
Journal of Software Engineering and Applications, 2022, 15, 436-468
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2022.1512025 Dec. 30, 2022 436 Journal of Software Engineering and Applications

Composition of UML Class Diagrams Using
Category Theory and External Constraints

Alexey Tazin, Mieczyslaw M. Kokar

Department of Electrical and Computer Engineering, Northeastern University, Boston, USA

Abstract
In large software development projects, there is always a need for refactoring
and optimization of the design. Usually software designs are represented us-
ing UML diagrams (e.g., class diagrams). A software engineering team may
create multiple versions of class diagrams satisfying some external con-
straints. In some cases, subdiagrams of the developed diagrams can be se-
lected and combined into one diagram. It is difficult to perform this task
manually since the manual process is very time consuming, is prone to hu-
man errors, and is not manageable for large projects. In this paper, we present
algorithmic support for automating the generation of composing diagrams,
where the composed diagram satisfies a given collection of external con-
straints and is optimal with respect to a given objective function. The compo-
sition of diagrams is based on the colimit operation from category theory.
The developed approach was verified experimentally by generating random
external constraints (expressed in SPARQL and OWL), generating random
class diagrams using these external constraints, generating composed dia-
grams that satisfy these external constraints and computing class diagram
metrics for each composed diagram.

Keywords
UML, OWL, Class Diagram Composition, Reasoning, Software Requirements

1. Introduction

Refactoring plays an important role in large scale software development. Refac-
toring makes the design more manageable, reusable, and easy to understand by
different software engineers. A software engineering team may create a class di-
agram based on given external constraints and then, over a period of time, create
multiple refactored versions. However, the latest refactored diagram may not be

How to cite this paper: Tazin, A. and
Kokar, M.M. (2022) Composition of UML
Class Diagrams Using Category Theory and
External Constraints. Journal of Software
Engineering and Applications, 15, 436-468.
https://doi.org/10.4236/jsea.2022.1512025

Received: November 8, 2022
Accepted: December 27, 2022
Published: December 30, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2022.1512025
https://www.scirp.org/
https://doi.org/10.4236/jsea.2022.1512025
http://creativecommons.org/licenses/by/4.0/

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 437 Journal of Software Engineering and Applications

optimal. In such a case, the original and all refactored versions must be recon-
ciled. This can be achieved through creation of an optimal composed diagram
using subdiagrams of given diagrams.

Diagrams may have variants in order to accommodate different customer
needs. One example of this situation is Distributed Feature Composition (DFC)
[1]. The development of such variants may involve multiple teams and spread
across time. For maintenance purposes, it is desirable to compose such variants
into a single design.

In another scenario, different teams may create diagrams modeling different
parts of a system. Such diagrams may partially overlap. For integration purposes,
the diagrams would have to be composed into one final diagram.

It is difficult for software engineers to achieve such reconciliation and compo-
sition of diagrams manually since the manual process is very time consuming,
error prone, and not scalable for large software projects. An automated tool that
can achieve this goal is desired but non-existent.

In this paper, we describe algorithms for automating the generation of a
composed diagram from subdiagrams of given diagrams so that the composed
diagram satisfies a given collection of external constraints and is optimal with
respect to a given objective function.

It is anticipated that the process of reconciliation would be iterative, i.e., the
results returned by the tool would be shown to the software engineering teams
who might modify either their original diagrams or the one that is proposed by
the tool and the tool would be invoked again.

In this paper, we focus on the composition of two different class diagrams
based on given external constraints. The process of composition 1) selects all
possible pairs of subdiagrams with given properties from two given diagrams; 2)
for each pair, it computes the composition of the included subdiagrams; 3) for
each composition, it computes the quality metric; 4) identifies compositions that
satisfy given external constraints; and 5) selects the best composition based on
the quality metrics and the objective function. The composition of subdiagrams
is based on the concept of colimit from category theory.

The following correctness and quality requirements for the diagram composi-
tion method are imposed: 1) The structure and the typing of the model elements
of the source (sub) diagrams with respect to the UML meta model are preserved
in the composition. This is achieved by using the “correct by construction” ap-
proach (c.f. [2]), in which the ATGI-graphs are used to represent diagrams. The
correctness of this approach was shown by Ehrig [3]. 2) Composition must sa-
tisfy external constraints of each of the source diagrams. This is achieved by
mapping UML class diagrams to the formal language OWL (Web Ontology
Language) [4] and running OWL inference using an OWL reasoner. 3) The se-
lection of the subdiagrams and the composed class diagram must be optimal
with respect to the objective function used. This is achieved by performing and
exhaustive search of the subdiagrams. 4) The method of the composition should
support a wide variety of class diagrams in order to be applicable in different

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 438 Journal of Software Engineering and Applications

domains. 5) Absence of redundant elements in the composed diagram [5].
The initial work on the approach described in this paper was published in [6].

The approach presented here was verified by generating random external con-
straints using templates, generating random UML class diagrams satisfying these
external constraints, applying the composition method proposed in this paper,
and assessing the quality of the solutions and performance using quantitative
metrics. Moreover, we evaluated the coverage of the space of possible diagrams
from which the diagrams were generated. The space was partitioned into equi-
valence classes, and then at least some members of each partition were tested.

Our solution to this problem is described in sections 2-4. Section 2 provides a
formalization of the diagram selection optimization problem. Then section 3
shows simple examples of pairs of diagrams and composed diagrams. The algo-
rithms for the whole solution are described in section 4. Section 5 describes the
evaluation of the developed approach. Finally, section 6 presents our conclusions.

2. Optimal Diagram Construction Problem

Our problem is to develop a composed diagram using subdiagrams of two given
diagrams, where the composed diagram satisfies a set of constraints and also is
optimal with respect to a given objective function. In this section we provide a
formalization of this optimization problem.

To formalize the optimization problem, we view UML diagrams as graphs.
Assume T is a mapping from diagrams to graphs: ()G T D= . Let 2D be all
subdiagrams of diagram D. Composition of graphs can be defined as “shared
union” (more precisely—colimit) of graphs. We use symbol  for this opera-
tion (it is often used to represent an aggregation operation). Composition of di-
agrams 1D and 2D can be defined as composition of their graphs:
() () ()1 2T D T D T D=  . The formulation of the problem assumes that the

mapping function T from diagrams to graphs is known. For composition of dia-
grams we reuse the same symbol as for composition of graphs. We are assuming
that an objective function : 2Df → is known. This function assigns a real
number to each subdiagram that represents the “quality” of a diagram.

To complete the notations we need to introduce the constraints that the dia-
grams must satisfy. We are assuming that a set of constraints is given as a set of
expressions in a formal language. We denote such a set by { }1, , mC C C=  . We
also need a function that determines which subset of the constraints this subdia-
gram satisfies, i.e., : 2 2D Cg Boolean× → .

Problem. Given two diagrams 1 2,G G , find a subdiagram *
1G of 1G and

subdiagram *
2G of 2G , such that the composition of these subdiagrams,

* *
1 2G G results in the highest/lowest value of the objective function, f, provided

that there exists a set of constraints K C⊂ that ()* *
1 2 ,g G G K is true. This

statement is formalized in the following two equations.

() ()
1 21 2

* *
1 2 1 2

2 , 2
min

jG Gi

i j

G G
f G G f G G

∈ ∈
=  (1)

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 439 Journal of Software Engineering and Applications

()* *
1 2

2
,

CK
g G G K true

∈
∃ = (2)

Equation (1) represents the objective function of the optimization problem.
Equation (2) represents the constraints of the optimization problem.

To complete the formalization of the optimization problem we need to deter-
mine what the function g should be. In the approach presented in this paper, the
determination of the satisfaction of the constraints will be achieved via mapping
UML diagrams to a formal language (OWL) and representing the constraints as
queries in SPARQL and then applying formal reasoning over the OWL repre-
sentation of the UML class diagram and the SPARQL formulas. In this case, we
use only ASK queries of SPARQL and invoke formal reasoning to derive the
answer, which in this case is either TRUE of FALSE. We will use the notation
()O G for the OWL representations of diagrams. The SPARQL formula

representing the constraints, K, will be denoted by ()O K . Additionally, we will
represent the result of running an OWL inference on ()O G as ()*O G
(sometimes referred to as “materialization”). Using this notation, we can rewrite
Equation (2) as follows:

() ()* * *
i jO G G O K  (3)

where “” represents the logical entailment operation. To achieve the UML to
OWL mapping we use an existing tool. Similarly, the derivation is achieved by
using an existing tool.

3. UML Diagram Composition Example

Figure 1(a) and Figure 1(b) show two class diagrams. These diagrams satisfy
the following external constraints expressed in natural language in accordance

Figure 1. Two class diagrams.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 440 Journal of Software Engineering and Applications

with the semantics of associations [7] [8].
1) Every instance of class main dish is associated with at least one instance of

class cook.
2) Every instance of class dessert is associated with at least one instance of

class cook.
The class diagram concepts for the first external constraint are classes Main-

Dish and Cook, and a directed association from MainDish to Cook with 1..* car-
dinality at the navigable end, and 0..* cardinality at the non-navigable end. The
class diagram concepts for the second external constraint are classes Dessert and
Cook, and a directed association from Dessert to Cook with 1..* cardinality at
the navigable end, and 0..* cardinality at the non-navigable end.

The external constraints are formalized as two SPARQL ASK queries (see
Listings 1 and 2) using the class diagram concepts mentioned above, based on
concepts of the OWL language. The classes are declared via the rdf:type property
with the value of owl:Class. The association (?p1) is declared as being of type
ObjectProperty. The multiplicity is introduced through an OWL restriction, ?r1.
It restricts the model to require that all instances of the classes MainDish (first
example) and Dessert (second example) to be associated with at least one in-
stance of the class Cook. This is expressed using OWL’s minQualifiedCardinality
= 1 constraint applied to ?p1 using OWL’s property onProperty.

The ASK query returns true if all the clauses in the query are satisfied and
false otherwise. In our approach, the satisfaction of the queries is verified by the
SPARQL engine and an OWL Reasoner.

The OWL concepts used in these queries are obtained via a translation of the
UML class diagrams to OWL. The queries check whether there are classes—
Cook, MainDish and Dessert—that are related via a directional association from
both MainDish and Dessert to Cook, whose cardinality is 1..*.

Listing 1: ASK Query 1

Listing 2: ASK Query 2

By visual inspection, one can see that these two queries should return true.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 441 Journal of Software Engineering and Applications

Classes Cook, MainDish and Dessert exist in the class diagrams. The two main-
tained associations in Figure 1(b) play the role of p1. The relations from Main-
Dish and Dessert to Cook in Figure 1(a) are matched to p1 through a composi-
tion of relations maintained and subClassOf.

An example of a composition of these two diagrams is shown in Figure 2. The
left hand side shows two subdiagrams of the diagrams in Figure 1(b) (on the
left) and Figure 1(a) (on the right). The right hand side of Figure 2 shows the
composition of these two subdiagrams. The common part of these subdiagrams
consists of two classes, Cook and Recipe. The composed diagram satisfies the
external constraints in Listings 1 and 2. The relation from MainDish to Cook
matches ?p1 of the query in Listing 1 through composition of relation main-
tained, relation subClassOf between MainDish and DinnerRecipe, and relation
subClassOf between DinnerRecipe and Recipe. The relation from Dessert to
Cook matches ?p1 of the query in Listing 2 through composition of relation
maintained, relation subClassOf between Dessert and DinnerRecipe, and rela-
tion subClassOf between DinnerRecipe and Recipe. The number of classes (7) is
the highest possible, the number of associations (1) is the lowest, and and the
average number of ancestors (2.35) is the highest. This composition would be
selected by our algorithm as optimal, based on the metrics used.

Below we show the reasoning steps a UML expert might perform on the
composed diagram to see if it satisfies the first external constraint.

1. Check whether the diagram has a Cook class.
2. Check whether the diagram has a MainDish class.
3. Check whether there is a directed association from MainDish to Cook with

multiplicity 1..* at the navigable end.
4. If there is no such association, check whether there is a directed association

from a direct or indirect superclass of MainDish to Cook with multiplicity 1..* at
the navigable end.

5. If there is no such association, check if there is a class c, directed association
from c to Cook with minimum cardianality of 1 at navigable end, and directed
association from MainDish to c with minimum cardianality of 1 at navigable

Figure 2. Composition of two subdiagrams.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 442 Journal of Software Engineering and Applications

end. The maximum cardinality at navigable end of either association should be*.
6. If there is no such class c, check if there is a class c, directed association

from c to Cook with minimum cardianality of 1 at navigable end, and directed
association from a direct or indirect superclass of MainDish to c with minimum
cardianality of 1 at the navigable end. The maximum cardinality at the navigable
end of either association should be*.

In cases 4-6, there is an implicit relation from MainDish to Cook where every
instance of class MainDish is associated with at least one instance of Cook. The
reasoner (by relying on general OWL axioms and ODM extension rules) will
automatically infer that there is a derived association from MainDish to Cook
with multiplicity 1..* at the navigable end. The query in Listing ?? will fail with-
out this reasoning.

4. RBDC Method

In this section, we describe the basic steps of the Requirements Based Diagram
Composition (RBDC) method described in this paper. It accepts two class dia-
grams developed in open source ArgoUML studio and a collection of external
constraints expressed in SPARQL as input. The external constraints represent
multiple user views of the intent of the system under development and are
represented by queries against class diagrams encoded in a UML tool. The mod-
els in the tool cover both the aspects shown in the diagrams as well as the meta
model of the UML. When we say that we merge UML class diagrams, we mean
we merge the models that encode the class diagrams. If two elements of the dia-
grams have the same name, their meaning is assumed to be the same. The dia-
grams cannot be disconnected. Also, the input class diagram must have at least
two classes with an association or generalization between them and cannot have
unary associations.

The method supports the following class diagram concepts: class, generaliza-
tion, binary association, association end, association end multiplicity, association
end navigable property, data type (for representing primitive data types),
attribute, and attribute type. The algorithmic steps of the method are listed be-
low and then described in the subsections that follow.

1) Extract UML models from two given ArgoUML diagrams.
2) Identify all possible subdiagrams with given properties in the two UML

models from the previous step.
3) Convert each subdiagram to an ATGI-graph.
4) For each pair of ATGI-graphs (one from each model), compute their shared

union. The output of this step is an ATGI-graph.
5) Convert each shared union (ATGI-graph) to a UML model and an Ar-

goUML diagram.
6) Remove redundant attributes.
7) Convert each ArgoUML diagram to an ontology expressed in OWL.
8) Run (a) OWL inference rules using BaseVISor reasoner, and (b) ODM ex-

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 443 Journal of Software Engineering and Applications

tension rules using SPARQL Update axioms on the ontology.
9) Identify ArgoUML diagrams that satisfy the provided set of stakeholder

constraints.
10) For each diagram, compute the quality metric.
11) Select the ArgoUML diagram that has the highest value of the quality me-

tric for the given objective function.

4.1. Extracting and Renaming UML Models

RBDC uses the ArgoUML API to extract elements of the UML model that Argo
encodes. Since our objective is to merge pairs of class diagrams into one, which
relies on the assumption that the elements in two diagrams with the same name
actually refer to the same abstract concept, we rename the extracted elements so
that this assumption is satisfied in the models. E.g., if two class diagrams have a
class named Recipe, we map the extracted class elements to account for this re-
quirement and thus the UML class ID’s of such two classes extracted through
Argo will have the same ID in the translated models. This process is shown in
Figure 3. In the following sections of the paper, references to a UML Model will
be interpreted as references to the Renamed UML Model shown in this figure.
The two mappings—Argo API and Rename—are one-to-one; they establish an
equivalence relation between a UML model and the Argo model that includes
the visual representation of a diagram. In the rest of the paper, we use the terms
“diagram” and “model” interchageably.

A UML model is an “instance” of the UML meta model. The UML meta mod-
el is an example of an M2-model of the Meta-Object Facility (MOF) [9]. It is the
model that describes the UML itself. Also, the UML meta model can be seen as a
UML diagram whose instantiations are all possible UML diagrams. The meta
model includes Meta- Classes, Datatypes, Attributes, Associations and Con-
straints. We use a simplified version of the meta model (we refer to it as the mi-
nimal UML meta model) that includes Class, Association, Property, DataType,
Generalization, Element, Type and Classifier metaclasses. It is based on the meta
models from [10] [11]. This version of the meta model is shown in Figure 4.

The following definition of UML model is based on [12] [13] [14]. It includes
most of the elements from each of these references and adds some more.

Definition 1. A UML model of a class diagram is defined as
(), , , , , ,M C A P GEN ATTR DT Rel= , where C is a set of class symbols, A is a set

of association symbols, P is a set of association end symbols, GEN is a set of ge-
neralization symbols, ATTR is a set of symbols denoting class attributes, and DT
is a set of data type symbols.

Rel is a set of the mappings (listed below) of the elements of model M to either

Figure 3. Mapping UML models.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 444 Journal of Software Engineering and Applications

Figure 4. A Minimal UML meta model.

other elements of M or to natural numbers  (and −1, indicating the “*” car-
dinality).
• :association P A→
• :type ATTR P DT C∪ → ∪ , for attr ATTR∈ and p P∈ ,

()type attr DT∈ and ()type p C∈ respectfully
• : 2ATTR PownedAttribute C ∪→
• :class NP ATTR C∪ → , where

(){ }| , ! ,NP p p P c C p ownedAttribute c= ∈ ∃ ∈ ∈
• : 2PmemberEnd A →
• : 2PownedEnd A →
• :general GEN C→
• :specific GEN C→
• :lower P ATTR∪ → 
• { }: 1upper P ATTR∪ → ∪ −

M must satisfy the following constraints that are applicable to the minimal
meta model that we are using:

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 445 Journal of Software Engineering and Applications

• () () ()1p P ATTR upper p lower p upper p∀ ∈ ∪ • ≠ − ∧ ≤
• () 2a A memberEnd a∀ ∈ • =
• ATTR P∩ =∅
• () ()a A p P p memberEnd a association p a∀ ∈ ∀ ∈ • ∈ ⇔ =
• () ()1 2 1 2 1 2,g GEN c c C general g c specific g c c c∀ ∈ ∀ ∈ • = ∧ = ⇒ ≠

•
()

() ()()
() ()()

p P a A p memberEnd a

p ownedEnd a c C p ownedAttribute c

p ownedEnd a c C p ownedAttribute c

∀ ∈ ∀ ∈ • ∈

⇒ ∈ ∧¬∃ ∈ • ∈

∨ ∉ ∧∃ ∈ • ∈

•
() { } { }

() () ()
1 2 2 1 2

1 2

, ,p p P a A c C ownedEnd a p p p

memberEnd a p ownedAttribute c type p c

∀ ∈ ∀ ∈ ∀ ∈ • = ∧

= ∧ ∈ ⇒ =

•
{ } ()

() ()
() ()

1 2 1 2 1 2

1 1 2 2

1 2 2 1

, , ,p p NP a A c c C p p memberEnd a

p ownedAttribute c p ownedAttribute c

type p c type p c

∀ ∈ ∀ ∈ ∀ ∈ • =

∧ ∈ ∧ ∈

⇒ = ∧ =

The Rename mapping in Figure 3 denoted here as r, is shown in Definition 2.
The definition uses the function name that is implemented using the ArgoUML
API. It maps every element of the model to its name. The result of the invocation
of r on a UML model is a renamed model used in the processing steps that fol-
low.

Definition 2. The renaming function r is defined in the following way:
1) () ()c C r c name c∀ ∈ • = .
2) () ()dt DT r dt name dt∀ ∈ • = .
3) () () ()() ()(). .attr ATTR r attr name attr name class attr name type attr∀ ∈ • = .
4) () ()() ()().g GEN r g name general g name specific g∀ ∈ • =

5)
()() ()()

()() () ()() () ()
() () ()() () () ()

1 2 1 2 1 2 1 1, , , ,

1 1 1 1 1

1 2 2 2 2 2

.

.

.

p p P p p memberEnd association p p p r association p

name association p name p name type p lower p upper p

p NP name p name type p lower p upper p p NP

∈ ∈ ≠∀ •

=

∈ ∈

6)
()() () () ()()

() () () ()() ()
()() () () ()

1 2 2 1 2 1 1 1 1, , ,

1 1 1 1 2

2 2 2 2

. .

.

. . . .

p p P p ends association p p p r p name p name type p

lower p upper p p NP name association p name p

name type p lower p upper p p NP

∈ ∈ ≠∀ • =

∈

∈

4.2. Finding Subdiagrams

A subdiagram of a given model M is a diagram that includes subsets of the sets,
functions that are restrictions of the functions, and constraints on M, as pro-
vided in Definition 1. This is formally captured by the following Definition 3.

Definition 3. A subdiagram of model M is defined as
(), , , , , ,M C A P GEN ATTR DT Rel′ ′ ′ ′ ′ ′ ′ ′= , where C C′ ⊆ , A A′ ⊆ ,

GEN GEN′ ⊆ , ATTR ATTR′ ⊆ and DT DT′ ⊆ , Rel′ is collection of restric-
tions of all functions from Rel on C′ , A′ , P′ , GEN ′ , ATTR′ and DT ′
(based on [15]). Also, M ′ must satisfy constraints on C′ , A′ , P′ , GEN ′ ,
ATTR′ and DT ′ defined in the same way as constraints in Definition 1 by

using functions from Rel′ .

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 446 Journal of Software Engineering and Applications

Since many subdiagrams that satisfy Definition 3 will lead to the composing
diagrams unacceptable to the user or duplicate composed diagrams, our algo-
rithm generates subdiagrams that (1) do not include disconnected classes and
(2) include all the attributes of the classes.

The algorithm for finding subdiagrams is based on partitioning of A GEN∪
into blocks, R, as shown in Definition 6. Generalizations are partitioned by iden-
tifying maximum connected generalization subgraphs. We do not want to break
inheritance hierarchies into subdiagrams, since composition of parts of inherit-
ance hierarchies may lead to paradoxical diagrams. The algorithm for finding
inheritance hierarchies is not shown in this paper. The definitions of an inherit-
ance hierarchy as well as sets of inheritance hierarchies of the given model are
shown in Definitions 4 and 5.

Definition 4. An inheritance hierarchy in model M is (),ih ihIH C GEN= ,
where ihC C⊆ , ihGEN GEN⊆ and for all pairs of classes , ihs t C∈ there ex-
ists a sequence of classes 0 1, , , ks c c c t= = and ihg GEN∃ ∈ such that

() 1igeneral g c −= and () ispecific g c= or () igeneral g c= and
() 1ispecific g c −= for all 1 i k≤ ≤ . Also, for all ihc C′∈ there does not exist

\ ihg GEN GEN′∈ such that ()general g c′ ′= or ()specific g c′ ′= . MIH is
the set of all such IH for M.

Definition 5. The set of all inheritance hierarchies of model M is defined as

() { }{ }, ,, | 1, ,M ih i ih iIH C GEN i N= ∈  , where (), ,,ih i ih iC GEN is an inheritance

hierarchy of model M based on Definition 4 and ,
1

N

ih i
i

GEN GEN
=

=


. For all pairs

() (), , , ,, , ,ih i ih i ih j ih j MC GEN C GEN IH∈ the following must be satisfied:

, ,ih i ih jGEN GEN∩ =∅ .

Definition 6. A partition of A GEN∪ is defined as R X Y= ∪ , where
{ }iX A A= ⊂ and { },ih iY GEN GEN= ⊂ , ,ih iGEN includes generalizations of

an inheritance hierarchy i MIH IM∈ , and for all pairs ,i jA A X∈ where i j≠
the following must be satisfied: i jA A∩ =∅ and

i iA X
A A

∈
=



.
The set X used in Definition 6 is constructed in the following way. For a given

integer s A< , if 0A s =mod , then A is divided into equal subsets of size s,
otherwise there is also one more subset of size A smod . The size of the blocks
of the associations s is given by the user based on a desired quality of the optimal
composed diagram and performance requirements. A low value of s promotes a
more fine grained mix of associations from the input diagrams in the optimal
composed diagram. The order in which associations are added to each iA is
determined by order of associations in the implementation of A. We chose to
partition associations into blocks of equal size with or without remainder.

The algorithm for finding all subdiagrams with the above properties is shown
in Algorithm 1. It takes as input a model M, a partition R of A GEN∪ , and
outputs a set of subdiagrams, S. The following are the steps of the algorithm.

1) Find all possible subsets of blocks of R.
2) For each subset of blocks.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 447 Journal of Software Engineering and Applications

a) Find all classes connected by associations and generalizations from the
subset.

b) For each identified class, find all attributes from ATTR along with data-
types from DT.

c) Create subdiagrams using associations and generalization from the subsets
and identified classes, class attributes and datatypes.

The time complexity of this algorithm is ()2m nO , where m A GEN= ∪ ,
and n is the average number of associations and generalizations per block in R.
The time complexity of RBDC is discussed in Section 4.4.

4.3. Mapping UML Models to Graphs

Now we provide a formalization of the graphs that will be used to represent class
diagrams. The formalization uses category theory; it is based on the work of Ehrig
[3]1. We introduce some of the definitions to make the paper self-contained. How-
ever, some of the details are omitted. Our ultimate objective is to construct an
ATGI-graph (Definition 11)—an inheritance respecting typed attributed graph,

1There is an alternative method [16] that formalizes UML class diagrams using category theory that
gives a precise sematics to class diagrams, although its objective is to “deconstruct UML” and thus it
does not follow the UML standard.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 448 Journal of Software Engineering and Applications

from an ArgoUML model. ATGI-graph allows to capture UML class diagram
elements (e.g., classes, associations and generalizations), relations between these
elements, and their properties. In addition, ATGI-graph captures types pertain-
ing to UML class diagrams. A UML class diagram is represented using an
E-graph (Definition 7). The types pertaining to the UML class diagrams come
from the UML meta model which is represented as an attributed type graph with
inheritance (ATGI) described in Definition 9. Considering types is important for
insuring that the RBDC output—the composition of two diagrams—is a UML
class diagram. The integration of an E-graph representing a UML class diagram
with an ATGI representing the UML meta model is provided by a ATGI-clan
morphism (Definition 10), resulting in a ATGI-graph (Definition 11).

Definition 7. (E-graph) The tuple () { }(),
, , , , ,G D G A j j j G A

G V V E E s t
∈

= is an

E-graph in which ,G DV V are graph and data vertices; ,G AE E are graph edges
and node attribute edges; ,j js t source and target functions for graph and node
attribute edges.

E-graphs will be used for representing UML models and meta-classes, me-
ta-associations, meta-attributes and meta-datatypes of the UML meta model.

Definition 8. (UML model converted to E-graph) The graph MG is a repre-
sentation of a UML model, M, as an E-graph:

() { }(),
, , , , ,M G D G A j j j G A

G V V E E s t
∈

= where:

GV C DT GEN ATTR P A= ∪ ∪ ∪ ∪ ∪
() (){ }
() (){ }
() (){ }
() (){ }

, | , ,

, | , ,

, | , ,

, | , ,

GE g c c C g GEN general g c

g c c C g GEN specific g c

c attr c C attr ATTR attr ownedAttribute c

attr c c C attr ATTR class c attr

= ∈ ∈ =

∪ ∈ ∈ =

∪ ∈ ∈ ∈

∪ ∈ ∈ =







() (){ }
() (){ }
() (){ }
() (){ }

, | , ,

, | , ,

, | , ,

, | , ,

attr dt dt DT attr ATTR type attr dt

p a p P a A association p a

a p p P a A p memberEnd a

a p p P a A p ownedEnd a

∪ ∈ ∈ =

∪ ∈ ∈ =

∪ ∈ ∈ ∈

∪ ∈ ∈ ∈









() (){ }
() (){ }
() (){ }

, | , ,

, | , ,

, | , ,

p c p P c C type p c

c p p P c C p ownedAttribute c

p c p NP c C class p c

∪ ∈ ∈ =

∪ ∈ ∈ ∈

∪ ∈ ∈ =







(){ } (){ }| , | ,DV d p P ATTR d lower p d p P ATTR d upper p= ∃ ∈ ∪ = ∪ ∃ ∈ ∪ =

() (){ }
() { } (){ }
, | , , =

, | , 1 ,
AE p d p P ATTR d d lower p

p d p P ATTR d d upper p

= ∈ ∪ ∈

∪ ∈ ∪ ∈ ∪ − =





()(): ,G G G Gs E V s s t s→ ≡ =

()(): ,G G G Gt E V t s t t→ ≡ =

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 449 Journal of Software Engineering and Applications

()(): ,A A G As E V s s t s→ ≡ =

()(): ,A A D At E V t s t t→ ≡ =

To represent inheritance in the UML meta model, we add the concept of at-
tributed type graph with inheritance (ATGI).

Definition 9. An attributed type graph with inheritance is defined as
(), ,ATGI TG I A= where:

1) TG is an E-graph () { }(),
, , , , ,

G D G AV V E E i i i G A
TG TG TG TG TG s t

∈
= that

represents the meta-classes, meta-associations, meta-attributes and meta-datatypes
of the UML meta model.

2) Inheritance graph (), , ,V EI I I s t= representing the inheritance structure
of the meta model, with

GV VI TG= , EI —the inheritance edges, and the source
and target functions , : E Vs t I I→

3) A set VA I⊆ representing the abstract nodes that are involved in the in-
heritance relation

4) For each node Vn I∈ the inheritance clan is defined as
() {) |I Vclan n n I′= ∈ ∃ path from n′ to n in } VI I⊆ with ()In clan n∈ .

The graphs representing the UML meta model and a model are combined via
the mapping that is defined by an ATGI-clan morphism.

Definition 10. (ATGI-clan morphism) An ATGI clan morphism, Gtype , is
defined as the mapping between MG representing a UML model, M, and ATGI
representing the UML meta model:

:G Mtype G ATGI→ with (), , ,
G D G AG V V E Etype type type type type= , where:

1. :
G GV G Vtype V TG→

2. :
D DV D Vtype V TG→

3. :
G GE G Etype E TG→

4. :
A AE A Etype E TG→

and Gtype commutes with sources and targets of MG as well as sources, tar-
gets and inheritance clan of ATGI as detailed in [3].

GVtype ,
DVtype ,

GEtype ,
AEtype are defined follows:

1. ()
GVtype v Class= , where v C∈ .

2. ()
GVtype v Property= , where v P ATTR∈ ∪ .

3. ()
GVtype v Association= , where v A∈ .

4. ()
GVtype v Generalization= , where v GEN∈ .

5. ()
GVtype v Datatype= , where v DT∈ .

6. ()(),
GEtype g c general= , where g GEN∈ , c C∈ and ()general g c= .

7. ()(),
GEtype g c specific= , where g GEN∈ , c C∈ and ()specific g c= .

8. ()(),
GEtype c attr ownedAttribute= , where c C∈ , attr ATTR∈ and

()attr ownedAttribute c∈ .
9. ()(),

GEtype attr c class= , where c C∈ , attr ATTR∈ and ()class c attr= .
10. ()(),

GEtype attr dt type= , where dt DT∈ , attr ATTR∈ and
()type attr dt= .

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 450 Journal of Software Engineering and Applications

11. ()(),
GEtype p a association= , where p P∈ , a A∈ and
()association p a= .

12. ()(),
GEtype a p memberEnd= , where p P∈ , a A∈ and

()p memberEnd a∈ .
13. ()(),

GEtype a p ownedEnd= , where p P∈ , a A∈ and
()p ownedEnd a∈ .

14. ()(),
GEtype p c type= , where p P∈ , c C∈ and ()type p c= .

15. ()(),
GEtype c p ownedAttribute= , where p P∈ , c C∈ and

()p ownedAttribute c∈ .
16. ()(),

GEtype p c class= , where p NP∈ , c C∈ and ()class p c= .
17. ()

DVtype d Integer= , where
() ()p P ATTR d lower p d upper p∃ ∈ ∪ • = ∨ = .

18. ()(),
AEtype p d lower= , where p P ATTR∈ ∪ , d ∈ and

()d lower p= .
19. ()(),

AEtype p d upper= , where p P ATTR∈ ∪ , { }1d ∈ ∪ − and
()d upper p= .

Definition 11. (ATGI-graph) Given an E-graph G representing a UML class
diagram, an attributed type graph ATGI with inheritance that represents the UML
meta model, and an ATGI-clan morphism :Gtype G ATGI→ representing the
typing of the class diagram by the meta model; then (),I

GG G type= is an inhe-
ritance respecting typed attributed graph (ATGI-graph).

Figure 5 shows a graphical representation of the ATGI that captures the meta
model shown in Figure 4. TG and I of the meta model ATGI are merged into
one graph, where the edges of I are shown using hollow arrows. This notation
was borrowed from [3].

Figure 6 shows an example of a correspondence between an ATGI-graph and
a UML class diagram using a graphical representation used by Ehrig in [3] in

Figure 5. ATGI representing the UML minimal meta model.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 451 Journal of Software Engineering and Applications

Figure 6. Mapping between a class diagram (bottom) and an ATGI-graph (top).

which the class diagram is shown at the bottom and an ATGI-graph at the top.
The boxes of the ATGI-graph are elements of GV , the arrows between the boxes
are elements of GE . The data nodes (elements of DV) of the E-graph are shown
as values of attributes in the boxes (e.g., upper: −1 represents an AE). The types
of the graph vertices, GV , are shown using the UML-like notation for classes
(e.g., p1: Property). For the graph edges, GE , and node attribute edges, AE ,
only the types are shown. For the data vertices, DV , types are omitted.

The blue arrows show (partially) mapping from the elements of the class dia-
gram to the nodes of the ATGI-graph. Meta-associations between elements of the
class diagram are mapped to the associations. Meta-attributes of the class diagram
elements are mapped to the elements of AE and values of meta-attributes are
mapped to elements of DV , e.g., the upper bound of the multiplicity [*] goes to
upper: −1.

The names of the elements of GE are computed by concatenating the names
of the sources and targets, and their types. The names of the elements of AE
are computed by concatenating the names of the sources, values of the targets,
and their types.

4.4. Shared Unions of Pairs of ATGI-Graphs
The process of computing a shared union is depicted in Figure 7. The input to

the process is a pair of ATGI-graphs ()11 1,I
GG G type= and ()22 2 ,I

GG G type= ,

where ()
{ }, ,, , , ,

,
, , , , ,

G D G A i j i ji i V i V i E i E G G
j G A

G G G G G s t
∈

 =  
 

 and :
iG itype G ATGI→

for 1,2i = . ATGI is defined in Definition 9; it represents a UML meta model

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 452 Journal of Software Engineering and Applications

Figure 7. Construction of shared union.

shown in Figure 5. The output is an ATGI-graph ()33 3 ,I

GG G type= representing

a shared union of 1
IG and 2

IG , where
3 3:Gtype G ATGI→ . The following are

the steps of the process.
1. Step 1: Construct the disjoint unions of the components (GV , GE , DV ,

AE) of 1G and 2G listed in Definition 8.
2. Step 2: Define equivalence relations on the disjoint unions from the pre-

vious step and insert elements of the disjoint unions to 3G where equivalent
elements are glued together.

3. Step 3: Construct injective E-graph morphisms 1 3:f G G→ , 2 3:g G G→
using the equivalence relations defined in the previous step.

4. Step 4: Compute an E-graph 4G (the largest common subgraph of 1G
and 2G) and E-graph morphisms 4 1:f G G′ → , 4 2:g G G′ → as pullback us-
ing 1G , 2G , 3G , f and g.

5. Step 5: Compute ()33 3 ,I
GG G type= using

1Gtype ,
2Gtype and pushout

()3 , ,G f g .
Below, we present descriptions of the steps, starting with Step 2.
Step 2: Equivalence relations on disjoint unions of components of 1G and

2G are computed on the assumption of uniqueness of names, i.e., elements that
have the same names are glued into one equivalence class in 3G .

1. [] { }1, 2, |
G GV Vv v G G v v′ ′= ∈ ∪ = .

2. [] () () () (){ }1, 2, |
G GE E G G G Ge e G G e e s e s e t e t e′ ′ ′ ′= ∈ ∪ = ∧ = ∧ = .

3. [] { }1, 2, |
D DV Vd d G G d d′ ′= ∈ ∪ = .

4. [] () () () (){ }1, 2, |
A AE E A A A Aa a G G a a s a s a t a t a′ ′ ′ ′= ∈ ∪ = ∧ = ∧ = .

5. []() ()
3, 3,3, 3,:

G G G GG E V G Gs G G s e s e→ ≡ =    .

6. []() ()
3, 3,3, 3,:

G G G GG E V G Gt G G t e t e→ ≡ =    .

7. []() ()
3, 3,3, 3,:

A A G AG E V G As G G s a s a→ ≡ =    .

8. []() ()
3, 3,3, 3,:

A A D AG E V G At G G t a t a→ ≡ =    .

Step 3: The morphisms 1 3:f G G→ , 2 3:g G G→ are computed compo-
nent-wise: (), , ,

G G D AV E V Ef f f f f= , (), , ,
G G D AV E V Eg g g g g= .

1. () [] () [],
G GV Vf v v g v v= = .

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 453 Journal of Software Engineering and Applications

2. () [] () [],
G GE Ef e e g e e= = .

3. () [] () [],
D DV Vf d d g d d= = .

4. () [] () [],
A AE Ef a a g a a= = .

Step 4: 4G and morphisms 4 1:f G G′ → , 4 2:g G G′ → are computed
component-wise using the algorithm for the pullback for attributed graphs [17].

1. () () (){ }4, 1 2 1, 2, 1 2, |
G G G G GV V V V VG v v G G f v g v= ∈ × = .

2. () () (){ }4, 1 2 1, 2, 1 2, |
G G G G GE E E E EG e e G G f e g e= ∈ × = .

3. () () (){ }4, 1 2 1, 2, 1 2, |
D D D D DV V V V VG d d G G f d g d= ∈ × = .

4. () () (){ }4, 1 2 1, 2, 1 2, |
A A A A AE E E E EG a a G G f a g a= ∈ × = .

Source and target functions for 4G are determined in the following way.

1. ()() () ()()4, 4, 1, 2,4, 4, 1 2 1 2: , ,
G G G G G GG E V G G Gs G G s e e s e s e→ ≡ = .

2. ()() () ()()4, 4, 1, 2,4, 4, 1 2 1 2: , ,
G G G G G GG E V G G Gt G G t e e t e t e→ ≡ = .

3. ()() () ()()4, 4, 1, 2,4, 4, 1 2 1 2: , ,
A A G A A AG E V G G Gs G G s a a s a s a→ ≡ = .

4. ()() () ()()4, 4, 1, 2,4, 4, 1 2 1 2: , ,
A A D A A AG E V G G Gt G G t a a t a t a→ ≡ = .

The morphisms f ′ , g ′ are computed component-wise as shown below. It
is easy to show that the morphisms commute: f f g g′ ′=  , as required by the
definition of pullback.

1. ()()1 2 1,
GVf v v v′ = , ()()1 2 2,

GVg v v v′ = .

2. ()()1 2 1,
GEf e e e′ = , ()()1 2 2,

GEg e e e′ = .

3. ()()1 2 1,
DVf d d d′ = , ()()1 2 2,

DVg d d d′ = .
4. ()()1 2 1,

AEf a a a′ = , ()()1 2 2,
AEg a a a′ = .

Step 5: To complete the construction of 3
IG , the morphism

3 3:Gtype G ATGI→ is computed using
1 1:Gtype G ATGI→ ,

2 2:Gtype G ATGI→ and pushout ()3 , ,G f g based on pushout property of
ATGI-clan morphisms from [17], where

3 1G Gtype f type= and

3 2G Gtype g type= . ()3 , ,G f g is pushout according to relationship between
pushout and pullback described in [17], since ()4 , ,G f g′ ′ is pullback. The
morphism

3Gtype is computed component-wise:

()3 3 3 3 3, , , ,, , ,
G G D AG G V G E G V G Etype type type type type= .

1. ()() ()
3 1, ,G G GG V V G Vtype f v type v= , ()() ()

3 2, ,G G GG V V G Vtype g v type v= .

2. ()() ()
3 1, ,G G GG E E G Etype f e type e= , ()() ()

3 2, ,G G GG E E G Etype g e type e= .

3. ()() ()
3 1, ,D D DG V V G Vtype f d type d= , ()() ()

3 2, ,D D DG V V G Vtype g d type d= .

4. ()() ()
3 1, ,A A AG E E G Etype f a type a= , ()() ()

3 2, ,A A AG E E G Etype g a type a= .

The time complexity of the algorithm for constructing shared unions of pairs
of diagrams is as follows. Assume that 1D and 2D are two input diagrams,

1A and 1GEN are associations and generalizations of 1D , and 2A and

2GEN are associations and generalizations of 2D . The time complexity of the
algorithm is ()()1 22 m m nO + , where 1 1 1m A GEN= ∪ and 2 2 2m A GEN= ∪ .

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 454 Journal of Software Engineering and Applications

In fact, this represents the time complexity of RBDC. Also, the time complex-
ity of RBDC is further reduced by generating shared unions that are connected
graphs. The performance of RBDC is in Section 5.3 describing the results of our
evaluation.

4.5. Removing Redundant Attributes

The composed UML model resulting from the algorithms described above may
contain some redundancies, e.g., the same attribute appearing in both sub and
superclasses. The redundancies addressed in our algorithms are captured in the
following definition.

Definition 12. Class superc C∈ is a superclass class of class c C∈ if

supers c≠ and there exists a sequence of classes 0 1, , ,super kc c c c c= = and
g GEN∃ ∈ such that () 1igeneral g c −= and () ispecific g c= for all 1 i k≤ ≤ .
The algorithm does the following. If the class c C∈ of model M has an

attribute attr ATTR∈ (along with datatype dt DT∈), and there is a superclass
of c that has attribute attr ATTR′∈ (along with datatype dt DT′∈), where

() ()name attr name attr′ = and dt dt′ = , then remove attr from ATTR,
,c attr from owned Attribute, ,attr dt from type and ,attr c from class.

4.6. Representing UML Class Diagrams in OWL

The conversion of UML class diagrams to OWL is based on the Ontology Defi-
nition Meta model (ODM) specification [18] that describes the mapping be-
tween UML elements and OWL entities. The mapping is achieved using an ex-
isting tool—UML2OWL, by Leinhos—described in [19]. The original tool sup-
ports reading class diagrams in XMI 1.2 format implemented by Poseidon 4.1.
We modified the tool to allow support of class diagrams in XMI 1.2 format im-
plemented by ArgoUML. Also, we added support of property qualified cardinal-
ity restrictions.

4.7. Running OWL and ODM Extension Rules

Some of the assertions that are needed to infer that the external constraints are
satisfied may not be explicit in the diagram ontology initially but can be inferred
based on class diagram elements that are explicit. Examples of such implicit as-
sertions supported by RBDC are statements about derived associations (includ-
ing those that are based on inherited association ends), chains of generalizations,
and inherited class attributes.

Derived associations based on inherited association ends, chains of generali-
zations and inherited class attributes are inferred using the axiom of the transi-
tivity of the subClassOf property. The axiom is executed by BaseVISor (OWL2
RL) reasoner [20].

The inference of other kinds of derived associations are not supported by the
rules obtained through the ODM mapping of UML to OWL. Therefore, we had
to extend the mapping using SPARQL Update query [21] axioms. The SPARQL

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 455 Journal of Software Engineering and Applications

Update query axioms are based on the rules of class diagram abstraction studied
in the thesis [22]. The following is a representation of the axioms in UML terms.

In this notation, A, B, and C represent classes, hollow arrows represent gene-
ralizations, lines represent bidirectional associations, regular arrows represent
directed associations. Labels on the lines and arrows represent multiplicities. The
left hand side of each axiom corresponds to the query’s WHERE clause—a con-
junction of the triples for matching the representations of the corresponding
class diagram elements in the diagram’s ontology. The right hand side of each
axiom corresponds to the query’s INSERT clause—a conjunction of the triples
specifying inferred and asserted object properties and property restrictions
representing derived associations.

4.8. Computation of Diagram Quality Metrics and Selection of
Optimal Solutions

The objective function for the optimization is based on the following software
metrics of the composed diagrams: 1) the number of classes (NC), 2) the number
of associations (NA), 3) the number of inheritance hierarchies (NIH), 4) attribute
inheritance factor (AIF)—this is the ratio of the number of inherited attributes
to the total number of attributes in a diagram, 5) average number of ances-
tors (ANA), 6) the number of generalizations (NG). These metrics impact the
design quality attributes studied in [23] that are related to the class diagram con-
cepts supported by RBDC. Specifically, they impact the following design quality
attributes: reusability, understandability, functionality, effectiveness, extendibity,
and design simplicity. Following [23] [24] [25] and [26], an increase of the
metric increases (↑) or decreases (↓) the quality attributes, as shown in Ta-
ble 1.

Table 1. Relationship between quality metrics and design attributes.

 Reusability Understandability Functionality Effectiveness Extendibity Design simplicity

NC (↑) [23] (↓) [23] (↑) [23]

NA (↓) [26]

NIH (↑) [23] (↓) [26]

AIF (↑) [24] (↓) [25] (↓) [25]

ANA (↓) [23] (↑) [23] (↑) [23]

NG (↓) [26]

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 456 Journal of Software Engineering and Applications

Our problem is a Multi-Objective Optimization Problem (MOOP). Our im-
plementation of the solution relies on the global criterion method described in
[27] and is classified as a no-preference method. We considered six objective
functions that measure specific design qualities. In the cases where more than
one metric influences the quality attribute, the contributing metrics are added
together using the same weights. This choice is totally arbitrary; however the de-
signers who might want to use RBDC could set their own preferred weights.

1. Reusability: ()1
1
2

f NC AIF= + .

2. Understandability: ()2
1
3

f NC AIF ANA= − + + .

3. Functionality: ()3
1
2

f NIH NC= + .

4. Effectiveness: 4f ANA= .
5. Extedibility: 5f ANA= .

6. Simplicity: ()6
1
4

f NA AIF NIH NG= − + + + .

The MOOP objective function is []T1 2 3 4 5 6, , , , ,f f f f f f f= . Since this was a
minimization problem, the inverses of all the objective functions were mini-
mized. The ideal point, idealz , is obtained by finding the minimum value for
each objective function separately: ()minideal

i iz f= . The best solution, *x , is
defined as the one for which the Euclidean distance between ()*f x and idealz
is minimal:

()()
6 2

1
min ideal

i ix i
d f x z

=

= −∑ (4)

5. RBDC Evaluation

The diagram composition method was evaluated for aspects of quality (optimal-
ity, satisfaction of external constraints, preservation of structure of the diagrams,
inheritance redundancy) and performance. The experimental evaluation consi-
dered the coverage of the variety of diagrams and types of constraints, as de-
scribed in Section 5.1. The evaluation of quality is discussed in Section 5.2. Per-
formance in terms of computation time is described in Section 5.3. A compari-
son of RBDC with existing methods of merging/composing class models is de-
scribed in Section 5.4.

5.1. Generation of Constraints and Class Diagrams

Since we did not find any large public datasets that could be used to evaluate
RBDC experimentally, we developed algorithms for generation of constraints
and class diagrams that include the constraints.

A concept map related to the generation of external constraints is shown in Fig-
ure 8. Types of external constraints are formalized as SPARQL query templates
(Appendix A). The templates include concepts from an ontology, variables, and
parameters. SPARQL ASK queries are instantiations of the templates.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 457 Journal of Software Engineering and Applications

Figure 8. Concept map for external constraints.

Table 2. Corner cases of multiplicity constraints.

Multiplicity pattern Multiplicity corner cases

n..*, where n ≥ 0 0..*, 5..*

n..n, where n ≥ 1 1..1, 5..5

0..n, where n ≥ 1 0..1, 0..5

n..m, where n ≥ 1 and m > n 1..5, 5..6

The queries are verified against the ontological formalizations of class dia-

grams. The class diagrams are first mapped to ontology and then an inference
engine is run. The inference is based on both OWL and ODM extension rules.

Class diagrams include UML representable constraints. RBDC supports the
following types of constraints from [28] in accordance with supported class dia-
gram concepts: 1) cardinality constraints on associations, with or without qua-
lifiers, 2) class hierarchy constraints, and 3) cardinality constraints on attributes.
For cardinality constraints on attributes, only cardinality of 1 was considered.

For the evaluation to be meaningful, it is necessary that the generated con-
straints cover a wide variety of constraints. Like in software testing, it is neces-
sary to cover both the basic and the “corner cases”. The corner cases of multip-
licities on association ends are shown in Table 2. The left column shows the ge-
neric patterns of constraints. The right column shows examples (instances) of
the generic patterns.

There are 8 examples in the table. Since the cardinality constraints on associa-
tions are applied to both ends of an association, there are 8 × 8 = 64 corner cases
of constraints on associations based on all pairs of multiplicity corner cases. Al-
together, there are 68 corner cases of constraints, including generalization and
attribute with multiplicity of 1.

Our data generation procedure randomly generates class diagrams that in-

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 458 Journal of Software Engineering and Applications

clude both the base and the corner cases of the constraints. Also, for each gener-
ated diagram, D, the procedure generates all the queries (instances of the query
templates) such that each query is entailed by ()*O D .

The procedure guarantees that 1) all query templates are covered by the gen-
erated class diagrams and 2) for each corner case constraint x, there is a class di-
agram D s.t. D includes x. The inference engine verifies whether ()*O D entails
representation of x, i.e., whether () ()*O D O x .

The query templates are described in Appendix A. They are used to generate
random sets of external constraints, expressed as queries, { }1 2, , , nQ Q Q=  .
The sets of the size up to 11 were used, which we believe is sufficient from the
practical point of view. To ensure that only connected class diagrams can be
generated using these sets of queries, it is necessary for the queries in  to be
interconnected using class names. The algorithm ensures that this requirement
is satisfied.

The next step is to generate sets of class diagrams satisfying a given set of ex-
ternal constraints described above. For a given set of queries  , the algorithm
generates a set of diagrams { }1 2, , , nD D D=  , such that

()*
i iD Q O D Q∀ ∈ ∀ ∈ •   . The algorithm for generating diagrams in 

ensures that all general OWL axioms and ODM extension rules from Section 4.7
are covered.

To show that RBDC is applicable to a wide variety of class diagrams, at least
partially, the set of the diagrams used for testing was generated in such a way
that each diagram had a different mixture of the number of classes, associations,
generalizations and attributes. First, 600,000 sets of 7 queries each were ran-
domly generated from the templates, and then a pair of diagrams were generated
for each set. The numbers of UML elements in the generated “quantitative mix-
ture” sets of diagrams have the following maximum values: classes: 22; associa-
tions: 9; generalizations: 9, attributes: 6.

Figure 9 shows the distribution of the number of different quantitative mix-
tures of diagrams vs. the total number of generated diagrams. The maximum
number of quantitatively different mixtures was 741. The saturation of the curve
indicates that generation of more diagrams does not contribute much to the in-
crease of the quantitative variety of the mixtures.

Figure 9. Distribution of quantitative mixtures.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 459 Journal of Software Engineering and Applications

5.2. Quality of Results
5.2.1. Evaluation of Optimality
As discussed earlier in this paper, RBDC performs a search through subdiagrams
of two class diagrams being merged. Since in general it is not possible to search
the space of subdiagrams exhaustively, we investigated (using manageable sizes
of class diagrams) how the value of the Euclidean distance, d, introduced in Eq-
uation (4), converges to the minimum value as the coverage of the space of sub-
diagrams increases. The convergence was measured by:

()
p

dr p
d

= (5)

where dp is the optimal value computed using Equation (4) for a fraction, p, of
the solution points. The plots of the results obtained by generating diagrams
based on query sets of size 7 and 9, as described in Section 5.1, are shown in
Figure 10. We can observe that for p greater than 50%, the value of the objective
function is close to minimum.

5.2.2. Satisfaction of External Constraints
As described earlier, the external constraints are formalized as SPARQL queries,
and then the satisfaction of the constraints is verified against the ontological
formalizations of class diagrams. The class diagrams are first mapped to ontolo-
gy and then an inference engine is run. The inference is based on both OWL and
ODM extension rules. Then the SPARQL engine is invoked to answer the queries.

To evaluate this aspect of RBDC, we manually developed 200 queries (based
on 8 templates shown in Appendix A) and developed 400 class diagrams, 200 of
which satisfied the constraints and 200 that did not satisfy the constraints. The
results returned by the SPARQL engine were all correct, i.e., for all diagrams that
satisfied the constraints the result was true, while for all the diagrams that did
not satisfy the constraints the result was false. This result was expected since the
OWL/SPARQL engines are known to be sound.

5.2.3. Conformance with Structure
As stated in Section 1, the structure and the typing of the model elements of the

Figure 10. Convergence of Eucledian distance to minimum value.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 460 Journal of Software Engineering and Applications

source diagrams with respect to the UML meta model are expected to be pre-
served in the composed diagrams. This is achieved by using the ATGI-graphs to
represent diagrams and E-graph morphisms and using the colimit operation for
diagram composition, as introduced by Ehrig [3] and described in Section 4.3.
The satisfaction of this requirement was part of the normal testing of the RBDC
software.

5.2.4. Evaluation of Redundancies
The attribute redundancies described in Section 4.5 were removed 100%. The
second kind of redundancy, inheritance redundancy, occurs if a class inherits
from another by multiple paths of inheritance. The rules for identifying redun-
dant inheritance were described by Sabetzadeh in [5]. For the sake of evaluation,
we implemented these rules in Java. The evaluation of the presence of redundant
inheritance was performed by generating diagrams based on the query sets of
size 5, 7, 9, and 11 as described in Section 5.1. For this evaluation, the diagram
used as input to RBDC did not include any redundant generalizations. The
evaluation has shown that only 25% of the output diagrams produced by RBDC
included redundant generalizations.

5.3. Evaluation of Performance

The experiments were conducted on a cluster [29] with node speeds ranging
from 1.8 to 2.8 GHz.

We conducted performance evaluation experiments of optimized diagram
composition with different sizes of random sets of queries. We had 643 experi-
ments for random query sets of size 7, where pairs of diagrams cover all quantit-
ative mixtures from Section 5.1. Also, we had 600 experiments for random sets
of 5, 9 and 11 queries (200 experiments for each set size). During the process of
finding subdiagrams, associations were partitioned on blocks of 12 with or
without remainder. Properties of random diagrams generated for different sizes
of random sets of queries are shown in Table 3. For each set of experiments with
a given size of a random set of queries, we calculated the arithmetic mean and
standard deviation of execution time. This is shown in Figure 11.

We obtained a reasonable average execution time for experiments for random

Table 3. Properties of random diagrams generated for different sizes of random sets of
queries.

Size of set of
queries

Maximum
number of

classes

Maximum
number of

associations

Maximum
number of

generalizations

Maximum
number of
attributes

5 15 7 7 4

7 22 9 9 6

9 27 11 11 8

11 33 13 13 10

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 461 Journal of Software Engineering and Applications

Figure 11. Performance evaluation. (a) Arithmetic mean of execution time for experiments with given size of random set of que-
ries; (b) Standard deviation of execution time for experiments with given size of random set of queries.]

sets of 11 queries (generated random diagrams had up to 33 classes, up to 13 as-
sociations, up to 13 generalizations and up to 10 attributes). According to stan-
dard deviation result for these experiments, the execution time in the majority of
cases is also reasonable. In order to handle larger diagrams it is necessary to par-
tition associations on larger blocks of equal size with or without remainder while
finding subdiagrams.

5.4. Comparison with Other Methods

Since we did not find any public datasets that could be used to perform a com-
parison of RBDC with existing methods of merging/composing class models,
therefore we developed a set of characteristics of the existing methods, as de-
scribed below, and used them for comparisons. The values of the characteristics
are defined as 1—supported, 0—not supported, and in some cases 0.5—partially
supported. Partially supported means the characteristics are either maintained
manually or automatically detected but resolved manually.
• Preservation of the structure of diagrams in the composed diagram.
• Avoidance of redundant attributes.
• Avoidance of cycles in inheritance.
• Avoidance of redundant inheritance.
• Avoidance of redundant associations.
• Formally proven compliance with meta model.
• Inference of indirect relations.
• Support of optimization.
• External constraints satisfaction.

Table 4 shows a comparison of RBDC with other existing methods in terms of
these characteristics. The algebraic merge operator [33] is the most competitive
with respect to RBDC. The advantages of RDBC are the following. 1) It supports
automatic checking of external constraints satisfaction by the composed dia-
gram. 2) The mapping between elements of the source models is created auto-
matically, while in the algebraic merge operator it is created manually. 3) It cov-
ers more class diagram concepts. 4) It supports inference of indirect relations in
the composed diagram.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 462 Journal of Software Engineering and Applications

Table 4. Comparison with other existing methods. For better readability of the table we omitted 0 values.

The disadvantages of RBDC are the following. 1) It allows only composition of
two diagrams, although it could be used for repeated merge of multiple diagrams
in any order, while algebraic merge operator supports merging of multiple dia-
grams at once. 2) It supports only equivalence mapping between class diagram
elements, while the algebraic merge operator supports different types of overlaps
between diagrams. 3) In RBDC, class diagram concepts are compared using a
method patterned on matching elements based on the similarity of their proper-
ties, while the algebraic merge operator employs manually created equivalence
relationships between class diagram concepts referring to the same thing in the
real world. Overall, we can see that RDBC compares well with respect to all but
two features shown in Table 4.

In addition to the above methods, the following is the most recent work on
merging class diagrams; they were not included in our comparison. The ap-
proach in [38] defines the semantics of the merging relationship between UML
packages and the order in which multiple merge relationships are executed. The
approach extends the UML meta model, which is a drawback. There is no tool
support for this method. Also, rules for handing inconsistencies after merging
are not implemented.

The approach in [39] incrementally merges fragments—elementary class dia-
grams extracted from text—into class diagrams. The algorithm composes classes
and merges their attributes and associations. An automatic conflict resolution pro-
vided. Examples of conflicts are an attribute with the same name as a class or an
association. The multiplicities are ignored when assessing the equality of associa-
tions.

The approach in [40] uses graph transformation rules for UML class diagram
composition. The rules follow the Triple Graph Grammars (TGGs) [41] formal-
ism. In this method, class diagrams are represented as graphs with attributes as-
signed to vertices and edges using a labeling function. The attributes are not typed.

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 463 Journal of Software Engineering and Applications

The graphs representing class diagrams are typed by type graphs representing
the UML meta model. The meta model does not support meta-attributes and
inheritance.

6. Conclusions

This paper describes a method (RBDC) for composing two class diagrams that
partially overlap in the names of the UML elements used in the diagrams into
one class diagram that satisfies all the external constraints imposed by the soft-
ware architect and that is optimal with respect to a selected collection of quality
attributes.

It is based on a formal approach to the representation of class diagrams. The
theoretical foundations of this approach were developed primarily by Ehrig and
his collaborators. One of our contributions is the bridging of the extremely ab-
stract formalization of class diagrams developed by Ehrig et al. with a commonly
used, open-source, software engineering tool (Argo UML), thus bridging the
very abstract with the very concrete. In the paper, we used the formal approach
to present RBDC, i.e., instead of showing the details of the algorithms developed,
we presented definitions of the concepts and the functions that compute the
concepts. The composition of the functions is shown in the process steps.

RBDC’s algorithms have been optimized with respect to computational effi-
ciency. E.g., the algorithm for selecting subdiagrams implements the partitioning
of the diagrams based on the partitioning of the inheritance hierarchies and as-
sociations into blocks and then constructing subdiagrams using the classes, ge-
neralizations, associations and attributes of these blocks. The use of these parti-
tions presents a tradeoff between the granularity of the mix of associations from
the input diagram (desired by the user) and the performance. Also, partitioning
avoids paradoxical compositions resulting from the breaking of the inheritance
hierarchies.

Another contribution described in this paper is that the formalizations devel-
oped by Ehrig have been evaluated experimentally. Since there are no datasets
available for testing such methods, we wrote code for automatic generation of
UML class diagrams. The algorithms were based on a set of templates designed
with the objective of accounting for the “corner cases” of the architect-imposed
constraints, i.e., the templates induce a partitioning of the space of class dia-
grams into similar types of diagrams and provide the coverage of the diagrams
by selecting diagrams from different partitions, while also including the dia-
grams that are on the borders of such partitions.

Another novelty of our approach is the use of SPARQL and OWL to represent
external constraints imposed on the class diagrams. These constraints play the
role of design rules that may come from the software requirements or from the
design policies (or development principles) of the software architect. Once ex-
pressed in SPARQL, the constraints are verified by a standard OWL inference
engine and a SPARQL processor. While one could use other languages to represent

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 464 Journal of Software Engineering and Applications

and check the constraints, not all of them guarantee the time complexity like
OWL. Moreover, one could use other types of constraints, especially the ones
that capture the knowledge of the domain for which the software is being devel-
oped. This extension would require the development of an ontology for the do-
main.

RBDC generates multiple compositions and then selects the solutions that are
optimal with respect to a given set of objective functions. It is the case of mul-
ti-objective optimization, in which several metrics related to a number of quality
attributes of class diagrams and the solutions are chosen such that they are
“non-dominated”, following the Pareto optimality principles. While in our expe-
riments specific examples of metrics and weights were used, they can be easily
modified to the preferences of specific policy rules used by a software develop-
ment company.

Finally, RBDC has been evaluated experimentally and also compared with a
number of other approaches. Overall, we have shown that RDBC compares well
with respect to all but two features shown in Table 4.

The solutions implemented in RBDC can be extended in several ways. First,
RBDC uses only some of the general OWL axioms. To support additional class
diagram concepts such as enumeration, would take advantage of more general
OWL axioms. This would require an extension of the UML-to-OWL mapping.
Another extension would be adding the capability of using OCL constraints as-
sociated with class diagrams, mapping them to OWL and SPARQL, and incor-
porating such constraint processing into RBDC.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Jackson, M. and Zave, P. (1998) Distributed Feature Composition: A Virtual Archi-

tecture for Telecommunications Services. IEEE Transactions on Software Engi-
neering, 24, 831-847. https://doi.org/10.1109/32.729683

[2] Kourie, D.G. and Watson, B.W. (2012) The Correctness-by-Construction Approach
to Programming. Springer, Berlin. https://doi.org/10.1007/978-3-642-27919-5

[3] de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U. and Taentzer, G. (2007) At-
tributed Graph Transformation with Node Type Inheritance. Theoretical Computer
Science, 376, 139-163. https://doi.org/10.1016/j.tcs.2007.02.001

[4] W3C (2012) Web Ontology Language (OWL). http://www.w3.org/2004/OWL/

[5] Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S. and Chechik, M. (2007) Con-
sistency Checking of Conceptual Models via Model Merging. 15th IEEE Interna-
tional Requirements Engineering Conference, Delhi, 15-19 October 2007, 221-230.
https://doi.org/10.1109/RE.2007.18

[6] Tazin, A. (2017) UML Class Diagram Composition Using Software Requirements
Specifications. https://ceur-ws.org/Vol-2019/docsymp_9.pdf

[7] Baclawski, K., DeLoach, S.A., Kokar, M.M. and Smith, J. (1999) Object-Oriented

https://doi.org/10.4236/jsea.2022.1512025
https://doi.org/10.1109/32.729683
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1016/j.tcs.2007.02.001
http://www.w3.org/2004/OWL/
https://doi.org/10.1109/RE.2007.18
https://ceur-ws.org/Vol-2019/docsymp_9.pdf

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 465 Journal of Software Engineering and Applications

Transformation. In: Kilov, H., Rumpe, B. and Simmonds, I. Eds., Behavioral Speci-
fications of Businesses and Systems, Springer, Boston. 1-14.
https://doi.org/10.1007/978-1-4615-5229-1_1

[8] OMG (2011) Unified Modeling Language. https://www.omg.org/spec/UML/2.4.1/

[9] OMG (2016) Meta Object Facility. https://www.omg.org/spec/MOF/

[10] Smith, J. (1999) UML Formalization and Transformation. Ph.D. Thesis, Northeas-
tern University, Boston.

[11] Smith, J., Kokar, M.M. and Baclawski, K. (2001) Formal Verification of UML Dia-
grams: A First Step towards Code Generation. Practical UML-Based Rigorous De-
velopment Methods—Countering or Integrating the eXtremists, Toronto, 1 October
2001, 224-240.

[12] Maraee, A. and Balaban, M. (2014) Removing Redundancies and Deducing Equiva-
lences in UML Class Diagrams. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S.
and Insfran, E., Eds., Model-Driven Engineering Languages and Systems. Lecture
Notes in Computer Science, Vol. 8767, Springer, Cham, 235-251.
https://doi.org/10.1007/978-3-319-11653-2_15

[13] Balaban, M. and Maraee, A. (2013) Simplification and Correctness of UML Class
Diagrams—Focusing on Multiplicity and Aggregation/Composition Constraints.
In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A. and Clarke, P., Eds., Model-Driven
Engineering Languages and Systems. Lecture Notes in Computer Science, Vol. 8107,
Springer, Berlin, 454-470. https://doi.org/10.1007/978-3-642-41533-3_28

[14] Westfechtel, B. (2014) Merging of EMF Models. Formal Foundation. Software &
Systems Modeling, 13, 757-788. https://doi.org/10.1007/s10270-012-0279-3

[15] Gratzer, G. (1979) Universal Algebra. 2nd Edition, Springer, Berlin.

[16] Breiner, S., Padi, S., Subrahmanian, E. and Sriram, R.D. (2021) Deconstructing UML,
Part 1: Modeling Classes with Categories. National Institute of Standards and Tech-
nology (NIST), Gaithersburg. https://doi.org/10.6028/NIST.IR.8358

[17] Ehrig, H., Ehrig, K., Prange, U. and Taentzer, G. (2006) Fundamentals of Algebraic
Graph Transformation. Springer, Berlin.

[18] OMG (2016) Ontology Definition Metamodel. http://www.omg.org/spec/ODM/

[19] Leinhos, S. (2006) OWL Ontology Extraction and Modelling from and with UML
Class Diagrams—A Practical Approach. MSc. Thesis, University of the Federal Armed
Forces in Munich, Neubiberg.

[20] VIStology, Inc. (2022) BaseVISor. https://vistology.com/products/basevisor/

[21] W3C (2013) SPARQL 1.1 Update. https://www.w3.org/TR/sparql11-update/

[22] Egyed, A. (2002) Heterogeneous View Integration and Its Automation. Ph.D. The-
sis, University of Southern California, Los Angeles.

[23] Bansiya, J. and Davis, C. (2002) A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Transactions on Software Engineering, 28, 4-17.
https://doi.org/10.1109/32.979986

[24] Gill, N.S. and Sikka, S. (2011) Inheritance Hierarchy Based Reuse & Reusability Me-
trics in OOSD. International Journal on Computer Science and Engineering
(IJCSE), 3, 2300-2309.

[25] Sharma, A.K., Kalia, A. and Singh, H. (2012) Metrics Identification for Measuring
Object Oriented Software Quality. International Journal of Soft Computing and En-
gineering (IJSCE), 2, 255-258.

[26] Yi, T., Wu, F. and Gan, C. (2004) A Comparison of Metrics for UML Class Dia-

https://doi.org/10.4236/jsea.2022.1512025
https://doi.org/10.1007/978-1-4615-5229-1_1
https://www.omg.org/spec/UML/2.4.1/
https://www.omg.org/spec/MOF/
https://doi.org/10.1007/978-3-319-11653-2_15
https://doi.org/10.1007/978-3-642-41533-3_28
https://doi.org/10.1007/s10270-012-0279-3
https://doi.org/10.6028/NIST.IR.8358
http://www.omg.org/spec/ODM/
https://vistology.com/products/basevisor/
https://www.w3.org/TR/sparql11-update/
https://doi.org/10.1109/32.979986

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 466 Journal of Software Engineering and Applications

grams. ACM SIGSOFT Software Engineering Notes, 29, 1-6.
https://doi.org/10.1145/1022494.1022523

[27] Pereira, J.L.J., Oliver, G.A., Francisco, M.B., Cunha Jr., S.S. and Gomes, G.F. (2022)
A Review of Multi-Objective Optimization: Methods and Algorithms in Mechanical
Engineering Problems. Archives of Computational Methods in Engineering, 29,
2285-2308. https://doi.org/10.1007/s11831-021-09663-x

[28] Balaban, M., Maraee, A. and Sturm, A. (2007) Reasoning with UML Class Dia-
grams: Relevance, Problems, and Solutions—A Survey.
https://www.cs.bgu.ac.il/∼mira/CDReasoning-07.pdf

[29] Northeastern University (2021) Hardware Overview.
https://rc-docs.northeastern.edu/en/latest/hardware/hardware_overview.html

[30] Alanen, M. and Porres, I. (2003) Difference and Union of Models. In: Stevens, P., Whit-
tle, J. and Booch, G., Eds., UML 2003—The Unified Modeling Language. Modeling
Languages and Applications. Lecture Notes in Computer Science, Vol. 2863, Sprin-
ger, Berlin, 2-17. https://doi.org/10.1007/978-3-540-45221-8_2

[31] Eclipse Project (2019) EMF Compare. https://www.eclipse.org/emf/compare

[32] Eclipse Project (2021) EMF DiffMerge. https://wiki.eclipse.org/EMFDiffMerge

[33] Chechik, M., Nejati, S. and Sabetzadeh, M. (2012) A Relationship-Based Approach
to Model Integration. Innovations in Systems and Software Engineering, 8, 3-18.
https://doi.org/10.1007/s11334-011-0155-2

[34] Fahrenberg, U., Acher, M., Legay, A. and Wasowski, A. (2014) Sound Merging and
Differencing for Class Diagrams. In: Gnesi, S. and Rensink, A., Eds., Fundamental
Approaches to Software Engineering. Lecture Notes in Computer Science, Vol.
8411, Springer, Berlin, 63-78. https://doi.org/10.1007/978-3-642-54804-8_5

[35] Elasri, H., Elabbassi, E., Abderrahim, S. and Fahad, M. (2018) Semantic Integration
of UML Class Diagram with Semantic Validation on Segments of Mappings. ArXiv:
1801.04482.

[36] Rossini, A., Rutle, A., Lamo, Y. and Wolter, U. (2010) A Formalisation of the Copy-
Modify-Merge Approach to Version Control in MDE. The Journal of Logic and Al-
gebraic Programming, 79, 636-658. https://doi.org/10.1016/j.jlap.2009.10.003

[37] Rutle, A., Rossini, A., Lamo, Y. and Wolter, U. (2009) A Category-Theoretical Ap-
proach to the Formalisation of Version Control in MDE. In: Chechik, M. and
Wirsing, M., Eds., Fundamental Approaches to Software Engineering. Lecture
Notes in Computer Science, Vol. 5503, Springer, Berlin, 64-78.
https://doi.org/10.1007/978-3-642-00593-0_5

[38] Farias, K., Cavalcante de Oliveira, T., Gonçales, L.J. and Bischoff, V. (2022)
UML2Merge: A UML Extension for Model Merging. IET Software, 13, 575-586.
https://doi.org/10.1049/iet-sen.2018.5104

[39] Yang, S. and Sahraoui, H. (2022) Towards Automatically Extracting UML Class
Diagrams from Natural Language Specifications. Proceedings of the 25th Interna-
tional Conference on Model Driven Engineering Languages and Systems: Compa-
nion Proceedings, Montreal, 23-28 October 2022, 396-403.
https://doi.org/10.1145/3550356.3561592

[40] Bencharqui, H., Moubachir, Y. and Anwa, A. (2020) On the Use of Triple Graph
Grammars for Model Composition. On the Use of Triple Graph Grammars for
Model Composition, 5, 653-664. https://doi.org/10.25046/aj050281

[41] Ehrig, H., Ermel, C., Golas, U. and Hermann, F. (2015) Graph and Model Trans-
formation. Springer, Berlin. https://doi.org/10.1007/978-3-662-47980-3

https://doi.org/10.4236/jsea.2022.1512025
https://doi.org/10.1145/1022494.1022523
https://doi.org/10.1007/s11831-021-09663-x
https://www.cs.bgu.ac.il/%7Emira/CDReasoning-07.pdf
https://www.cs.bgu.ac.il/%7Emira/CDReasoning-07.pdf
https://rc-docs.northeastern.edu/en/latest/hardware/hardware_overview.html
https://doi.org/10.1007/978-3-540-45221-8_2
https://www.eclipse.org/emf/compare
https://wiki.eclipse.org/EMFDiffMerge
https://doi.org/10.1007/s11334-011-0155-2
https://doi.org/10.1007/978-3-642-54804-8_5
https://doi.org/10.1016/j.jlap.2009.10.003
https://doi.org/10.1007/978-3-642-00593-0_5
https://doi.org/10.1049/iet-sen.2018.5104
https://doi.org/10.1145/3550356.3561592
https://doi.org/10.25046/aj050281
https://doi.org/10.1007/978-3-662-47980-3

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 467 Journal of Software Engineering and Applications

Appendix A: Query templates

In this section, we show templates with minimum cardinality parameters only.
Altogether, there are 8 templates that take into account minimum and maxi-
mum cardinality parameters. Variable names start with a “?”, parameters start
with a a “$” sign. Each template is presented in natural language, first, and then
its SPARQL representation is shown.

Template 1
“Every instance of class c1 has a single value attribute a1 of datatype dt1.”
Here c1, a1, dt1 are class, data type property and data type parameters, respec-

tively.

Template 2
“Every instance of class c1 is associated with at least n1 instances of class c2.”

Here n1 is a multiplicity parameter.

Template 3
“Every instance of class c1 is associated with at least n1 instances of class c2

and every instance of class c2 is associated with at least n2 instances of class c1.”

https://doi.org/10.4236/jsea.2022.1512025

A. Tazin, M. M. Kokar

DOI: 10.4236/jsea.2022.1512025 468 Journal of Software Engineering and Applications

Template 4
“Every instance of class c2 is also an instance of class c1.”

https://doi.org/10.4236/jsea.2022.1512025

	Composition of UML Class Diagrams Using Category Theory and External Constraints
	Abstract
	Keywords
	1. Introduction
	2. Optimal Diagram Construction Problem
	3. UML Diagram Composition Example
	4. RBDC Method
	4.1. Extracting and Renaming UML Models
	4.2. Finding Subdiagrams
	4.3. Mapping UML Models to Graphs
	4.4. Shared Unions of Pairs of ATGI-Graphs
	4.5. Removing Redundant Attributes
	4.6. Representing UML Class Diagrams in OWL
	4.7. Running OWL and ODM Extension Rules
	4.8. Computation of Diagram Quality Metrics and Selection of Optimal Solutions

	5. RBDC Evaluation
	5.1. Generation of Constraints and Class Diagrams
	5.2. Quality of Results
	5.2.1. Evaluation of Optimality
	5.2.2. Satisfaction of External Constraints
	5.2.3. Conformance with Structure
	5.2.4. Evaluation of Redundancies

	5.3. Evaluation of Performance
	5.4. Comparison with Other Methods

	6. Conclusions
	Conflicts of Interest
	References
	Appendix A: Query templates

