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Abstract 
Historically viewed as a niche economic sector, gaming is now projected to 
exceed a global annual revenue of $218.7 billion in 2024, taking advantage of 
recent Artificial Intelligence (AI) advances. In recent years, specific AI tech-
niques namely; Machine Learning (ML) and Reinforcement Learning (RL), 
have seen impressive progress and popularity. Techniques developed within 
these two fields are now able to analyze and learn from gameplay experiences 
enabling more interactive, immersive, and engaging games. While the num-
ber of ML and RL algorithms is growing, their implementations through frame-
works and toolkits are also extensive too. Moreover, the game design and de-
velopment community lacks a framework for informed evaluation of availa-
ble RL toolkits. In this paper, we present a comprehensive survey of RL tool-
kits for games using a qualitative evaluation methodology. 
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1. Introduction 

Computer gaming is a growing market showing a global revenue increase of 
8.7% from 2019 to 2021 to reach $218.7 billion in 2024 [1]. Many games have 
multiple non-player characters (NPCs) who play with the player, against them or 
take a neutral position within the game. They play an essential part in video 
games to increase the player experience and should therefore be supplied with a 
fitting behavior by creating a fitting Artificial Intelligence (AI) for them [2]. 
They can take multiple roles like providing a challenge for the player to fight 
against or representing a trusted ally with whom they fought many battles [3]. It 
is therefore important, that the field of game design and development finds new 
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ways to build their intelligence and let them play their role inside the game [4]. 
There are different AI techniques in use in modern computer games. Espe-

cially ever since the 21st century, various sorts of video games, online or offline 
have undergone rapid changes with the development of artificial and computa-
tional intelligence [5]. The roots of AI application in game design and develop-
ment can be traced back to the 1950s when Claude Shannon (The Information 
Theory) and Alan Turing (Theory of Computation) began to write AI logic for 
chess programs [6]. In 1997, the famous computer “Deep Blue” which represented 
the pinnacle of AI techniques beat the chess Master Garry Kasparov in a publi-
cized match [6]. 

It is widely accepted that decision making and pattern recognition are basic 
skills for humans; however, it can be challenging for computers. Sequential deci-
sion-making is a core topic in Machine Learning (ML). Moreover, a sequence of 
decisions taken to achieve a given goal in an environment evolves the concept of 
Reinforcement Learning (RL). The ability to let the AI decide on its own is a fas-
cinating concept, and it is progressively being worked on in every field including 
gaming [7]. 

Yannakakis and Togelius [8] identified various research areas standing out 
within the application of AI in the gaming field. Their work aimed to offer a 
higher-level overview of AI applications in gaming and was more about the in-
teractions among these applications as well as the influences they had on each 
other. One critical limitation of this work is that it does not capture the recent 
advances in ML and RL and hence does not provide a current source to study AI 
applications in game design and development. More recently, Shao et al. [9] 
provided a survey of the progress of Deep RL methods and compared their main 
techniques and properties. A major shortcoming of this study is that it exclu-
sively focuses on Deep RL and leaves the scientific community without current 
state-of-the-art of ML and RL applications specific to game design and develop-
ment. 

Motivated by the quality of the work presented in [6] [7] [8], we aim to ad-
dress the existing limitations associated with outdated studies and incomplete 
analysis of trending ML and RL techniques in the field of game design and de-
velopment. This paper presents an insight into AI implementation in game de-
velopment with an emphasis on ML and RL toolkits. It proposes a comprehen-
sive evaluation framework using a qualitative comparison to support the com-
munity of game developers. In this study, we examine the applications of ML 
and RL toolkits in gaming, their challenges, as well as their trends. 

The remainder of this paper is organized as follows; Section 2 provides an 
overview of the evolution of the global gaming industry. Section 3 introduces the 
fundamental concepts of ML and its sub-fields. Section 4 details the state-of-the-art 
of available ML and RL toolkits. Section 5 presents our qualitative evaluation 
methodology articulated around a specific set of technical criteria. Section 6 out-
lines the key evaluation analysis findings. Finally, Sections 7 and 8 discuss this 
study and conclude with future work. 
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2. Gaming Industry 

The early years of the gaming industry date back to the 1970s with the introduc-
tion of arcade machines and game consoles [10]. As computer components be-
came more affordable, companies began to explore such market opportunities in 
game design and development [11]. Video games are a generic term for all types 
of digital games, played and used on some type of screen. This includes arcade 
machines, handheld devices, game consoles (i.e., Xbox, PlayStation, Game Boy), 
and computer games [12]. Stanford University in the USA hosted the first gam-
ing tournament in 1972 giving rise to competitive video games [13]. Following 
attempts to increase the popularity of gaming were made during the 1980s and 
1990s with the organization of national tournaments and world championships. 
Companies such as Atari or Nintendo used these events as a marketing tool to 
promote their video games, while fostering a gaming culture [14]. 

During the 1990s, with the development of the internet and further multip-
layer capabilities, video games experienced significant growth, making it possible 
not only to connect but to compete with external players [15]. Further multip-
layer tournaments began proliferating, as well as the tournament organizations 
across the globe (i.e., Cyberathlete Professional League (CPL) and the AMD 
Professional Gamers League (PGL) in the USA, the Deutsche Clanliga (DeCL) in 
Germany, among many others in different countries and over the years) [16]. 
Asia-Pacific is easily the world’s biggest region by games revenues, with $88.2 
billion in 2021 alone, making up 50.2% of all game revenues. With its contribu-
tion of $45.6 billion, China is by far the primary driver here. North America re-
mains 2021’s second-biggest region, boasting game revenues of $42.6 billion 
(mainly from the U.S.) (See Figure 1(a)). 

The recent pandemic has had a profound impact on game development and 
publishing in terms of delays, which are affecting revenues across the board in 
2021’ mostly on the console side but also on PC. Compared to mobile, console 
and PC games tend to have bigger teams, higher production values, and more 
cross-country collaborations (See Figure 1(b)). 

There will be close to 3.0 billion players across the globe in 2021. This is up 
+5.3% year on year from 2020, showcasing that 2020’s gaming boom has led to a 
lasting increase in players, with room for further growth (See Figure 1(c)). 

Looking ahead, the global number of players will pass the 3-billion milestone 
next year in 2022. This number will continue to grow at a +5.6% of the com-
pound annual growth rate (2015-2024) to 3.3 billion by 2024 (See Figure 1(d)). 

Along with the growth of the global gaming industry and advancements in AI 
research, the need to figure out tough problems in existing game design and de-
velopment using current benchmarks for designing, developing and training AI 
models (See Figure 1) has also increased. However, as these challenges are 
“solved,” the need for novel interactive environments, engaging gameplay, and 
smart NPCs arises. Yet, creating such environments is often time-intensive and 
requires specialized computational and AI domain knowledge. 
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Figure 1. An overview of the global gaming market over [1]. 
 

In the following section, we introduce the fundamental ML concepts aiming at 
boosting the game design and development field. 

3. Machine Learning Concepts 
3.1. Machine Learning 

ML is the art of making computer programs learned from experience. A com-
puter program is said to learn from experience E with respect to some class of 
tasks T and performance measure P, if its performance at tasks in T, as measured 
by P, improves with experience E [17]. For example, task T can be playing 
checkers, experience E is playing thousands of checkers games, and the perfor-
mance P is the fraction of games won against human opponents. We can divide 
the learning problems into three classes: 
• Learning is called supervised if the experience E takes the form of a labeled 

dataset (x,y), the task is to learn a function that maps x to y, 
• Learning is called unsupervised if E takes the form of an unlabeled dataset. 

The task is to learn underlying structure, 
• Reinforcement learning (RL) is when the experience E takes the form of 

state-action pairs and corresponding rewards. The task is to maximize future 
rewards over a number of time steps. 

Tasks are usually described in terms of how ML should process a data item 
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(i.e., an example). If the desired behavior is to assign the input data item to one 
category among several, this is a classification task, e.g., object recognition. Oth-
er examples of tasks are machine translation, transcription, anomaly detection, 
etc [18] [19]. 

3.2. Reinforcement Learning (RL) 

Reinforcement Learning (RL) is particularly interesting for playing games since 
its task involves interaction with an environment, by committing actions and 
receiving rewards for these actions [20]. In RL, the experience is a set of epi-
sodes. Each episode is a sequence of tuples (State, Action, Reward, Next State), 
the performance measure is the discounted total reward, and the task basically 
consists of playing (Figure 2). A more sophisticated description of playing is 
adopting a policy that maps states of the game to actions. If this mapping takes 
the form of a neural network, a deep one, we refer to Deep Reinforcement 
Learning (DRL). 

3.3. Deep Reinforcement Learning (DRL) 

Given an agent that interacts with an environment through percepts (observa-
tions) and actions, the goal of reinforcement learning is to find an optimal policy 

*π  that maximizes the expected total sum of rewards the agent receives during 
a run, while starting from an initial state 0s S∈  [22]. Usually, the performance 
of a given policy π  is evaluated as shown in Equation (1): 

( ) ( ) ( ) ( ) [ ]0 1 0 0
0

eval | |t
t

t
s r s s

τ

ρ π ρ ππ γ +
=

 = =  
∑             (1) 

where γ  is a discount factor, and the expectation is over all the possible runs 
(or traces) allowed by the policy π . 0  is the total reward for 0t = . Among 
the most popular algorithms to reach an optimal policy in this context are value 
iteration and Q-learning. Value iteration assumes that the reward model and the 
transition model are known a priori. Q-learning actively learns a utility function 
for (State, Action) pairs [9] as detailed in Equations (2) and (3): 

( ) ( ), | ,t t t t tQ s a s a =                        (2) 

( ) ( )* arg max ,as Q s aπ =                     (3) 

By combining these ideas from reinforcement learning with the recently 
re-invented neural networks a new set of algorithms emerges and is dubbed  

 

 
Figure 2. Classic agent-environment loop [21]. 
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DRL. One of the seed contributions in this area is value learning. In [23], a 
Convolutional Neural Network (CNN) was trained to play Atari with a variant 
of Q-learning. The CNN approximates the utility function of Q-learning based 
on raw pixels for input and an estimation of future reward as output. The loss 
function for value learning is in Equation (4): 

( ) ( )real predicted, ,Q s a Q s a = −                   (4) 

where ( )predicted ,Q s a  is the output of the neural network and ( )real ,Q s a  is the 
actual Q value is in Equation (5): 

( ) ( )real , ,Q s a r Q s aγ ′ ′= +                     (5) 

Another approach is policy learning, where the policy is learned directly 
through training a neural network and without passing through value learning. 
Policy learning is shown to be very successful at addressing challenges of (1) 
large or continuous action space such as in self-driving, and (2) stochastic tran-
sition and reward models. Policy learning is based on a set of policy gradient 
methods with the goal of learning a probability distribution over the actions 
given a state ( )|P a s . The training is performed through continuous running 
of episodes and simply increasing the probability of actions that resulted in high 
reward, and decreasing the probability of actions that resulted in low reward. 
The loss function in Equation (6): 

( )log | .P a s= −                        (6) 

3.4. Applications in Gaming 

ML, RL and DRL are heavily used in gaming to develop not only competitive 
agents but also collaborative agents and NPCs. Alpha Go beated the top human 
player at Go in 2016. DeepMind introduced AlphaZero in 2017, a single system 
that taught itself through self-play how to master the games of chess, shogi 
(Japanese chess), and Go [24] [25]. MuZero, a general-purpose algorithm, was 
able to master Go, chess, shogi and Atari without needing to be told the rules, 
thanks to its ability to plan winning strategies in unknown environments [26]. A 
summary of these algorithms as per [27] is depicted in Table 1. 

Similarly, AlphaStar, a multi-agent RL system, was developed to play StarCraft  
 

Table 1. Evolution of DRL for playing board games. 

DRL 

Domain Knowledge 

Go Chess Shogi Atari 
Human 

Play 
Domain 

Knowledge 
Known 
Rules 

ALpha Go [28] ⊗     ⊗  ⊗  ⊗  

Alpha Go Zero [29] ⊗       ⊗  

Alpha Zero [24] ⊗  ⊗  ⊗     ⊗  

Mu Zero [26] ⊗  ⊗  ⊗  ⊗     
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II at Grandmaster level [30]. OpenAI developed Dota 2 AI agents, called OpenAI 
Five, and made them learn by playing over 10,000 years of games against them-
selves. The agents demonstrated the ability to defeat world champions in Dota 2 
[31]. Using the same RL model as OpenAI Five boosted with additional tech-
niques, OpenAI trained a pair of neural networks to solve the Rubik’s Cube with 
a human-like robot hand. Facebook and Carnegie Mellon built the first AI-based 
game that beats pros in 6-player poker [32]. 

4. Reinforcement Learning Toolkits 
4.1. Unity ML-Agents 

The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source 
project that enables games and simulations to serve as environments for training 
intelligent agents [33] [34]. The training of agents is performed using ML tech-
niques including reinforcement learning, imitation learning, and neuroevolution 
[35]. There are 3 main kinds of objects in a learning environment in Unity 
ML-Agents: 
• Agent: Each Agent can have a unique set of states and observations, take 

unique actions within the environment, and receive unique rewards for 
events within the environment. An agent’s actions are decided by the brain it 
is linked to. 

• Brain: Each Brain defines a specific state and action space, and is responsible 
for deciding which actions each of its linked agents will take. 

• Academy: Each environment contains a single academy which defines the 
scope of the environment, in terms of engine configuration, frameskip, and 
global episode length. 

With the Unity ML-Agents toolkit, a variety of training scenarios are possible, 
depending on how agents, brains, and rewards are connected. Despite the lack of 
detailed studies on Unity ML-Agents, a few games have been implemented using 
Unity and its ML-Agents package where the training has been done using rein-
forcement learning including imitation learning and self-play. Figure 3 illu-
strates the Unity ML-Agents Learning Environment [36]. An AI-based agent has 
been implemented in Connect4 game using Unity ML-Agents [37]. The agent 
training was performed using the Proximal Policy Optimization (PPO) algo-
rithm. Moreover, a RL model using Hierarchical Critics (RLHC) algorithm has 
been implemented in Unity ML-Agents which performance was compared with 
the PPO model using two different competitive games—Soccer and Tennis [38]. 

4.2. OpenAI 

OpenAI is a research lab whose mission is to ensure that artificial general intelli-
gence benefits all of humanity [21]. OpenAI provides various tools to support ap-
plications of RL and ML in scientific research and game design and development. 

4.2.1. OpenAI Gym 
Gym is an open-source toolkit for developing and comparing reinforcement  
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Figure 3. Unity ML-agents learning environment [36]. 

 
learning algorithms [39]. The OpenAI Gym toolkit encompasses a collection of 
tasks, called environments, including Atari games, board games, as well as 2D 
and 3D physical simulations for serious games [40]. It is used to train agents by 
implementing and comparing various ML and RL algorithms using shared in-
terfaces. Therefore, OpenAI Gym is mainly used for standardization and ben-
chmarking purposes. 

4.2.2. OpenAI Safety Gym 
Safety Gym is a suite of environments and tools for RL agents with safety con-
straints implemented while training. While training the RL agents, safety is not 
much focus, but in certain aspects, safety is an important concern and is to be 
considered. To address the safety challenges while training the RL agents and to 
accelerate the safe exploration research, OpenAI introduced Safety Gym. It con-
sists of two components: 
• An environment builder for creating a new environment by choosing from a 

wide range of physics elements, goals and safety requirements. 
• Provides a suite of pre-configured benchmarks environments to choose from. 

Safety Gym uses the OpenAI Gym for instantiating and interfacing with the RL 
environments and MuJoCo physics simulator to construct and forward-simulate 
each environment [41]. 

4.2.3. OpenAI Baselines 
OpenAI Baselines is a set of high-quality implementations of RL algorithms. 
These algorithms make it easier for the research community to replicate, refine, 
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and identify new ideas, and create baselines to build research on top of. Such al-
gorithms include Deep Q-Network (DQN) and its variants, Actor Critic using 
Kronecker-Factored Trust Region (ACKTR), Advantage Actor Critic (A2C), and 
Asynchronous Advantage Actor Critic (A3C) [42]. 

4.2.4. OpenAI Universe 
OpenAI universe is an extension of the gym. It provides the ability to train and 
evaluate agents in a wide range of simple to real-time complex environments. It 
has unlimited access to many gaming environments. Using Universe, any pro-
gram can be turned into a Gym environment without access to program inter-
nals, source code, API’s as universe works by launching the program automati-
cally behind a virtual network computing remote desktop. With support from 
EA, Microsoft Studios, Valve, Wolfram, and many others, openAI has already 
secured permission for Universe AI agents to freely access games and applica-
tions such as Portal, Fable Anniversary, World of Goo, RimWorld, Slime 
Rancher, Shovel Knight, SpaceChem, Wing Commander III, Command & Con-
quer: Red Alert 2, Syndicate, Magic Carpet, Mirror’s Edge, Sid Meier’s Alpha 
Centauri, and Wolfram Mathematica. 

4.2.5. OpenAI Gym Retro 
OpenAI Gym Retro enables the conversion of classic retro games into OpenAI 
Gym compatible environments and has integration for around 1000 games. The 
emulators used in OpenAI Gym Retro support Libretro API which allows the 
creation of games and supports various emulators [43]. It is useful primarily as a 
means to train RL on classic video games, though it can also be used to control 
those video games using Python scripts. 

4.3. Petting Zoo 

Petting Zoo is a python library for conducting research in multi-agent environ-
ments. Petting Zoo is a multi-agent version of OpenAI Gym. What OpenAI 
Gym has done with single agent reinforcement learning environments, Petting 
Zoo was developed with the goal of doing the same with multi-agent environ-
ments. PettingZoo’s API, while inheriting many features of OpenAI Gym, is 
unique amongst Multi Agent Reinforcement Learning (MARL) APIs. Petting-
Zoo models environments as Agent Environment Cycle (AEC) games, in order 
to be able to cleanly support all types of multi-agent RL environments under one 
API and to minimize the potential for certain classes of common bugs. Petting 
Zoo includes 63 default environments [44]. 

4.4. Google Dopamine 

Dopamine is a TensorFlow based research framework for the fast prototyping of 
reinforcement learning algorithms. Dopamine supports multiple agents like 
DQN, SAC and these are implemented using JAX which is a Python library for 
high-performance ML research. Dopamine supports Atari environments and 
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OpenAI’s MuJoCo environments [45]. 

5. Evaluation Methodology 

In this study, we propose a qualitative evaluation methodology that uses a set of 
eleven specific technical criteria (See the following subsections). Each candidate 
ML/RL toolkit introduced in Section 1 is evaluated based on the following qua-
litative data collection techniques: 1) Game design and development experts in-
terviews; 2) Technical experimentation and observations; and 3) Documentation 
including scientific publications and technical reports. 

5.1. Portability 

Portability in ML/RL toolkits is the usability of the same toolkit in different en-
vironments. The pre-requirement for portability is the generalized abstraction 
between the toolkit logic and its interfaces. When a ML/RL toolkit with the same 
functionality is developed for several environments, portability is the key issue 
for development cost reduction. 

5.2. Interoperability 

Interoperability refers to the capability of different ML/RL toolkits to communi-
cate with one another and with game engines freely and easily. Toolkits that are 
interoperable exchange information in real-time, without the need for specia-
lized or behind-the-scenes coding. 

5.3. Performance 

The training speed of agents in a ML/RL depends on the complexity and analysis 
of the algorithm used to train that agent. Booth et al. provide a comparison 
study of different algorithms including PPO in ML-Agents and A2C, ACKTR 
and PPO2 algorithms of OpenAI Baselines [46]. 

5.4. Multitask Learning 

Multi-task learning is an ML/RL approach in which we try to learn multiple 
tasks simultaneously, optimizing multiple loss functions at once. Rather than 
training independent models for each task, we allow a single model to learn to 
complete all of the tasks at once. In this process, the model uses all of the availa-
ble data across the different tasks to learn generalized representations of the data 
that are useful in multiple contexts. 

5.5. Multi-Agent Environments 

An environment might contain a single agent or multiple agents. In the case of 
multiple agents, each agent might have a different set of actions to perform and 
the agents might need interaction between them as the training goes on [47]. 
This requires a different training methodology from training a single agent (see 
Figure 4). 
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Figure 4. Multi-Agent Model [47]. 

5.6. Usability 

Usability is a measure of how well a specific user in a specific context can use a 
ML toolkit to design and develop games effectively, efficiently and satisfactorily. 
Game designers usually measure a toolkit design’s usability throughout the de-
velopment process’ from wireframes to the final deliverable’ to ensure maximum 
usability. 

5.7. Documentation and Support 

ML/RL toolkit documentation is written text or illustration that accompanies tool-
kits or is embedded in the source code. The documentation either explains how 
the toolkit operates or how to use it. Documentation is an important part of game 
design and development when using ML/RL toolkits. Types of documentation in-
clude; 1) Requirements—Statements that identify attributes, capabilities, characte-
ristics, or qualities of a toolkit, 2) Architecture/Design—Overview of the toolkit 
design and includes relations to an environment and construction principles to be 
used, 3) Technical—Documentation of code, algorithms, interfaces, and APIs, 4) 
End user—Manuals for the end-user, administrators and support staff, and 5) 
Marketing—How to market the product and analysis of the market demand. 

5.8. Learning Strategies 

The learning strategies are the different techniques ML/RL toolkits and frame-
works used to train the agents in game design and development. These strategies 
are translated through machine learning algorithms including: 
• Naïve Bayes Classifier Algorithm (Supervised Learning—Classification) based 

on Bayes’ theorem and classifies every value as independent of any other val-
ue. It allows predicting a class/category, based on a given set of features, us-
ing probability. 

• K Means Clustering Algorithm (Unsupervised Learning—Clustering) is a 
type of unsupervised learning, which is used to categorize unlabelled data, 
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i.e., data without defined categories or groups. The algorithm works by find-
ing groups within the data, with the number of groups represented by the va-
riable K. It then works iteratively to assign each data point to one of K groups 
based on the features provided. 

• Support Vector Machine Algorithm (Supervised Learning—Classification) 
analyzes data used for classification and regression analysis. It essentially fil-
ters data into categories, which is achieved by providing a set of training ex-
amples, each set marked as belonging to one or the other of the two catego-
ries. This algorithm then works to build a model that assigns new values to 
one category or the other. 

• Linear Regression (Supervised Learning/Regression) is the most basic type of 
regression. Simple linear regression allows us to understand the relationships 
between two continuous variables. 

• Logistic Regression (Supervised learning—Classification) focuses on esti-
mating the probability of an event occurring based on the previous data pro-
vided. It is used to cover a binary dependent variable that is where only two 
values, 0 and 1, represent outcomes. 

• Artificial Neural Networks (Reinforcement Learning) comprise “units” ar-
ranged in a series of layers, each of which connects to layers on either side. 
ANNs are essentially a large number of interconnected processing elements, 
working in unison to solve specific problems. 

• Random Forests (Supervised Learning—Classification/Regression) is an en-
semble learning method, combining multiple algorithms to generate better re-
sults for classification, regression and other tasks. Each individual classifier is 
weak, but when combined with others, it can produce excellent results. The al-
gorithm starts with a “decision tree” (a tree-like graph or model of decisions) 
and an input is entered at the top. It then travels down the tree, with data being 
segmented into smaller and smaller sets, based on specific variables. 

• Nearest Neighbours (Supervised Learning) The K-Nearest-Neighbour algo-
rithm estimates how likely a data point is to be a member of one group or 
another. It essentially looks at the data points around a single data point to 
determine what group it is actually in. 

5.9. Reward Strategy 

Reward functions describe how the agent “ought” to behave. It is an incentive 
mechanism that tells the agent what is correct and what is wrong using reward 
and punishment. The goal of agents in RL is to maximize the total rewards. 
Sometimes we need to sacrifice immediate rewards in order to maximize the to-
tal rewards. Reward strategy depends on the parameters a game developer setup 
during the creation of a game environment. 

5.10. Precision and Recall 

Precision is one indicator of a machine learning model’s performance - the qual-
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ity of a positive prediction made by the model. Precision refers to the number of 
true positives divided by the total number of positive predictions (i.e., the num-
ber of true positives plus the number of false positives). It helps us to measure 
the ability to classify positive samples in the model. Precision and recall are two 
important model evaluation metrics. While precision refers to the percentage of 
relevant results, recall refers to the percentage of total relevant results correctly 
classified by ML/RL algorithm. Recall helps measure how many positive samples 
were correctly classified by the model. 

5.11. Visual Observations 

Visual observation extends ML/RL toolkits to allow both novice and expert game 
developers to quickly and easily build and deploy highly accurate and explaina-
ble ML/RL models for agents in games using image-based data. Observation 
gathers data through visual or technological means. Visual observation is ‘direct’ 
allowing game developers to witness the agents’ behaviors firsthand in their en-
vironment. 

6. Evaluation Analysis 

Table 2 illustrates the outcomes of the proposed qualitative evaluation analysis 
with respect to the technical criteria detailed in Section 5. It is important to note 
that OpenAI is an open-source platform and Unity is a commercial platform. 
Nevertheless, Unity offers its ML Agent as an open-source toolkit. With respect 
to the proposed set of eleven technical criteria, it is obvious that Unity ML-Agents 
toolkit provides full support for most of these criteria with some limitations with 
regard to Multitask Learning and Learning strategies. On the other hand, Ope-
nAI including its various tools, Petting Zoo, and Google Dopamino suffer from a 
critical lack of Visual Observations support. Moreover, OpenAI and its tools fail 
to fully support Multi-Agent Environments. 

OpenAI Gym and Unity ML-Agents underlying software architectures are 
very similar and both provide comparable functionalities to game developers. 
In the scientific community, OpenAI has larger popularity compared to Unity 
ML-Agents as it is developed with the intent of developing, analyzing and compar-
ing reinforcement learning algorithms whereas Unity’s main purpose is to develop  

 
Table 2. Overview of the evaluation of reinforcement learning toolkits. 
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and produce enterprise-level games. OpenAI Gym and Unity ML-Agents have 
been used widely for implementation of RL algorithms in recent years. OpenAI 
Gym doesn’t restrict itself to gaming, and has been used in various streams like 
telecommunications, optical networks and other engineering fields. Because of 
its wide range of options, OpenAI Gym has been used more widely than Unity 
ML-Agents to perform research and establish ML/RL models related ben-
chmarking results. 

The training of the game agents can be performed both in Gym and Unity. How-
ever, Gym only supports reinforcement learning for training the agents, whereas 
with ML-Agents, it is possible to train the games using reinforcement learning, imi-
tation learning, and curriculum learning. The comparison between Unity 
ML-Agents PPO and OpenAI Baselines’ PPO2 has proved this latter has scored 50% 
higher while training 14% slower. The Actor Critic using Kronecker-Factored 
Trust Region (ACKTR) algorithm and the Advantage Actor Critic (A2C) algo-
rithm of the OpenAI Baselines trained 33% faster than Unity ML Agent [46]. 

Unity has a rich visual platform which is most helpful in building the envi-
ronments even with a little programming experience. It has components de-
signed for each asset and can be easily configured. On the other hand, OpenAI 
Gym is compatible with Tensorflow and provides rich graphs. To train more 
robust agents that interact at real-time to dynamic variations of the environment 
such as changes to the objects’ attributes, Unity provides randomly sampled pa-
rameters of the environment during training (also called Environment Parame-
ter Randomization). This technique is based on Domain Randomization which 
enables training agents by randomized rendering. Unity ML-Agents also allow 
the use of multiple cameras for visual observation. This enables agents to learn 
and integrate information from multiple visual streams. 

7. Discussion 

Unity ML-Agents offers a rich visual interface to create environments and place 
assets. It provides a rich panel or well established algorithms as part of ready to 
use default environments as illustrated in Table 3. Consequently, it offers more 
usability for game developers. Moreover, the abundant technical and functional 
documentation, case studies, tutorials, and technical support increase the popu-
larity of this platform among the game design and development community. The 
OpenAI Gym platform allows users to compare the performance of their ML/RL 
algorithms. In fact, the aim of the OpenAI Gym scoreboards is not to design and 
develop games, but rather to foster scientific community collaboration by shar-
ing projects and enabling meaningful ML/RL algorithm benchmark [21]. 

On the one hand, Unity ML-Agents toolkit allows multiple cameras to be used 
for observations per agent. This enables agents to learn to integrate information 
from multiple visual streams. This technique leverages CNN to learn from the 
input images. The image information from the visual observations that are pro-
vided by the Camera Sensor is transformed into a 3D Tensor which can be fed  
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Table 3. Default environments in unity ML-agents. 

Environments Description Algorithms 

3DBall: 3D 
Balance Ball 

A balance-ball task, where the agent balances the ball on it’s head. PPO & SAC 

GridWorld A multi-goal version of the grid-world task. Scene contains agent, goal, and obstacles. 
The agent must navigate the grid to the appropriate goal while avoiding the obstacles. 

PPO & SAC 

PushBlock A platforming environment where the agent can push a block around. Imitation & PPO & SAC 

Wall Jump A platforming environment where the agent can jump over a wall. PPO & SAC 

Crawler A creature with 4 arms and 4 forearms. Imitation & PPO & SAC 

Worm A worm with a head and 3 body segments. PPO & SAC 

Food Collector A multi-agent environment where agents compete to collect food. PPO & SAC 

Hallway Environment where the agent needs to find information in a room, remember it, and 
use it to move to the correct goal. 

Imitation & PPO & SAC 

Soccer Twos Environment where four agents compete in a 2 vs. 2 toy soccer game. MA-POCA 

Strikers Vs. 
Goalie 

Environment where two agents compete in a 2 vs. 1 soccer variant. PPO & SAC 

Walker Physics-based Humanoid agents with 26 degrees of freedom. The agents must move its 
body toward the goal direction without falling. 

PPO & SAC 

Pyramids Environment where the agent needs to press a button to spawn a pyramid, then 
navigate to the pyramid, knock it over, and move to the gold brick at the top. 

Imitation & PPO & SAC 

Match 3 Simple match-3 game. Matched pieces are removed, and remaining pieces drop down. 
New pieces are spawned randomly at the top, with a chance of being “special”. 

PPO 

Sorter The Agent is in a circular room with numbered tiles placed randomly. The agent visits 
all the tiles in ascending order. 

PPO 

Cooperative 
Push Block 

Similar to Push Block, the agents are in an area with blocks that need to be pushed into 
a goal. 

MA-POCA 

Dungeon 
Escape 

Agents are trapped in a dungeon with a dragon, and must work together to escape. The 
goal is to unlock the dungeon door and leave. 

MA-POCA 

 
into the CNN of the agent policy. This allows agents to learn from spatial regulari-
ties and terrain topology in the observation images. In addition, it is possible to use 
visual and vector observations with the same agent with Unity ML-Agents. This 
powerful feature provides access to vector observations such as raycasting, real 
time visualization, and parallelization. Such a feature is designed with the intent 
of rapid AI agents implementation in video games, not for scientific research. 
This hinders its application to more realistic, complex and real-world use cases 
and serious games. 

OpenAI Gym lacks the ability to configure the simulation for multiple agents. 
In contrast, Unity ML-Agents supports dynamic multi-agent interaction where 
agents can be trained using RL models through a straightforward Python API. It 
also provides MA-POCA (MultiAgent POsthumous Credit Assignment), which 
is a novel multi-agent trainer. 
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Petty-zoo provides a multi-agent policy gradient algorithm where agents learn 
a centralized critique based on the observations and actions of all agents. How-
ever, it suffers from a performance limitation when dealing with large-scale mul-
ti-agent environments. In fact, the input space of Q grows linearly with the 
number of agents N [48]. 

Finally, Table 4 provides a summary of common algorithms used in rein-
forcement learning gaming toolkits. Unity ML-Agents does not support multi-
task learning. However, it offers multiple interacting agents with independent 
reward signals sharing common Behavior Parameters. This technique offers 
game developers the ability to mimic multitask learning by implementing a sin-
gle agent model and encoding multiple behaviors using HyperNetworks. 

8. Conclusions and Future Work 

In this paper, we provided an overview of the main ML and RL toolkits for game 
design and development. OpenAI and its rich suite of tools provide a solid op-
tion for AI-based agent implementation and training with respect to a large pan-
el of supported RL algorithms. Yet, Unity ML-Agents remains a recommended 
toolkit for rapid AI-based game development using limited yet pre-trained RL 
models. The proposed qualitative evaluation methodology used a set of specific 
technical criteria. Each candidate toolkit has been evaluated based on the fol-
lowing qualitative data collection techniques including interviews, observations, 
and documentation. Qualitative methodologies provide contextual data to ex-
plain complex issues by explaining the “why” and “how” behind the “what.” 
However, the limitations of such a methodology include the lack of generaliza-
bility, the time-consuming and costly nature of data collection in addition to the 
difficulty and complexity of objective data analysis and interpretation. 

 
Table 4. Common algorithms used in reinforcement learning gaming toolkits. 

Algorithms OpenAI Gym Unity ML-Agents Google Dopamine 

A2C Yes   

ACER Yes   

ACKTR Yes   

DDPG Yes   

DQN Yes  Yes 

GAIL Yes Yes  

PPO Yes Yes  

HER Yes   

SAC Yes Yes Yes 

C51 Yes  Yes 

Rainbow Yes  Yes 

IQN Yes  Yes 
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To address the limitations of our qualitative evaluation approach, our future 
work will focus on empirical and quantitative evaluations to verify, validate, and 
confirm our qualitative findings. A mixed method design with both qualitative 
and quantitative data will involve statistical assessments of existing RL toolkits to 
measure complexity, CPU and memory usage, scalability, and other relevant 
software quality attributes. 
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