tester is kept
invariant, and click the “Setting” button finally.

Displaying the prompt of “The
setting of sampling limit of
counting chart is error, and the
number must be more than 0
and less than 10,000”.

a. In writing test case of function testing for general situation, it is noticed that all correct and error possibility of function running
must be considered.

Figure 7. The improved STD of “Basic setting” sheet unit.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 124 Journal of Software Engineering and Applications

Figure 8. The improved STD of initialization unit.

Table 4. Test cases of the state testing for basic setting unitb.

ID
Start
state

End
state

Input Expected output

PQMS2-SMS-UNI-TC010 S0 S1
Click the menu item of “Basic Setting - Basic
setting of monitoring” from the main
interface.

Display the sheet of basic
setting of monitoring.

PQMS2-SMS-UNI-TC011 S1 S4
No inputting operation, click the button of
“Cancel” or “Shut-off” button of up-right
corner in the sheet.

Cancel basic setting, and
enter the system idle.

PQMS2-SMS-UNI-TC012 S1 S2
Enter the sheet again, and input data
in the ComBoBox.

Display the data in the
sheet.

PQMS2-SMS-UNI-TC013 S2 S4
Input correct default data in the sheet,
and click the button of “Setting”.

No prompt of error
information, and save
the setting data.

PQMS2-SMS-UNI-TC014 S2 S3
Enter the sheet again, and input “” in all
ComBoBoxes, and click the button of
“Setting”.

Prompt error information.

PQMS2-SMS-UNI-TC015 S3 S4
Click the button of “OK” or “Shut-off” button
of up-right corner in the prompt dialogue.

Enter the system idle.

PQMS2-SMS-UNI-TC016 S2 S4
Enter the sheet again, and click the button of
“Cancel” in the sheet when inputting data.

Cancel basic setting, and
enter the system idle.

PQMS2-SMS-UNI-TC017 S2 S1
Enter the sheet again, and click the button
of “Default” in the sheet.

Restore default setting.

PQMS2-SMS-UNI-TC018 S4 S5
When system is idle, click “Shut-off” button
of up-right corner in the system interface.

Exit.

b. In writing test case of state testing for general situation, it is noticed that the correct and completed STD is needed and 0-switch
state testing is passable for most situation in general software system.

the “Sheet/Form”, i.e. the testing of this situation should be disposed in the level
of member function.

The “Product and class” sheet of PQMS2 [16], as shown in Figure 9, is a typi-
cal popular “Sheet/Form” including basic GUI controls and components, and
popular functions of data adding, data modifying, data deleting. As such, the test
suite construction of data testing, function and state testing for this basic sheet is

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 125 Journal of Software Engineering and Applications

Table 5. Test cases of function testing in initialization unit.

ID Input Expected output

PQMS2-SSF-UNI-TC011

Starting the main interface, and click the menu item of
“Basic Setting - Initialization - System User
Authority - Initializing to delete all inspection
data from category”, and click button “OK”
in the confirming dialogue.

Correctly displaying the prompt of
“All inspection data are deleted.” and
no prompt of error information.

Table 6. Test cases of the state testing for basic setting unit.

ID
Start
state

End
state

Input Expected output

PQMS2-SMS-UNI-TC010 S0 S1
Click the menu item of “Basic Setting - Basic
setting of monitoring” from the main interface.

Display the sheet of basic
setting of monitoring.

PQMS2-SMS-UNI-TC011 S1 S4
No inputting operation, click the button of
“Cancel” or “Shut-off” button of up-right
corner in the sheet.

Cancel basic setting, and
enter the system idle.

PQMS2-SMS-UNI-TC012 S1 S2
Enter the sheet again, and input data in the
ComBoBox.

Display the data in the
sheet.

PQMS2-SMS-UNI-TC013 S2 S4
Input correct default data in the sheet,
and click the button of “Setting”.

No prompt of error
information, and save the
setting data.

Figure 9. The GUI of “Product and class” sheet unit in PQMS2.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 126 Journal of Software Engineering and Applications

discussed in detail in the following.
1) Data testing of the “Product or class” sheet
a) Data boundary value testing of “input controls”
Similarly, for the “Product and class” sheet, as a typical popular “Sheet/Form”,

the testing of data boundary value should also be prior to be conducted while the
limitation testing is incorporated into function testing for GUI software, and the
specific format of test cases is given in Table 7.

2) Data testing of the “Product or class” sheet
The function and state testing of the “Product or class” sheet is a typical ex-

ample because functions and types of controls are representative in some extent,
and the specific format of test cases of function testing of this basic “Sheet/Form”
unit is given as shown in Table A1 of the Appendix.

Similarly, the improved STD should be applied to construct the state test case
of the “Product or class” sheet, and details are shown in Figure 10. Consequent-
ly, the test case construction of the state testing can be accomplished according
to this diagram, and the specific format of test cases of state testing is given as
shown in Table A2 of the Appendix.

5.1.5. Complex “Sheet/Form” Unit
In various “Sheet/Form” units, there is a kind of sheet that there are many kinds
of control or component and it has data exchange with other sheet or compo-
nent, and the “Inspection process” sheet unit is a typical example, as shown in
Figure 11 [16]. In the “Inspection process” sheet unit, the function of “Add to
the monitoring category” with “Button control” will do data exchange with the
“Tree control” component in main window.

In Figure 11, as a more complex “Sheet/Form” unit, the sight of typical sheet
of data disposing is presented. Moreover, the “Tree control” on the left of the
sheet is to display the data chain of “product or class - part/component - inspec-
tion process”, and detail information of inspection process taken in the “List
control” can be found on the up-right of panel, and the area on the down-right
of panel is to accomplish the input of inspection process data including popular
EditBox control, ComBoBox control, Button control, etc.

Table 7. Test cases of the data boundary value testing for the “Product or class” sheet.

ID Input Expected output

PQMS2-PDB-UNI-TC010

Start the product or class sheet from the menu item of “Basic
quality data - Product or class”, and continuously input
character “T…” by keyboard with limited 21 times in the
EditBox “Code of product or class”, and stop when “Da”
voice is listened.

Only 20 characters are
permitted for input in this
EditBox.

PQMS2-PDB-UNI-TC011

In the product or class sheet, continuously input character
“T…” by keyboard with limited 51 times in the EditBox
“Name of product or class”, and stop when “Da” voice is
listened.

Only 50 characters are
permitted for input in this
EditBox.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 127 Journal of Software Engineering and Applications

Figure 10. The improved STD of “Product or class” sheet unit.

Figure 11. The GUI of “Inspection process” sheet unit.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 128 Journal of Software Engineering and Applications

For this “Inspection process” sheet unit, its unit testing should similarly in-
clude data testing, function testing and state testing.

1) Data testing
As mentioned above, test suite construction of data testing of the “Inspec-

tion process” sheet unit should include the testing of data boundary value,
the testing of process boundary value, and the testing of data format and in-
terface etc., while the testing of data limitation is incorporated into function
testing.

a) Data boundary value testing of “input controls”
At first, the testing of data boundary value should be similarly executed as a

new testing project for GUI software, and the specific result of test design is giv-
en in Table A3 of the Appendix.

b) Data format testing of data file
In general, the complex “Sheet /Form” unit has the processing of many kinds

of data I/O including the data type of controls, the data type of text file, and the
data type of database. The data type of inputting from controls has been dis-
cussed as above. Here, the data interface and format testing for the data type of
text file will be investigated in this “Inspection process” sheet.

In the testing of data format and interface for the “Inspection process” sheet
unit, the format of file name should be tested firstly, and the format of every data
may be checked and verified in sequence. Test cases of the data format testing
for the “Inspection process” sheet is given in Table A4 of the Appendix. Addi-
tionally, Table A5 of the Appendix is the specification of data format with the
checking of “the tail of file cannot be empty” for “Import inspection process da-
ta” in the “Inspection process” sheet. And other test cases of data format testing
are accomplished with code of “PQMS2-PDI-UNI-TC010~TC016”, details are
omitted here.

2) Function and state testing
As a complex “Sheet/Form” unit, the function and state testing of the “Inspec-

tion process” sheet unit is relatively difficult not only due to many controls and
components but also because of a lot of function disposing.

For the function testing of the “Inspection process” sheet unit, it must include
1) initialization displaying of the sheet with default data—test case “PQMS2-
IDF-UNI-TC010”, 2) clicking and displaying of inspection process data in mon-
itoring category—test case “PQMS2-IDF-UNI-TC011”, 3) adding of inspection
process data—test case “PQMS2-IDF-UNI-TC030~TC044” and “PQMS2-IDF-
UNI-TC003-AD~TC004-AD”, 4) modifying of inspection process data—test
case “PQMS2-IDF-UNI-TC012~TC029” and “PQMS2-IDF-UNI-TC001-AD~
TC002-AD”, 5) deleting of inspection process data—test case “PQMS2-IDF-
UNI-TC050~TC053” and “PQMS2-IDF-UNI-TC005-AD~TC006-AD”, 6) search-
ing of inspection process data according to name—test case “PQMS2-IDF-UNI-
TC054~TC058” and “PQMS2-IDF-UNI-TC007-AD, and 7) resetting of dada
input—test case “PQMS2-IDF-UNI-TC059”.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 129 Journal of Software Engineering and Applications

As a guidance of test suite construction, we only give some test case examples
for adding of inspection process data as shown in Table A6 of the Appendix,
and remaindering is omitted here. Consequently, Table A6 has given the func-
tion-self run testing with “PQMS2-IDF-UNI-TC030” and the limitation testing
of “unpermitted overlapping” and “unpermitted empty” with “PQMS2-IDF-
UNI-TC031~TC034”. As such, other test case constructing of limitation testing
can be done in a similar way.

For the state testing of the “Inspection process” sheet unit, the improved STD
should be drawn before constructing the state test suite. In consequence, Figure
12 has shown the details of the improved STD of the “Inspection process” sheet

Figure 12. The improved STD of the “Inspection process” sheet unit.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 130 Journal of Software Engineering and Applications

in PQMS2. As such, we can construct the test suite of state testing for the “In-
spection process” sheet unit in PQMS2 in terms of the improved STD. Conse-
quently, the specific format of test cases of state testing is given as shown in Ta-
ble A7 of the Appendix.

5.2. Test Suite Construction of Incremental Unit Testing

In the cycle of software developing and maintenance, all composing parts of
software will change to fitful the varied requirement of customers, e.g. GUI, data
and data organizing etc. For this kind of variety, incremental construction of test
suite must be done in regression testing [9]. At the same time, we must known
whether the modified or added part has influenced the other unit of the software
[9]. Generally, because the unit testing based on “Sheet/Form” has been inde-
pendent of other units for specified requirement, the dependency analysis of unit
testing could be usually omitted instead of integration testing, but the testing of
the member function must be concerned with distinguished consideration. As a
consequence, the incremental construction is demonstrated in terms of grey-box
approach [2] in the following.

5.2.1. Incremental Unit Testing of Window Access Controls
Usually, window access controls are changing including its content and layout
according to requirement of users and manager. In the view of quality assurance,
this variety must be tested and controlled in terms of the specification of regres-
sion testing.

1) Modification of window access controls
If the content of a menu item or main menu is modified, this modification

must be tested for regression testing. Consequently, the test case of this window
access control must be constructed again. One typical example is shown in
“ID—PQMS2-MEF-UNI-TC017-MF” of Table 8, which it has tiny difference
from PQMS2-MEF-UNI-TC017 of Table 1.

2) Addition of window access controls

Table 8. Test cases of window access controls for incremental unit testing.

ID Input Expected output

PQMS2-MEF-UNI-TC017-MF

Starting the main menu from windows main
interface, and click and highlight the menu
item of “Basic Setting - System User - Basic
setting of control chart”.

This menu item is correct and it
can be activated till highlighted.

PQMS2-MEF-UNI-TC025
Starting the main menu from windows main
interface, and click and highlight the menu item of
“Quality Monitoring Report - Monthly Report”.

This menu item is correct and it
can be activated till highlighted.

PQMS2-MEF-UNI-TC026
Starting the main menu from windows main
interface, and click and highlight the menu item of
“Quality Monitoring Report - Yearly Report”.

This menu item is correct and it
can be activated till highlighted.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 131 Journal of Software Engineering and Applications

When a set of functions are added for a software system, all additions must be
tested for regression testing. Consequently, test cases of all added window access
controls must be constructed. One typical example is the adding of “Report
output” in an application, the construction of test cases in PQMS is shown in
“ID-PQMS2-MEF-UNI-TC025-AD~TC026-AD”of Table 8.

5.2.2. Incremental Unit Testing of “Sheet/Form” Unit
1) Data testing
Modification of basic “Sheet /Form” unit
If the control of a basic “Sheet/Form” is changed, this change must be tested

for regression testing in terms of this change. Consequently, the test case of this
basic “Sheet/Form” must be constructed again. Similarly, if the data boundary of
controls is changed, the test case of data boundary value must be conducted
again. One typical example is the change of data length in two EditBoxes of
“Product or class” sheet as shown in “PQMS2-PDB-UNI-TC010-MF~TC011-
MF” of Table 9, which it has some difference from Table 7.

2) Function and state testing
Addition of basic “Sheet/Form” unit
When an interface control and implement function are added for a “Sheet/

Form”, this adding must be tested for regression testing. Consequently, test cases
for this adding change must be constructed. One typical example is the adding of
“Search-Name” in the data processing sheet, the construction of test cases is
similar to the data testing above, but the function testing of member function of
“Search-Name” button must be added, and state testing of this button must be
inserted into the state test suite.

6. Software Test Suite Construction of Integration Testing
6.1. Test Suite Construction of Baseline Version

In general, the test suite construction of integration testing for baseline version
should be done using grey-box approach [2] for GUI software, except that it is
very simple program or non-GUI software. As mentioned in Section 4, the

Table 9. Test cases of the data boundary value testing for incremental unit testing.

ID Input Expected output

PQMS2-PDB-UNI-TC010-MF

Start the product or class sheet from the menu item of “Basic
quality data - Product or class”, and continuously input
character “T…” by keyboard with limited six times in the
EditBox “Code of product or class”, and stop when “Da”
voice is listened.

Only five characters are
permitted for input in this
EditBox.

PQMS2-PDB-UNI-TC011-MF

In the product or class sheet, continuously input character
“T…” by keyboard with limited 21 times in the EditBox
“Name of product or class”, and stop when “Da” voice is
listened.

Only 20 characters are
permitted for input in this
EditBox.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 132 Journal of Software Engineering and Applications

grey-box approach is a better method in integration testing for GUI software
based on window frame with efficiency improved about four times.

For the constructing of test suite of integration testing based on grey-box ap-
proach, the general procedure can be demonstrated as follows.
• For one function disposing, several test cases of fore-end white-box testing

should be constructed according to all kinds of control types in window
frame.

• In terms of factual software, using black-box testing method, test cases of
function testing are conducted in sequence and distinguishing with various
running situation, generally ignoring finished parts in unit testing.

• Conducting test case for all follow-up function disposing with black-box
testing method.

• In the process of all follow-up construction of function test case, the mapping
function should be chosen with the most rapid route.

• If it is necessary, the test case of fore-end white-box testing must be con-
ducted for all follow-up construction including controls activated in other
units such as “Hotkey”.

• Necessary description should be given in the process of test case construc-
tion.

Here, the constructing method and writing format are given for the integra-
tion testing with the case software, it is noticed that the precondition is generally
needed for grey-box approach.

Without loss representative and typicality for GUI software, the integration
testing of “Division and department” sheet in PQMS2 is investigated for baseline
version according to the grey-box approach.

6.1.1. Test Suite Construction for “Division and Department” Sheet
The “Division and department” sheet is a basic “Sheet/Form” for getting basic
data of factory division and department in PQMS2, which the GUI is similar to
Figure 9. For shortening aim, the test suite constructing of integration function
of “Add to monitoring category” in the “Division and department” sheet is only
given here. Using the grey-box approach, test cases of the front-end white-box
testing are given in Table 10, and test cases of the black-box testing are given in
Table 11.

6.1.2. Modification of Window Access Controls
As we all known, window access controls and its implementation functions
usually are needed to modify sometimes, e.g. for fulfilling the supervision of key
sampling or UI check. If the window access control changed, the test case of in-
tegration testing must be constructed again in terms of grey-box approach. As a
typical example, in PQMS2, the menu item of “Output of inspection data” is
modified to “Backup of inspection data output”, and test cases of fore-end
white-box were changed with ID “P QMS2-ENT-INT-TC368-MF~TC369-MF”
as shown in Table 12, but test cases of the black-box testing are unnecessary to

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 133 Journal of Software Engineering and Applications

Table 10. Test cases of front-end white-box for the “Division and department” sheet.

Precondition—Insert the pole of <MessageBox (“Testing output.”);> at the beginning of member
function of <BOOL CDivisionDIALOG::OnInitDialog ()>.

ID Input Expected output

PQMS2-ENT-INT-TC300-AD
In the monitoring category of main window interface, click the
root item, choose “Add division and department” using the right
key of mouse, and activate the “Division and department” sheet.

Prompt “Testing
output.”

PQMS2-ENT-INT-TC301-AD
In the main window interface, click the menu item of
“Basic setting - Division and department”, and activate the
“Division and department” sheet.

Prompt “Testing
output.”

PQMS2-ENT-INT-TC302-AD
Click the shortcut key “Alt-S” and “Alt-D” from the menu item of
“Basic setting (S) - Division and department (D)”.

Prompt “Testing
output.”

PQMS2-ENT-INT-TC303-AD
In the main window interface, click the toolbar item of “Division”,
and activate the “Division and department” sheet.

Prompt “Testing
output.”

Table 11. Test cases of black-box for the function of “Add to monitoring category”.

Precondition—(a) Delete the pole of <MessageBox (“Testing output.”);> at the beginning of member function of <BOOL
CDivisionDIALOG::OnInitDialog()>. (b) “TUMC_MC-Division of machining and cutting” and “TUMC_AS-Division of

assembly” do not exist in the monitoring category, but two items have been input and saved from the
“Division and department” sheet unit.

ID Input Expected output

PQMS2-ENT-INT-TC307-MF

Using the authority of system user, from the toolbar item
“Division” of main window interface, start the “Division
and department” sheet, choose the recorder of
“TUMC_MC-Division of machining and cutting” in the
list and display all data in below input controls, and click
the button “Add to monitoring category” finally.

Prompt the information of
finished adding, and can find
this added item in monitoring
category.

PQMS2-ENT-INT-TC308-MF

Using the authority of system user, from the toolbar item
“Division” of main window interface, start the “Division
and department” sheet, choose the recorder of
“TUMC_AS-Division of assembly” in the list and display
all data in below input controls, and click the button
“Add to monitoring category” finally.

Prompt the information of
finished adding, and can find
this added item in monitoring
category.

Table 12. Test cases for the menu item of “Backup of inspection data output”.

Precondition—Insert the pole of <MessageBox (“Testing output.”);> in the front of member function of
<BOOL CExportDataDialog::OnInitDialog()>.

ID Input Expected output

PQMS2-ENT-INT-TC368-MF
In the main window interface, click the menu item of
“Data I/O—Backup of inspection data output”, and activate the
backup of inspection data.

Prompt “Testing
output.”

PQMS2-ENT-INT-TC369-MF
Click the shortcut key “Alt-T” and “Alt-I” from the menu item of
“Data I/O (T)—Backup of inspection data output (I)”.

Prompt “Testing
output.”

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 134 Journal of Software Engineering and Applications

modify again if without change in implementation function.

6.1.3. Addition of Window Access Controls and Disposing Functions
“Batch restoring of inspection data” is important function for factual require-
ment in PQMS, which was not developed in the past. In order to improve the
safety of inspection data, this function is arranged to add. Consequently, “Batch
restoring of inspection data” is added to the main menu “Data I/O” and the ac-
tual function is implemented by programmer. For the “cross-testing”, after the
testing task arrangement of manager, tester should do incremental regression
testing. As a consequence, testing engineer as the tester analyzed the original
code from programmer with FTA tool. During this period, it is noticed that the
testing engineer should not only apply FTA tool with careful manner but also be
familiar with the code and check it. As a result, Figure 13 has shown the result
of FTA which has been accomplished by testing engineer. [9]

In Figure 13, in order to implement the requirement change of “Batch res-
toring of inspection data is necessary to add”, “Adding coordination-offset coef-
ficient for R chart is necessary respectively in XAve-R chart” is conducted as the
top event, and it is noted with mark A. Consequently, Ai,j,… presents the middle
event of fault-tree, and Xi,j,k… is the final event of fault-tree, while Ci is the addi-
tional condition. Correspondingly, details are demonstrated in Table 13. At the
same time, the test case choice and adding for “Batch restoring of inspection da-
ta”, derived from final events, are shown in Table 14.

In terms of the result of FTA as above, we can construct test case of incre-
mental testing. In general, Table 14 can be directly use to execute the test design
i.e. test suite construction. As such, the front-end test cases of white-box testing
is firstly constructed using grey-box approach as shown in Table 15, and
PQMS2-ENT-INT-TC145-AD is the added test case for incremental function

Figure 13. FTA for batch restoring of inspection data in PQMS.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 135 Journal of Software Engineering and Applications

Table 13. The events of FTA for batch restoring of inspection data.

Code Event name Code Event name

A1 Add controls from main/pop-up menu and event map A2 Add member function statement and body

A21 Add member function statement A22 Add member function body

X11 Add controls from main menu/pop-up X12 Add event map

X21 Add member function statement in “MainView.h” X221 Attributes statement and initialization

X222
Judge if inspection process is exist, and get basic
information e.g. inspection process, part, etc.

X223 Searching all target file names

X224 Judge if this inspection data is exist X225
Add inspection data ID into
INSPECTIONDATADIRECTORYNAME

X226
Add filename and all data of inspection data file into
SAVINGDIRECTORY

C1
Sequence should be
“X221→X222→X223→X224→X225→X226”

Table 14. Choice and adding of test case for batch restoring of inspection data.

ID Testing content Note

PQMS2-ENT-INT-TC372-AD White-box testing for “Popup Menu-menu item” X11, X12, X21

PQMS2-ENT-INT-TC373-AD White-box testing for “Main Menu - menu item” X11, X12, X21

PQMS2-ENT-INT-TC374-AD White-box testing for “Shortcut key” X11, X12, X21

PQMS2-ENT-INT-TC145-AD Integration testing of batch restoring inspection data
X11, X12, X21, X221, X222,

X223, X224

PQMS2-FRD-UNI-TC001
Testing if output of starting from monitoring category is
correct

X11, X12, X21, X221, X222

PQMS2-FRD-UNI-TC002
Testing the output of starting from “Main Menu-menu
item” for correct inspection process

X11, X12, X21, X221, X222

PQMS2-FRD-UNI-TC003
Testing the output of starting from “Main Menu-menu
item” for incorrect inspection process

X11, X12, X21, X221, X222

Table 15. Test cases of front-end for adding function of batch restoring inspection data.

Precondition—Insert the pole of <MessageBox (“Testing output.”);> in the front of member function of
<BOOL CMainView::CBatchRestoringInspectionData ()>.

ID Input Expected output

PQMS2-ENT-INT-TC372-AD

In the monitoring category of main window interface, click the
item “Division of machining and cutting - CM_Digital inspection
apparatus of depth_Pillar - Thickness 10(-0.10 0)”, and click the
menu item “Batch restoring of inspection data” using the
right key of mouse.

Prompt “Testing
output.”

PQMS2-ENT-INT-TC373-AD
In the main window interface, click the menu item of
“Data I/O—Batch restoring of inspection data”.

Prompt “Testing
output.”

PQMS2-ENT-INT-TC374-AD
Click the shortcut key “Alt-T” and “Alt-P” from the menu item of
“Data I/O (T)—Batch restoring of inspection data (P)”.

Prompt “Testing
output.”

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 136 Journal of Software Engineering and Applications

Table 16. Test case of black box for adding function of restoring inspection data.

Precondition—(1) Delete the pole of <MessageBox (“Testing output.”);> in the front of member function of
<BOOL CMainView::CBatchRestoringInspectionData()>, (2) the inspection process item “Division of machining and
cutting - CM_Digital inspection apparatus of depth_Pillar - Thickness 10(-0.10 0)” has existed in monitoring category

and its three inspection data—“2019_09_28 InSpDaVa1_1 3, 2019_09_29 InSpDaVa1_1 3, 2019_09_30 InSpDaVa1_1 3”
has been just deleted.

ID Input Expected output

PQMS2-ENT-INT-TC145-AD

In the category of main window interface, click
the item “Division of machining and
cutting - CM_Digital inspection apparatus of
depth_Pillar - Thickness 10(-0.10 0)”, and click
the menu item “Batch restoring of inspection
data” using the right key of mouse, start the
restoring.

Three batches of inspection
dat—“2019_09_28 InSpDaVa1_1 3,
2019_09_29 InSpDaVa1_1 3,
2019_09_30 InSpDaVa1_1 3” can be
correctly restored.

testing of integration testing, detail is shown in Table 16. Of course, it is noticed
that the state testing should be finished in unit testing.

In conclusion, the test suite construction of integration testing has some dif-
ferences from that of unit testing. On the one hand, the data boundary value
testing of input controls is omitted in the data testing of integration testing, ex-
cept that the testing of data accessing/visiting safety and the testing of obliged
data interface and format must be accomplished in sequence. On the other hand,
the function integration testing should focus on the function interface among
units while limitation testing and state testing should be executed in terms of
actual situation of software.

7. Summary

Test suite construction is the most important work in software testing, because
workload of test design has the ratio of 60% in software testing activity. Test
suite construction is not the same as mechanical design etc., and it can be taken
as a kind of process design which directly is projected from the factual software
product.

Test suite construction is generally linked to software testing phases, mainly
focusing on unit testing phase and integration testing phase in this study. For
GUI software testing, in unit testing phase, the test suite construction should
generally be done in terms of “Triple-step method” including data testing, function
testing and state testing. As a consequence, in integration testing, the “Grey-box
approach” is an effective and useful testing methodology for GUI software with
prior disposing of window access controls.

This paper aims to provide a referring guidance for researchers and industrial
practitioners when conducting test cases and test suite for GUI software in soft-
ware engineering, and it is based on software testing activity of the case GUI
software—PQMS and the author’s own experience of test design. Consequently,
it is noticed that tiny tune is needed for software testing practice.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 137 Journal of Software Engineering and Applications

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Runeson, P. and Höst, M. (2009) Guidelines for Conducting and Reporting Case

Study Research in Software Engineering. Empirical Software Engineering, 14,
131-164. https://doi.org/10.1007/s10664-008-9102-8

[2] TanLi, M.Q., Zhang, Y., Wang, Y.L., et al. (2021) Grey-Box Technique of Software
Integration Testing Based on Message. Proceedings of 3rd International Conference
on Artificial Intelligence and Computer Science, Beijing, 29-31 July 2021, 198-206.

[3] TanLi, M.Q., Zhang, Y. and Wang, Y.L. (2022) Architecture and Methodology of
Unit Testing Embedding Pair-Wise Mode for Small Team. Journal of Software En-
gineering and Applications, 15, 111-133. https://doi.org/10.4236/jsea.2022.1511022

[4] Boehm, B.W. (1979) Classics in Software Engineering. Yourdon Press, New Jersey.

[5] Patton, R. (2006) Software Testing. Pearson Education Inc., London.

[6] Fu, B. (2014) Course of Software Testing Technology. Tsinghua University Press,
Beijing.

[7] Li, F. (2016) Software Testing Technology. Mechanical Industry Press, Beijing.

[8] Alégroth, E. and Feldt, R. (2017) On the Long-Term Use of Visual Gui Testing in
Industrial Practice: A Case Study. Empirical Software Engineering, 22, 2937-2971.
https://doi.org/10.4236/jsea.2022.1511022

[9] TanLi, M.Q., Zhang, Y. and Wang, Y.L. (2020) Research on Fault Tree Technique in
Software Regression Testing. Computer Engineering and Software, 41, 5-8, 25.

[10] TanLi, M.Q., Zhang, Y. and Wang, Y.L. (2020) System Testing Based on Software
Performance. Computer Engineering and Software, 41, 1-4, 25.

[11] Tang, D., TanLi, M.Q. and Li, T. (2021) Software Test Organizing for Small Team
Based on “Pair-Wise” Mode. Proceedings of 2022 International Conference on
Smart Transportation and Future Mobility-CSTFM 2022, Changsha, 2-4 September
2021.

[12] TanLi, M.Q., Zhang, Y., Jiang, Y., et al. (2021) Baseline Test Suite Construction of
Smoke Test for Extreme Programming. Proceedings of 2021 International Confe-
rence on Communication Engineering and Logistics Management, Changsha, 24-26
July 2021.

[13] TanLi, M.Q., Jiang, Y., Wang, Y.L., et al. (2020) Infrastructure Building of Software
Testing for Engineering Software Based on Cooperation of University and Compa-
ny. Proceedings of the 10th International Workshop on Computer Science and En-
gineering-WCSE2020, Shanghai, 19-21 June 2020, 18-26.

[14] Xu, Y.Y. (2015) A Study of Test Case Reuse Based on CBR. Computer Engineering
and Software, 36, 117-120.

[15] Chen, Z.H. (2005) Research and Implementation of Test Method in Task Arrange-
ment of Resource Satellite. Radio Engineering, 35, 62-64.

[16] TanLi, M.Q., Jiang, Y., Wang, Y.L., Wang, X. and Peng, R.S. (2018) Digital Inspec-
tion of Cutting and Machining Based on Manufacturing Quality for Shop Floor.
2018 International Conference on Mechanical, Electronic and Information Tech-
nology (ICMEIT2018), Shanghai, 23-24 April 2018, 1-7.
https://doi.org/10.4236/jsea.2022.1511022

https://doi.org/10.4236/jsea.2023.165007
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.4236/jsea.2022.1511022
https://doi.org/10.4236/jsea.2022.1511022
https://doi.org/10.4236/jsea.2022.1511022

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 138 Journal of Software Engineering and Applications

Appendix
Table A1. Test cases of the function testing for “product or class” sheet unit.

ID Input Expected output

PQMS2-PDF-UNI-TC011

Start the product or class sheet from the menu item of
“Basic quality data - Product or class”, and input
“PC101” in the EditBox of “Code of product or class”,
and input “Shanghai-K3-Loudspeaker” in the EditBox
of “Name of product or class”, and keep
“Mechanicaland electronic” in the EditBox of
“Area or region”, and input “Pure electronic product”
in the ComBoBox of “Type”, and input “15” in the
EditBox of “Number”, and input “AD-PC101999”
in the EditBox of “Code of assembly drawing”,
and input “2020.03.01” in the EditBox of
“Set-up date”, and input “MUSIC EQUIPMENT”
in the EditBox “Mem”, and click the button
“Add” finally.

Correctly displaying the prompt of
“New data of product is added.” and
no prompt of error information.

PQMS2-PDF-UNI-TC012
After TC011, input “ ” in the EditBox of “Code of
product or class”, and click the button “Add”.

Displaying the error prompt of “The
code of product or class cannot be
empty.”

PQMS2-PDF-UNI-TC013
After TC011, input “ ” in the EditBox of “Name of
product or class”, and click the button “Add”.

Displaying the error prompt of “The
name of product or class cannot be
empty.”

PQMS2-PDF-UNI-TC014
After TC011, input “PC10” in the EditBox of “Code of
product or class”, and click the button “Add”.

Displaying the error prompt of
“The number of code character of
product or class is 5 and the
beginning is ‘PC’, please refer to
coding rule.”

PQMS2-PDF-UNI-TC015
After TC011, input “PC1010” in the EditBox of
“Code of product or class”, and click the button “Add”.

Displaying the error prompt of
“The number of code character of
product or class is 5 and the
beginning is ‘PC’, please refer to
coding rule.”

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 139 Journal of Software Engineering and Applications

Table A2. Test cases of the state testing for “product or class” sheet unit.

ID
Start
state

End
state

Input Expected output

PQMS2-PDS-UNI-TC010 S0 S1 Start the product or class sheet with default. Display this sheet.

PQMS2-PDS-UNI-TC011 S1 S5
No inputting operation, click the button
of “OK” or “Shut-off” button of up-right
corner in the sheet.

Exit.

PQMS2-PDS-UNI-TC012 S2-1 S2-1
Start the product or class sheet again,
and input data in this sheet.

Display the data of
inputting.

PQMS2-PDS-UNI-TC013 S2-1 S2-2
After data was input, click the button
“Add”.

Save data, and display data
in the “List control”.

PQMS2-PDS-UNI-TC014 S2-1 S4-1
Input “ ” in the EditBox of “Code of product
or class”, and click the button “Add”.

Display the error message
prompt.

PQMS2-PDS-UNI-TC015 S4-1 S2-1
Click the button of “OK” or “Shut-off”
button of up-right corner in the prompt
dialogue.

Return.

PQMS2-PDS-UNI-TC016 S2-1 S3-1
Modify data in the sheet, and click the
button “Modify”.

Display the confirm
dialogue.

PQMS2-PDS-UNI-TC017 S3-1 S2-1
Click the button of “Cancel” in the confirm
dialogue.

Return.

PQMS2-PDS-UNI-TC018 S3-1 S2-2
Click the button “Modify” again, and click
the button of “OK” in the confirm dialogue.

Save data and display data
in the list.

PQMS2-PDS-UNI-TC019 S2-1 S4-2
Input “ ” in the EditBox of “Name of
product or class”, and click the button
“Modify”.

Display the error message
prompt.

PQMS2-PDS-UNI-TC020 S4-2 S2-1
Click the button of “OK” or “Shut-off”
button of up-right corner in the prompt
dialogue.

Return.

PQMS2-PDS-UNI-TC021 S2-1 S3-2
Input the data for deleting, and click
the button “Delete”.

Display the confirm
dialogue.

PQMS2-PDS-UNI-TC022 S3-2 S2-1
Click the button of “Cancel” in the
confirm dialogue.

Return.

PQMS2-PDS-UNI-TC023 S3-2 S2-2
Click the button “Delete” again, and click
the button of “OK” in the confirm dialogue.

Complete the deleting of
data.

PQMS2-PDS-UNI-TC024 S2-1 S4-3
Input the code with less character than
specification, and click the button “Delete”.

Display the error message
prompt.

PQMS2-PDS-UNI-TC025 S4-3 S2-1
Click the button of “OK” or “Shut-off”
button of up-right corner in the prompt
dialogue.

Return.

PQMS2-PDS-UNI-TC026 S2-1 S5
In the product or class sheet, when inputting
data, click the button of “Cancel”.

Exit.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 140 Journal of Software Engineering and Applications

Table A3. Test cases of the data boundary value testing for “Inspection process” sheet unit.

ID Input Expected output

PQMS2-IDB-UNI-TC010

Starting the “Inspection process” sheet from
menu item “Basic quality data - Inspection
process”, and in the ComBoBox of “Code and
name of product or class”, input character “T…”
by keyboard with limited 51 times, and count
actually if width is shorted, and stop when “Da”
voice is listened.

Only 50 characters are permitted for
input in the ComBoBox of “Code and
name of product or class”.

PQMS2-IDB-UNI-TC011

Continuously, in the ComBoBox of “Code and
name of part/component”, input character “T…”
by keyboard with limited 51 times, and count
actually if width is shorted, and stop when “Da”
voice is listened.

Only 50 characters are permitted for
input in the ComBoBox of “Code
and name of part/component”.

PQMS2-IDB-UNI-TC012

Continuously, in the EditBox of “Code of
inspection process”, input character “T…” by
keyboard with limited 21 times, and stop when
“Da” voice is listened.

Only 20 characters are permitted
for input in the EditBox of “Code
of inspection process”.

PQMS2-IDB-UNI-TC013

Continuously, in the EditBox of “Name of
inspection process”, input character “T…”
by keyboard with limited 51 times, and stop
when “Da” voice is listened.

Only 50 characters are permitted for
input in the EditBox of “Name of
inspection process”.

Table A4. Test cases of the data format testing for “Inspection process” sheet unit.

ID Input Expected output

PQMS2-PDI-UNI-TC010

Starting the “Inspection process” sheet from menu item “Basic
quality data - Inspection process”, and keep default data, and click
the button “import inspection process data”. Consequently choose
the folder of “INSPECTIONDATA/EXTERNAL BASIC DATA” in
the follow-up dialogue—the format of file name and data is shown
in Table A5, and open the data file—“PC001000002 Height of
hollow groove.txt”, and click button “OK” finally.

Prompt “the format is
error—the tail of file
cannot be empty”.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 141 Journal of Software Engineering and Applications

Table A5. The specification of data format for “Import inspection process data”.

Items Format

The format
of file name

(a) The front is the code of inspection process, has 11 characters.
(b) Next is the name of inspection process.
(c) The last part is the file name extension “.txt”.

The format
of data

The general format The example with error
1) The general string
2) Number of data
3) Accuracy—if various types, use “0”
4) Set-up date
5) Mem
6) Data No.1—Code
7) Data No.2—Name
8) Data No.3—Type
9) Data No.4—Code of drawing
10) Data No.5—Date of design
11) Data No.6—Location and site
12) Data No.7—Mem of inspection process

1) Caliper File. Interface.
2) 7
3) 0
4) 20220520
5) This data is generated by quality control software
6) PC001000002
7) Height of hollow groove
8) Dimension of machining and cutting
9) ID_PC001000002
10) 2018-01-01
11) Division of machining and cutting
12) Digital indicator is bought from Shanghai by Tan Jianlin

Table A6. Test cases of unit function testing of adding inspection process data.

ID Input Expected output

PQMS2-IDF-UNI-TC030

Start inspection process sheet from the menu item “Basic quality
data - Inspection process” in main program interface, and click the branch
item of “Tree control” on the left—“TUMC - PC101Shanghai Brand K3
loudspeaker box - PC101000FrontRedNet - PC101000000 Plating flaw of
FrontRedNet (0 10)”. EditBox of “Product Code and Name” display
“PC101Shanghai Brand K3 loudspeaker box”, EditBox of “Part Code and
Name” display “PC101000 FrontRedNet”, and choose this column in the
“List control”. And in below input controls, alter the code to
“PC101000001”—it has not been added, name to “Elasticity of
FrontRedNet”, type to “Performance inspection of raw material”, division
to “TUMC_ST StoreHouse”, code of drawing to “ID_PC101000001”, date
to “2020.03.01”, Mem to “Shanghai”, then click the button “Add”.

Correctly prompt
“Inspection process
data of PC101000001 is
added”, and the data
item changed in the
“List control”, and no
other error information
prompt.

PQMS2-IDF-UNI-TC031
After TC030, click the record “PC101000001” in the list, and display all data
on the below box, then click the button “Add”.

Display error prompt
“Data of PC101000001
has been already
added”.

PQMS2-IDF-UNI-TC032
Start inspection process sheet, and input “ ” in EditBox of “Product Code
and Name”, input “PC101000 FrontRedNet” in EditBox of “Part Code and
Name”, and keep others no change, then click the button “Add”.

Display error prompt
“Product code and
name has not been
input”.

PQMS2-IDF-UNI-TC033

Start inspection process sheet, and input “PC101Shanghai Brand K3
loudspeaker box” in EditBox of “Product Code and Name”, and input “ ” in
EditBox of “Part Code and Name”, and keep others no change, then click
the button “Add”.

Display error prompt
“Part code and name
has not been input”.

PQMS2-IDF-UNI-TC034

Start inspection process sheet, and input “PC101Shanghai Brand K3
loudspeaker box” in EditBox of “Product Code and Name”, and input
“PC101000FrontRedNet” in EditBox of “Part Code and Name”, and choose
this record in the “List control”, and input “ ” in EditBox “Code of
inspection process”, keep others no change, then click the button “Add”.

Display error prompt
“The code of inspection
process has not been
input”.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 142 Journal of Software Engineering and Applications

Table A7. Test cases of the state testing of “inspection process” sheet.

ID
Start
state

End
state

Input Expected output

PQMS2-IDS-UNI-TC010 S0 S1
Start the “Inspection process” sheet from
main interface.

Display the “Inspection
process” sheet.

PQMS2-IDS-UNI-TC011 S1 S7
No inputting operation, click the “Shut-off”
button of up-right corner in the sheet.

Exit.

PQMS2-IDS-UNI-TC012 S1 S2
Start the “Inspection process” sheet again,
and open the category item of four layers.

Display correctly the opened
item among four layers.

PQMS2-IDS-UNI-TC013 S2 S3
Click the item of inspection process of the
category.

Display correct data of clicked
item in the “List control”.

PQMS2-IDS-UNI-TC014 S3 S4
Click the record of inspection process in the
“List control”.

Display all data of clicked
record in below input
controls.

PQMS2-IDS-UNI-TC015 S4 S3
Input correct data in the sheet, and click the
button “Add” finally.

Save data, and display all
data in the “List control”.

PQMS2-IDS-UNI-TC016 S4 S6-1
When the input of code is empty, click the
button “Add” finally.

Prompt error information.

PQMS2-IDS-UNI-TC017 S6-1 S4
Click the button “OK” or the “Shut-off”
button of up-right corner.

Return.

PQMS2-IDS-UNI-TC018 S4 S5-1
Modify data correctly in input controls, and
click the button “Modify” finally.

Display the confirming
dialogue of modifying.

PQMS2-IDS-UNI-TC019 S5-1 S4
Click the button “Cancel” of the confirming
dialogue.

Return.

PQMS2-IDS-UNI-TC020 S4 S5-1
Click the button “Modify” of the sheet
again.

Display the confirming
dialogue of modifying.

PQMS2-IDS-UNI-TC021 S5-1 S3
Click the button “OK” of the confirming
dialogue.

Save data, and display all
data in the “List control”.

PQMS2-IDS-UNI-TC022 S4 S6-2
When the input of code is empty, click the
button “Modify” finally.

Prompt error information.

PQMS2-IDS-UNI-TC023 S6-2 S4
Click the button “OK” or the “Shut-off”
button of up-right corner in the dialogue.

Return.

PQMS2-IDS-UNI-TC024 S4 S5-2
Input the data for deleting in input
controls, and click the button “Delete”
finally.

Display the confirming
dialogue of deleting.

PQMS2-IDS-UNI-TC025 S5-2 S4
Click the button “Cancel” of the
confirming dialogue.

Return.

PQMS2-IDS-UNI-TC026 S4 S5-2 Click the button “Delete” of the sheet again.
Display the confirming
dialogue of deleting.

https://doi.org/10.4236/jsea.2023.165007

M. Q. TanLi et al.

DOI: 10.4236/jsea.2023.165007 143 Journal of Software Engineering and Applications

Continued

PQMS2-IDS-UNI-TC027 S5-2 S3
Click the button “OK” of the confirming
dialogue.

Delete data, and display
variety in the “List control”.

PQMS2-IDS-UNI-TC028 S4 S6-3
When the input of code is empty, click the
button “Delete” finally.

Prompt error information.

PQMS2-IDS-UNI-TC029 S6-3 S4
Click the button “OK” or the “Shut-off”
button of up-right corner in the dialogue.

Return.

PQMS2-IDS-UNI-TC030 S4 S5-3
Input data in input control for
“Search-name”, and click the button
“Search-name” finally.

Execute search, and display
the search result in the list.

PQMS2-IDS-UNI-TC008-AD S5-3 S4
Click the button “OK” or the “Shut-off”
button of up-right corner in the dialogue.

Return.

PQMS2-IDS-UNI-TC031 S4 S6-4
When the input of name is empty, click the
button “Search-name” again.

Prompt error information.

PQMS2-IDS-UNI-TC032 S6-4 S4
Click the button “OK” or the “Shut-off”
button of up-right corner in the dialogue.

Return.

PQMS2-IDS-UNI-TC033 S4 S4 Click the button “Reset” of the sheet.
Initialize all input controls in
the sheet.

https://doi.org/10.4236/jsea.2023.165007

	Guideline of Test Suite Construction for GUI Software Centered on Grey-Box Approach
	Abstract
	Keywords
	1. Introduction
	2. Related Literature and Work
	3. Background and Definition of Terminology
	3.1. Research Methodology
	3.2. Software Testing for GUI Software
	3.3. Construction Process of Software Test Suite
	3.4. Definition of Terminology

	4. Grey-Box Approach [2]
	5. Software Test Suite Construction of Unit Testing
	5.1. Test Suite Construction of Baseline Version
	5.1.1. Window Access Controls or Window Controls of Function Access
	5.1.2. Basic Setting Unit
	5.1.3. Initialization Unit
	5.1.4. Basic “Sheet/Form” Unit
	5.1.5. Complex “Sheet/Form” Unit

	5.2. Test Suite Construction of Incremental Unit Testing
	5.2.1. Incremental Unit Testing of Window Access Controls
	5.2.2. Incremental Unit Testing of “Sheet/Form” Unit

	6. Software Test Suite Construction of Integration Testing
	6.1. Test Suite Construction of Baseline Version
	6.1.1. Test Suite Construction for “Division and Department” Sheet
	6.1.2. Modification of Window Access Controls
	6.1.3. Addition of Window Access Controls and Disposing Functions

	7. Summary
	Conflicts of Interest
	References
	Appendix

