
Journal of Software Engineering and Applications, 2023, 16, 31-49
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2023.162003 Feb. 28, 2023 31 Journal of Software Engineering and Applications

An Approach towards Goal-Oriented
Requirements Ontology: Consistency and
Completeness Based Requirements Analysis

Mohammad Mustafa Taye1, Said Ghoul2

1Software Engineering Department, Philadelphia University, Amman, Jordan
2Research Laboratory on Bio-Inspired Software Engineering, Philadelphia University, Amman, Jordan

Abstract
The paper presents a new approach to managing software requirement elici-
tation techniques with a high level of analyses based on domain ontology
techniques, where we established a mapping between user scenario, struc-
tured requirement, and domain ontology techniques to improve many attributes
such as requirement consistency, completeness and eliminating duplicate re-
quirements to reduce risk of overrun time and budgets. One of the main tar-
gets of requirement engineering is to develop a requirement document with
high quality. So, we proposed a user interface to collect all vital information
about the project directly from the regular user and requirement engineering;
After that, the proposal will generate an ontology based on semantic relations
and rules. Requirements Engineering tries to keep requirements throughout a
project’s life cycle consistent necessities clear, and up to date. This prototype
allows mapping requirement scenarios into ontology elements for semanti-
cally interrupted. The general points of our prototype are to guarantee the
identification requirements and improved nature of the Software Require-
ments Specification (SRS) by solving incomplete and conflicting information
in the requirements specification.

Keywords
Requirements Engineering, Requirements Elicitation, Domain Ontology,
Ontology

1. Introduction

Requirements Engineering [1] is a document used as a contract between the

How to cite this paper: Taye, M.M. and
Ghoul, S. (2023) An Approach towards Goal-
Oriented Requirements Ontology: Consis-
tency and Completeness Based Requirements
Analysis. Journal of Software Engineering
and Applications, 16, 31-49.
https://doi.org/10.4236/jsea.2023.162003

Received: January 23, 2023
Accepted: February 25, 2023
Published: February 28, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2023.162003
https://www.scirp.org/
https://orcid.org/0000-0002-8878-6540
https://doi.org/10.4236/jsea.2023.162003
http://creativecommons.org/licenses/by/4.0/

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 32 Journal of Software Engineering and Applications

customer and developer to identify and specify the requirements. A good docu-
ment should have attributes such as unambiguous, completeness, consistency,
and verifiable [2]. Therefore, lacking or inaccurate requirements cause the entire
system’s development to be incomplete or erroneous at every stage. On the other
hand, it is challenging to create such a document the first time and when making
any change is very hard to handle the modification. Therefore, we proposed this
prototype.

Several demands, aspirations, and requirements are frequently at odds with
one another while developing software systems because of various stakeholder
perspectives. Elicitation errors are often essential factors in systems failures with
very high costs, either in the total loss or correcting errors [3].

The main process of Requirements Engineering is shown in the following
Figure 1; the process starts with requirement elicitations which concern how to
collect needs and goals from stakeholders. Indeed, the main idea of requirements
elicitation techniques is determining the problems, opportunities, and all poten-
tial needs of the clients; because of this, a software engineer can develop systems
that resolve those issues and cover those opportunities and/or additionally ad-
dress clients’ needs [4]. The next process is to analyze this information to make
sure about it, then specify them in many different ways to make more knowledge
for the developing team. The last process is to apply the verification and valida-
tion techniques to check for any inconsistency or completeness [5].

All projects are dependent on requirement elicitation to achieve their goals.
The process of requirement elicitation concentrates on communication among
stakeholders and requirements engineers. Moreover, it is used to understand a
problem and its application domain to improve the quality of extended require-
ments [6].

Figure 1. The main process of requirements Engineering.

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 33 Journal of Software Engineering and Applications

Most successful or failed software projects are based on Requirements Engi-
neering. Also, different requirements from versus stakeholders lead to incom-
plete and ambiguous requirements.

Modern IT projects are complex because of the high number and complexity
of requirements, as well as because of the different backgrounds and terminolo-
gies of stakeholders. Consequently, suitable requirements management tools play a
major role in the discourse of these challenges [7].

The software requirements specification is the yield from the requirements
elicitation activity, which is written in a client requirements document.

The main activities of requirements engineers using requirement elicitation are:
• Knowledge and understanding of the domain and area where the system is

applied.
• Understanding the specific customer problem.
• Knowledge environment and Interaction of system with others.
• Detailed examination of client needs.
• Define the constraints of the system that are applied.

There are essentially two types of Elicitation Techniques [8].
Direct approach: this strategy is used to get requirements from clients who

can interact directly with the domain expert. It will be used to improve the un-
derstanding of the problems through Interviews, case studies, and Prototypes
[9]. Analyses are examples.

Indirect approach: this strategy helps to get information that cannot be easily
accessed or obtained from the direct methods. Questioners and Documents ana-
lyses are examples of this approach [8].

The main point is not just to collect requirements; it is normally understood
that requirements. So, requirement elicitation is considered a complex process
involving several activities with various available techniques, approaches, and
tools for performing them. In fact, the best idea for using requirements elicita-
tion is to apply a variety of techniques during different stages in the software
development life cycle.

In general, incomplete and inconsistent requirements could appear from the
gaining and specification of goals and requirements from different stakeholders
and sources. Therefore, repairing inconsistent and incomplete requirements is
vital to successfully model requirements specifications. In this research, we used
first order logic to deal with problems [10]. Moreover, the backbone of this work
is the Ontologies that provide conceptual models and the expressivity to capture
requirements sufficiently; moreover, checking and reasoning rules are combined
to measure the validity and coverage of the evolving requirements model [11].

Based on the previous point, we considered the main challenge for require-
ments engineering is dealing with inconsistencies and incompleteness in the re-
quirements specification phase.

Obtaining the needs from the relevant parties and additional sources, know-
ing the application domain, it is important to thoroughly explore and examine
the situation or “real world” in which the application will be used before begin-

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 34 Journal of Software Engineering and Applications

ning the cycle of requirements elicitation. It is crucial to define the system’s
scope and thoroughly investigate the demands and preferences of all stakehold-
ers during this activity [11].

Finding the requirements’ sources makes it possible for requirements to be
dispersed across several sources and to exist in various combinations [12]. Over-
all, product development opens up several possible hotspots for requirements
that may be identified.

To eloquently clarify information regarding the challenges, problems, and
customer demands, clients and topic experts are used. The depicted existing sys-
tems and processes, particularly when a current or legacy system has to be re-
placed, are another source for eliciting requirements.

Manuals, organizational structures, and reports regarding the existing system
and business processes, as well as the requirements for the new framework and
their justification and relevance, may all provide useful information about the
association and environment [13].

Analyzing the stakeholders: Stakeholders are everyone who is interested in the
system or who will be impacted by its development and deployment. They must
thus be questioned as part of the requirements elicitation process. Stakeholders
often comprise groups and individuals who may be internal and external to the
company [10]. In general, the project sponsor (customer) is the most apparent
stakeholder in the system. In some cases, the end users could be the most im-
portant. On the other hand, some systems could consider the system operations,
customers, and partners, as stakeholders if they are affected [6].

Selecting the techniques, approaches, and tools to use—in general, selecting
the elicitation technique depends on what the analyst knows, the analyst’s favo-
rite, a specific methodology that is being followed by the system development,
and the decision of strategy administered exclusively by the instinct of the ex-
aminer to be viable in the current context.

In reality, conceptual domain modeling using ontologies will lessen the con-
sequences of confusing and insufficient requirements procedures. “An explicit
statement of a shared idea” describes the ontologies [14] [15]. Ontologies in-
clude machine-understandable notions and restrictions explicitly well-defined,
typically understood, and well-covered. It might be used to represent, categories,
and debate the required papers [15]. Ontology is a formal definition of items and
the attributes, connections, limitations, and guidelines that control those con-
nections.

In fact, any problem or inconsistency in requirements will lead to faulty soft-
ware designs and implementations. Thus, one significant problem requirements
engineers have to cope with is to improve Requirements Engineering, which will
contribute to building better-quality software; this could lead moreover to re-
ducing the risk of overrun time budgets and eliminating the risk of project fail-
ures [16].

We proposed a requirements analysis method by using domain ontology. To

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 35 Journal of Software Engineering and Applications

specify the needs, goals, and tasks, this prototype starts with an elicitation page
used by different stockholders and developing teams to collect all goals and
needs about specific applications. Then the system will create ontology based on
their input data, which will be examined manually by engineering and the rea-
soning system to check any inconsistency between functions.

In our proposal, we collected all information and knowledge from different
users, then stored it in spirit ontology, then applied some matching and merging
techniques on all these ontologies to create one global ontology about an appli-
cation from resulted ontology we could Crete some UML diagram (use case) and
requirements [1].

Accordingly, the Requirements Ontology empowers the documentation of or-
ganized, reusable, unambiguous, traceable, complete, and reliable requirements
as requested by the IEEE specification for Software Requirement Specifications
(SRS) [17].

The remainder of this paper is organized as follows: In Section 2, an overview
of related work is given as literature review. The approach of our proposal is ex-
plained in Section 3. Section 4 gives analytical information. In Section 5, the
evaluation analysis is explained, and we give the case study. In the last sections,
we gave an overview of the work that will be done in the future and provided a
conclusion.

2. Literature Review

Recently, many researchers have introduced different approaches for dealings
and provided a new requirement elicitation based on ontologies to understand
desired functions and the method for expressing stakeholders’ and users’ prob-
lems. The primary objective is to find a way toward looking for, learning, unco-
vering, procuring, and explaining client necessities to any computer-based sys-
tem by communicating these needs to the system developers.

Surveys [18] and [19] have shown many studies demonstrating the effective-
ness of using the ontology domain in supporting the requirements engineering
process.

[20] has proposed a process for developing ontologies as a subprocess of the
requirements engineering process.

While [21] used the domain as an infrastructure for specifying software re-
quirements.

[22] proposed an approach to automating the validation process of knowledge
about the requirements.

In [23], the ontological methodology is applied to improve the necessities of
the designing cycle in the Agile process. The ontology is intended to work with
user story templates. Ontology empowers the recognition of interchangeable
ideas, hyperonymic and hyponymic relations between the concepts after it em-
powers the requirements engineering process to describe user stories that must
be achieved for user roles of applications that include other roles.

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 36 Journal of Software Engineering and Applications

In [24], two kinds of ontologies are recognized, which can be utilized to de-
scribe the product area being created: the application domain ontology and the
application domain feature model ontology.

In [25], the requirements are considered a specific subset of a lot of informa-
tion about the area. At the same time, the domain ontology is utilized as a
“background source” while extricating requirements for a product item from
characteristic language texts.

In [26], a way to deal with the automatic construction of an ontology from
many stockholder stories is proposed. For text handling in the regular English
language, the spaCy library is utilized, which considers parsing sentences de-
pendent on a reliance tree, looking for named gatherings.

In [27], a way to deal with building up a recommender framework that bol-
sters the development of the Agile requirements is introduced. It is proposed to
utilize the accompanying four ontologies: “Environmental Context Ontology”,
“Problem Domain Ontology”, “Requirements Ontology,” and “Agile Require-
ments Ontology”.

Issues of requirements traceability are tended to in the [28] given to the im-
provement of casing cosmology which empowers to make a predictable model of
necessities types for a particular software development project.

The significance of the created way to deal with extraction, computerization,
and analysis of the requirements in natural language is dictated by the incons-
tancy of the necessities and the requirement for a speedy correlation of the re-
quirements texts.

Thus, to summarize the above information about using ontologies in the field
of requirements engineering:

1) If you are going to develop ontologies to represent knowledge about the
requirements engineering process, you should consider requirements types and
attributes of their quality.

2) If you are going to develop ontologies to represent knowledge about the
application domain, you should take into account describing the components
domain of the system, concepts, relationships, and actions.

3) if you are going to develop requirements ontologies, you should consider
identifying conflicts and duplicates between the requirements.

Current requirements management tools ordinarily work with a typical re-
quirements database, which all stakeholders can access to retrieve information
on requirements content. Moreover, these kinds of tools could help all stake-
holders to keep the overview of large amounts of requirements by supporting the
following:

a) Requirements categorize the Requirements and cluster them into us-
er-defined subsets.

b) Analysis and solve the conflict between Requirements (consistency check-
ing).

c) Trace the Requirements and find the dependencies between them.

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 37 Journal of Software Engineering and Applications

Requirements management suffers from many limitations, such as: Incom-
pleteness, consistency, and conflict identification and tracking, especially with a
huge number of requirements; therefore, the use of semantic technologies looks
hopeful for addressing these limitations [29].

Ontologies deliver the means for describing the concepts of a domain and the
relationships between these concepts in a way that could allow for automated
reasoning to support categorization, conflict, and tracing of requirements.

We propose a prototype to deal with requirements engineering managing and
elicitation designing dependent on a combination of the OWL ontology.

3. The Proposal Approach (Method)

In this paper, we presented the prototype of a semantic guidance system that
supports normal users and requirements engineers to easily capture require-
ments. We built our prototype based on the important part information needed
for developing modern IT projects. We collect all helpful information to write,
analyze and improve requirements using domain ontology.

Figure 2. An interface of our prototype.

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 38 Journal of Software Engineering and Applications

We built our prototype based on the important part information needed for
developing modern IT projects, that allows users to specify the needs, goals, and
tasks of an application. The system will make an ontology based on the data they
give it. This ontology will be reviewed by engineering and the reasoning system
to make sure there are no incompatibilities between features. In our approach,
we compiled user data and insights into a single ontology, where they could be
matched and fused using various methods.

Our prototype started with the above Figure 2 user interface to collect the
main information about a specific project from building a requirement ontology.

The following Table 1 shows the main concepts of our proposal.
Natural language descriptions of topics of interest are captured by ontologies.

The description section of an ontology includes the concepts that make up the
ontology, together with their respective definitions and the connections between
them. A “conceptualization” describes this kind of mental representation. In this
context, ontology stands in for domain knowledge (domain ontology), and
needs may be thought of as a subset of it.

Reasoning component: a logical theory that limits the desired model and in-
cludes: 1) integrity rules of the domain model expressing the domain knowledge;
2) derivation rules and constraint rules of the problem model.
While taxonomies have been widely used for modelling, ontologies provide in-
ferential capabilities via reasoning.

Table 1. Main concepts of our proposal.

Concept Definition

Domain Concept
Domain Concept is a kind of thesaurus that is used as pointers to
concepts; we could unify different concepts or terms for the same

terms by using synonym relationships among them.

Stakeholder
Groups of stakeholders, they specified what is expected from

a system

Goal
Goals are indicative statements to identify and correlate

requirements to be achieved by the system under development.

Requirement
(Functional Requirement): is an outcome of behavior that shall be
provided by a function of a system, A non-functional requirement

(also a quality requirement)

Function
Requirements

Define what a product must do.
Requirements artifacts comprise all concepts related to

requirements knowledge

Non-Functional
Requirements

Describe the quality attributes of a system.

Actor The real users who interact with the system

Activity High Level Function -> Sub-function -> Process -> Activity

Constraint Constraints of the functionality.

Scenario
Scenario A textual description of a sequence of user actions that

leads to the desired result.

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 39 Journal of Software Engineering and Applications

4. Analysis

All of the requirement artifacts, which comprise all concepts related to require-
ments knowledge (stakeholder, concepts, relations, attributes, data, etc.), must
be captured appropriately. We will specify requirements artifacts by using the
ontology elements (e.g., classes, properties, instances of classes, and relations
between instances). To specify the requirements, we use an Ontology as a me-
tamodel, as Requirements Ontology.

In order to use an ontology, we have borrowed the idea from [30] as the fol-
lowing Figure 3. The potential uses of ontologies in RE embody the illustration
of:

Requirements Ontology: The Requirements model imposes and sanctionative
a selected paradigmatic manner of structuring needs.

Requirements Specification Document Ontology: Acquisition structures for
domain information; In RE, completely different approaches and area units are
used as intermediate steps for getting needs. The employment of ontologies for
describing the structure of needs specification documents cut back the lean
needs’ specifications.

Figure 3. Ontology-based framework.

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 40 Journal of Software Engineering and Applications

Application Domain Ontology: The information and fact of the applying do-
main Application Domain metaphysics. This metaphysics represents the appli-
cation domain information, object properties and classes characteristic, and
business information needed for building code applications in a very specific
domain concept [31].

Our approach is semantic guidance which uses <concepts, relations, axioms>
of ontologies elements to build on to define requirements [32].

For the design phase of software development, as well as for evaluating and
reusing elicited needs, having a well-characterized requirements specification is
crucial. Both the format of the document and its contents make up a specifica-
tion. The way a document is laid out greatly impacts how its contents are un-
derstood. To be considered a successful software product, reuse must be a major
component. It depends on the way in which needs are articulated, recorded, and
organized.

However, a number of obstacles stand in the way of the reuse. Requirements
specification papers, the recommendations conclude, may benefit especially
from ontologies, especially when the content of such documents expands in a
disorganized fashion. One solution to this problem is to structure the knowledge
by adding semantics to the documents via metadata enrichment and the discov-
ery of related, valuable material; this way, the semantics are written in a ma-
chine-understandable manner as shown in Figure 4 and Figure 5.

In order to define requirements, we used the boilerplate, which states a textual
requirement template. In fact, the term boilerplate was first used by Hull, Jack-
son, and Dick [33]. A boilerplate involves a classification of attributes and fixed
syntax elements.

Indeed, many formulas are proposed for dealing with boilerplate, but we have
chosen the following two structures, which we think are very suitable for most
projects. Also, keeping the number of required boilerplates is relatively low and
has high flexibility, as shown in Table 2. Moreover, we could use attribute values
to state the entities in the ontology domain.

For example
1) The < system > shall be able to < action > at a minimum rate of < number>

time per <unit>
2) If < condition> the < system > shall < action> with <number><unit>

Table 2. Boilerplate attributes.

attribute Description

Action The behavior of a system to be fulfilled

Number A quantity ex. 3

Unit Unit of measurement, ex. second

Condition An event or condition that happened during system operation

System The system or any part of it

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 41 Journal of Software Engineering and Applications

Requirement artifacts contain all concepts connected to requirements know-
ledge (e.g., goal, obstacle, stakeholder, use-case, test-case). The object properties
reproduce the relations between instances of the ontology classes.

Based on the ontology, the mapping rule is followed to produce a domain
model.
• The classes in the ontology are transferred to the classes in the domain

model.
• Entities are associated with instances.
• Properties in the ontology are linked to their corresponding counterparts in

the domain model.
• Inheritance is mapped to the corresponding synonym for a connection be-

tween classes.

Figure 4. Requirements Taxonomy (artifacts of the requirements metamodel).

Figure 5. Taxonomy and axioms of the ontology elements in the Protégé Editor.

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 42 Journal of Software Engineering and Applications

Domain Concept is a kind of thesaurus that is used as pointers to concepts; we
could unify different concepts or terms for the same terms by using synonym
relationships among them, as shown in Table 3.

In order to support the process of Requirements Engineering semantically, we
established requirements engineering ontology Figure 6 below.

Table 3. The Ontology and their domains and ranges.

Domain Object property Range

ActivityOrTask isCondition Condition

ActivityOrTask isPostCondition Condition

ActivityOrTask isPreCondition Condition

Stakeholder isDefinedby Goal

Condition isDerivedFrom Event

informationEntity isInputFrom Event

Actor isProvidedBy informationEntity

FunctionalRequirement isRequieredBy ActivityOrTask

ActivityOrTask isResourceFor Application

Actor IsResponsibleFor ActivityOrTask

Figure 6. Visualization of Ontology Core.

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 43 Journal of Software Engineering and Applications

Sorts of requirements, their descriptions, and the test phrases that correspond
to them. Although most of the needs in the analysis fell into a single category, it
is important to note that a requirement might fall into many categories and be
linked to multiple test expressions.

Class-related (Type of requirement)
• Equivalence: Similarity in function between two classes. X Equivalent To Y
• Subsumption: A (super)class’s definition is defined by the relationship it has

with its subclasses. The two categories are ineligible for inclusion in this sub-
sumption. X SubClassOf Y.

Property-related
• Property between two concepts: Clarification of a relational quality between

ideas P Domain A, P Range B
• Symmetry: a property must have an equal and opposite counterpart, or be

symmetric.
• Intersection: Cardinality-based definition of a set of concepts that overlap A

SubClassOf P min/max/exactly
Individual related

• Definition of an individual: Instance definition for a certain type s type S

5. Discussion (Evaluation and Case Study)

In order to evaluate our approach, we applied a smart house system which is
controlling the house which gives the ability to control the house without mak-
ing a huge amount of effort.

5.1. System Requirements

- Hardware Requirement:
• lights, motors, smoke sensors, motion sensors, cameras, power resources,

wired cables, Bluetooth, logic board, capacitors, and microcontroller.
- Functional Requirement:

• The System allows the owner to control the air system, Doors, and lights sys-
tem as shown in Figure 7.

• The System will notify the owner when the bill rings.
• The system will give the user some choice if he would like to receive a guest

or not.
• The system will allow users to set a specific time to turn on any device ac-

cording to time.
• The System will send Turn Alerts When Doing Something Strange Like;

Fires/Theft problems
- Non-Functional Requirements:
The System should be:

• High Performance when Home Alert (Must Be detected within 1 second).
• The system must work fine with multiple users at home at any time (availa-

bility).

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 44 Journal of Software Engineering and Applications

Figure 7. Smart Home use case.

5.2. Requirements Specification Document Ontology

Acquisition structures for domain information, the employment of ontologies
for describing the structure of needs specification documents cut back the lean
needs’ specifications see Figure 8.

5.3. Matching and Merging

In order to get the Requirements Ontology, we need to connect the concepts of
different documents to gather. So, there are two options: matching and merging
[14].

Ontology Matching is the process of finding semantic equivalence between
concepts from different ontologies [34]. The merging step combines two con-
cepts of semantic equivalence from different ontologies and groups them into
one ontology [35].

5.4. Approach Steps

Step 1: Goal Identification
The user can control the home remotely
Task 1.1: Identify Goal Task
The user can take control of rooms like; lights turn on or off, opening doors

and cameras, and some of the sensors responsible for motion, smoke, and fires
to make a secure home.

Task 2.1: Assign Author to Goal
The application gives users three basic functions: “Doors, Lights, and Cam-

era”. Also, the home has a motion sensor to detect an illegal access to a home by

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 45 Journal of Software Engineering and Applications

Figure 8. Domain ontology and attributes.

covering a wide area depending on the home area. The same with the fire sensor;
it works if it’s got smoking in a home and then releases alerts.

Task 1.3: Refine Goal
Check the inputs manually and see if they are right.
Step 2: Requirements Identification
Task 1.2: Identify functional requirements with non -functional requirements
• Open/Close Doors.
• Turn On/Off Lights.
• Turn Alerts When Doing Something Strange Like Fires/Theft problems.
Step 3: Extra information Completion
The system should be smart enough to react to all user input and requests. It

should generate other types of security sides like fries and home theft, which no-
tify when doors open and show who is in the door by a simple interface applica-
tion.

Step 4: Checking
Check both answers, then apply the merging approach in order to get one on-

tology and SRS (Export the SRS).
This evaluation has shown that the method can deal with a set of requirements

from a real-world problem and classify where these requirements are inconsis-
tent or incomplete.

Far more difficult than locating missing data is determining when and where
there is inconsistency and offering advice for how to fix it. We need to take into

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 46 Journal of Software Engineering and Applications

account several factors for a consistency rule, in contrast to the completeness va-
lidation.

In this light, it is crucial that we check for continuity in the setup of the re-
quirements. The requirements engineer selects a subset of needs, and then we
construct the requirements configuration by including all of those needs.

As part of this prototype, we include the right features to prompt the re-
quirements engineer to choose the most important criteria and save them as a
set of unique objects.

There are three distinct dialects of OWL, each tailored to a different group of
developers and end users: OWL Lite, OWL DL, and OWL Full. [36]. However,
the Requirements Ontology has been labelled as OWL DL, meaning it guaran-
tees the computational completeness and decidability (all calculations will finish
in a limited time) of reasoning systems. Many different reasoners are now avail-
able, each with its own set of advantages and disadvantages in areas like reason-
ing speed, rule support, expressivity, and more [37].

6. Conclusions and Future Works

Today, it is widely accepted that projects will fail if the software requirements
specification is absent, contradictory, or conflicting. Therefore, requirements
engineering works to maintain consistent, up-to-date requirements across a
project’s life cycle. To achieve this, we provide a domain ontology-based method
for analyzing software requirements.

The Requirements Ontology and Requirements Metamodel, which have been
established, serve as the foundation for validation and measurement assistance.
It enables requirements analysts to look through a requirements specification
according to the application domain’s semantics.

This needs ontology considers the conceptualization of requirements know-
ledge, made possible by ontologies and is suitable for goal-oriented requirements
engineering. Requirements Ontology is used as a prototype to demonstrate our
technique. By hiding the ontology from the requirements engineer and allowing
the validation of the information contained therein, ontology considers the spe-
cifics of the requirements definition.

The Requirements Ontology has been exposed to be effective at capturing the
knowledge of a software requirements specification’s requirements, and it is prac-
tical to use ontologies by requirements engineering tools to highlight inconsis-
tencies, incompleteness, and quality flaws during phases of requirement model-
ing. We utilized a smart home system to evaluate the idea. The focus of future
research in this field is on the requirements traceability’s direction. Additionally,
as future studies should concentrate on the effectiveness and quality of ontology
construction, it is necessary to investigate the methodical steps involved.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

https://doi.org/10.4236/jsea.2023.162003

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 47 Journal of Software Engineering and Applications

References
[1] Joseph, E. (2017) Survey on Requirement Elicitation Techniques: Its Effect on Soft-

ware Engineering. International Journal of Innovative Research in Computer and
Communication Engineering, 5, 9201-9215.

[2] Wiegers, K.E. (2013) Software Requirements. 3rd Edition, Microsoft Press, Red-
mond.

[3] Van Lamsweerde, A., Darimont, R. and Letier, E. (1998) Managing Conflicts in
Goal-Driven Requirements Engineering. IEEE Transactions on Software Engineer-
ing, 24, 908-926. https://doi.org/10.1109/32.730542

[4] Amyot, D. (2003) Introduction to the User Requirements Notation: Learning by
Example. Computer Networks, 42, 285-301.
https://www.sciencedirect.com/science/article/pii/S1389128603002445

[5] Leffingwell, D. and Widrig, D. (2003) Managing Software Requirements—A User
Case Approach. 2nd Edition, Addison-Wesley, Boston.

[6] Loucopoulos, P. and Karakostas, V. (1995) System Requirements Engineering.
McGraw Hill, London.

[7] Gavrilova, T. and Andreeva, T. (2012) Knowledge Elicitation Techniques in a Know-
ledge Management Context. Journal of Knowledge Management, 16, 523-537.
https://doi.org/10.1108/13673271211246112

[8] Bourque, P. and Fairley, R.E. (2014) Guide to the Software Engineering Body of
Knowledge (SWEBOK (R)). Version 3.0. IEEE Computer Society Press, Washington
DC.

[9] Davis, A.M. (1992) Operational Prototyping: A New Development Approach. IEEE
Software, 9, 70-78. https://doi.org/10.1109/52.156899

[10] Sajjad, U. and Hanif, M. (2010) Issues and Challenges of Requirement Elicitation in
Large Web Projects. School of Computing, Blekinge Institute of Technology, Ron-
neby.

[11] Mohd Kasirun, Z. (2005) A Survey on the Requirements Elicitation Practices among
Courseware Developers. Malaysian Journal of Computer Science, 18, 70-77.

[12] Zhu, X. and Jin, Z. (2005) Inconsistency Measurement of Software Requirements
Specifications: An Ontology-Based Approach. 10th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS’05), Shanghai 16-20 June
2005, 402-410. https://doi.org/10.1109/ICECCS.2005.55

[13] Loucopoulos, P. and Katsouli, E. (1992) Modelling Business Rules in an Office En-
vironment. SIGOIS Bulletin, 13, 28-37. https://doi.org/10.1145/134376.134384

[14] Taye, M.M. (2009) Ontology Alignment Mechanisms for Improving Web-Based
Searching. Ph.D. Thesis, De Montfort University, United Kingdom, England.

[15] Taye, M.M. (2010) State-of-the-Art: Ontology Matching Techniques and Ontology
Mapping Systems. The International Journal of ACM Jordan, 1, 68.

[16] Aßmann, U., Zschaler, S. and Wagner, G. (2006) Ontologies, Metamodels, and the
Model-Driven Paradigm. In: Calero, C., Ruiz, F. and Piattini, M., Eds., Ontologies
for Software Engineering and Software Technology, Springer, Berlin, 249-273.
https://doi.org/10.1007/3-540-34518-3_9

[17] [IEEE-830] Institute of Electrical and Electronics Engineers (1998) IEEE Recom-
mended Practice for Software Requirements Specifications. IEEE Std 830-1998, In-
stitute of Electrical and Electronics Engineers, New York.

[18] Alsanad, A.A., Chikh, A. and Mirza, A. (2019) A Domain Ontology for Software

https://doi.org/10.4236/jsea.2023.162003
https://doi.org/10.1109/32.730542
https://www.sciencedirect.com/science/article/pii/S1389128603002445
https://doi.org/10.1108/13673271211246112
https://doi.org/10.1109/52.156899
https://doi.org/10.1109/ICECCS.2005.55
https://doi.org/10.1145/134376.134384
https://doi.org/10.1007/3-540-34518-3_9

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 48 Journal of Software Engineering and Applications

Requirements Change Management in Global Software Development Environment.
IEEE Access, 7, 49352-49361. https://doi.org/10.1109/ACCESS.2019.2909839

[19] Dermeval, D., Vilela, J., Bittencourt, I.I., et al. (2016) Applications of Ontologies in
Requirements Engineering: A Systematic Review of the Literature. Requirements
Engineering, 21, 405-437. https://doi.org/10.1007/s00766-015-0222-6

[20] Breitman, K.K. and Prado Leite, J.C.S. (2003) Ontology as a Requirements Engi-
neering Product. International Requirements Engineering Conference, Monterey
Bay, CA, 12 September 2003, 309-319.

[21] Zowghi, D. and Coulin, C. (2005) Requirements Elicitation: A Survey of Technique,
Approaches and Tools. In: Aurum, A. and Wohlin, C., Eds., Engineering and Man-
aging Software Requirements, Springer, Berlin, 19-46.

[22] Siegemund, K. (2014) Contributions to Ontology-Driven Requirements Engineer-
ing. Dissertation, Technischen Universitat Dresden, Dresden, 236 p.

[23] Thamrongchote, C. and Vatanawood, W. (2016) Business Process Ontology for De-
fining User Story. 2016 IEEE/ACIS 15th International Conference on Computer
and Information Science (ICIS), Okayama, 26-29 June 2016, 1-4.
https://doi.org/10.1109/ICIS.2016.7550829

[24] Bhatia, M.P.S., Kumar, A. and Beniwal, R. (2015) Ontologies for Software Engi-
neering: Past, Present and Future. Indian Journal of Science and Technology, 9,
1-16. https://doi.org/10.17485/ijst/2016/v9i9/71384

[25] Murugesh, S. and Jaya, A. (2015) Construction of Ontology for Software Require-
ments Elicitation. Indian Journal of Science and Technology, 8, 1-5.
https://doi.org/10.17485/ijst/2015/v8i29/86271

[26] Robeer, M., Lucassen, G., et al. (2016) Automated Extraction of Conceptual Models
from User Stories via NLP. 24th International Requirements Engineering (RE)
Conference, Beijing, 12-16 September 2016, 196-205.
https://doi.org/10.1109/RE.2016.40

[27] Sitthithanasakul, S. and Choosri, N. (2016) Using Ontology to Enhance Require-
ment Engineering in Agile Software Process. 2016 10th International Conference on
Software, Knowledge, Information Management & Applications (SKIMA), Cheng-
du, 15-17 December 2016, 181-186. https://doi.org/10.1109/SKIMA.2016.7916218

[28] Avdeenko, T.V. and Pustovalova, N.V. (2015) The Ontology-Based Approach to
Support the Completeness and Consistency of the Requirements Specification. In-
ternational Siberian Conference on Control and Communications (SIBCON2015),
Vol. 9, 1-4. https://doi.org/10.1109/SIBCON.2015.7147184

[29] Verhodubs, O. and Grundspenkis, J. (2013) Ontology Merging in the Context of
Semantic Web Expert System. 4th Conference, KESW 2013, St. Petersburg, 7-9 Oc-
tober 2013, 191-201. https://doi.org/10.1007/978-3-642-41360-5_15

[30] Castañeda, V., Ballejos, L., Caliusco, M.L. and Galli, M.R. (2010) The Use of Ontol-
ogies in Requirements Engineering. Global Journal of Researches in Engineering,
10, 2-8.

[31] Siegemund, K., Thomas, E.J., Zhao, Y., Pan, J. and Assmann, U. (2011) Towards
Ontology-Driven Requirements Engineering. 10th International Semantic Web
Conference (ISWC), Bonn, Bonn, 1-6.

[32] Awal, A., et al. (2018) Ontology Development for the Domain of Software Require-
ment Elicitation Technique. International Journal of Engineering Research & Tech-
nology (IJERT), 7, 334-338. https://doi.org/10.17577/IJERTV7IS040237

[33] Hull, E., Jackson, K. and Dick, J. (2005) Requirements Engineering. Springer, Ber-

https://doi.org/10.4236/jsea.2023.162003
https://doi.org/10.1109/ACCESS.2019.2909839
https://doi.org/10.1007/s00766-015-0222-6
https://doi.org/10.1109/ICIS.2016.7550829
https://doi.org/10.17485/ijst/2016/v9i9/71384
https://doi.org/10.17485/ijst/2015/v8i29/86271
https://doi.org/10.1109/RE.2016.40
https://doi.org/10.1109/SKIMA.2016.7916218
https://doi.org/10.1109/SIBCON.2015.7147184
https://doi.org/10.1007/978-3-642-41360-5_15
https://doi.org/10.17577/IJERTV7IS040237

M. M. Taye, S. Ghoul

DOI: 10.4236/jsea.2023.162003 49 Journal of Software Engineering and Applications

lin.

[34] Wikipedia. Ontology Merging. http://en.wikipedia.org/wiki/Ontology_merging

[35] Chen, X., Yin, B. and Jin, Z. (2011) Ontology-Guided Requirements Modeling Based
on Problem Frames Approach. Journal of Software, 22, 177-194.
https://doi.org/10.3724/SP.J.1001.2011.03755

[36] Hitzler, P., Krötzsch, M., Parsia, B., et al. (2012) OWL 2 Web Ontology Language
Primer. Second Edition.

[37] Gruber, T.R. (1993) A Translation Approach to Portable Ontologies. Knowledge
Acquisition, 5, 199-220. https://doi.org/10.1006/knac.1993.1008

https://doi.org/10.4236/jsea.2023.162003
http://en.wikipedia.org/wiki/Ontology_merging
https://doi.org/10.3724/SP.J.1001.2011.03755
https://doi.org/10.1006/knac.1993.1008

	An Approach towards Goal-Oriented Requirements Ontology: Consistency and Completeness Based Requirements Analysis
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. The Proposal Approach (Method)
	4. Analysis
	5. Discussion (Evaluation and Case Study)
	5.1. System Requirements
	5.2. Requirements Specification Document Ontology
	5.3. Matching and Merging
	5.4. Approach Steps

	6. Conclusions and Future Works
	Conflicts of Interest
	References

