
Journal of Software Engineering and Applications, 2022, 15, 417-435
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2022.1512024 Dec. 30, 2022 417 Journal of Software Engineering and Applications

Reinforcement Learning Toolkits for Gaming:
A Comparative Qualitative Analysis

Mehdi Mekni, Charitha Sree Jayaramireddy, Sree Veera Venkata Sai Saran Naraharisetti

Tagliatela College of Engineering, University of New Haven, West Haven, USA

Abstract
Historically viewed as a niche economic sector, gaming is now projected to
exceed a global annual revenue of $218.7 billion in 2024, taking advantage of
recent Artificial Intelligence (AI) advances. In recent years, specific AI tech-
niques namely; Machine Learning (ML) and Reinforcement Learning (RL),
have seen impressive progress and popularity. Techniques developed within
these two fields are now able to analyze and learn from gameplay experiences
enabling more interactive, immersive, and engaging games. While the num-
ber of ML and RL algorithms is growing, their implementations through frame-
works and toolkits are also extensive too. Moreover, the game design and de-
velopment community lacks a framework for informed evaluation of availa-
ble RL toolkits. In this paper, we present a comprehensive survey of RL tool-
kits for games using a qualitative evaluation methodology.

Keywords
Game Design & Development, Machine Learning, Reinforcement Learning,
Deep Learning

1. Introduction

Computer gaming is a growing market showing a global revenue increase of
8.7% from 2019 to 2021 to reach $218.7 billion in 2024 [1]. Many games have
multiple non-player characters (NPCs) who play with the player, against them or
take a neutral position within the game. They play an essential part in video
games to increase the player experience and should therefore be supplied with a
fitting behavior by creating a fitting Artificial Intelligence (AI) for them [2].
They can take multiple roles like providing a challenge for the player to fight
against or representing a trusted ally with whom they fought many battles [3]. It
is therefore important, that the field of game design and development finds new

How to cite this paper: Mekni, M., Jaya-
ramireddy, C.S. and Naraharisetti, S.V.V.S.S.
(2022) Reinforcement Learning Toolkits for
Gaming: A Comparative Qualitative Analy-
sis. Journal of Software Engineering and
Applications, 15, 417-435.
https://doi.org/10.4236/jsea.2022.1512024

Received: October 6, 2022
Accepted: December 27, 2022
Published: December 30, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2022.1512024
https://www.scirp.org/
https://doi.org/10.4236/jsea.2022.1512024
http://creativecommons.org/licenses/by/4.0/

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 418 Journal of Software Engineering and Applications

ways to build their intelligence and let them play their role inside the game [4].
There are different AI techniques in use in modern computer games. Espe-

cially ever since the 21st century, various sorts of video games, online or offline
have undergone rapid changes with the development of artificial and computa-
tional intelligence [5]. The roots of AI application in game design and develop-
ment can be traced back to the 1950s when Claude Shannon (The Information
Theory) and Alan Turing (Theory of Computation) began to write AI logic for
chess programs [6]. In 1997, the famous computer “Deep Blue” which represented
the pinnacle of AI techniques beat the chess Master Garry Kasparov in a publi-
cized match [6].

It is widely accepted that decision making and pattern recognition are basic
skills for humans; however, it can be challenging for computers. Sequential deci-
sion-making is a core topic in Machine Learning (ML). Moreover, a sequence of
decisions taken to achieve a given goal in an environment evolves the concept of
Reinforcement Learning (RL). The ability to let the AI decide on its own is a fas-
cinating concept, and it is progressively being worked on in every field including
gaming [7].

Yannakakis and Togelius [8] identified various research areas standing out
within the application of AI in the gaming field. Their work aimed to offer a
higher-level overview of AI applications in gaming and was more about the in-
teractions among these applications as well as the influences they had on each
other. One critical limitation of this work is that it does not capture the recent
advances in ML and RL and hence does not provide a current source to study AI
applications in game design and development. More recently, Shao et al. [9]
provided a survey of the progress of Deep RL methods and compared their main
techniques and properties. A major shortcoming of this study is that it exclu-
sively focuses on Deep RL and leaves the scientific community without current
state-of-the-art of ML and RL applications specific to game design and develop-
ment.

Motivated by the quality of the work presented in [6] [7] [8], we aim to ad-
dress the existing limitations associated with outdated studies and incomplete
analysis of trending ML and RL techniques in the field of game design and de-
velopment. This paper presents an insight into AI implementation in game de-
velopment with an emphasis on ML and RL toolkits. It proposes a comprehen-
sive evaluation framework using a qualitative comparison to support the com-
munity of game developers. In this study, we examine the applications of ML
and RL toolkits in gaming, their challenges, as well as their trends.

The remainder of this paper is organized as follows; Section 2 provides an
overview of the evolution of the global gaming industry. Section 3 introduces the
fundamental concepts of ML and its sub-fields. Section 4 details the state-of-the-art
of available ML and RL toolkits. Section 5 presents our qualitative evaluation
methodology articulated around a specific set of technical criteria. Section 6 out-
lines the key evaluation analysis findings. Finally, Sections 7 and 8 discuss this
study and conclude with future work.

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 419 Journal of Software Engineering and Applications

2. Gaming Industry

The early years of the gaming industry date back to the 1970s with the introduc-
tion of arcade machines and game consoles [10]. As computer components be-
came more affordable, companies began to explore such market opportunities in
game design and development [11]. Video games are a generic term for all types
of digital games, played and used on some type of screen. This includes arcade
machines, handheld devices, game consoles (i.e., Xbox, PlayStation, Game Boy),
and computer games [12]. Stanford University in the USA hosted the first gam-
ing tournament in 1972 giving rise to competitive video games [13]. Following
attempts to increase the popularity of gaming were made during the 1980s and
1990s with the organization of national tournaments and world championships.
Companies such as Atari or Nintendo used these events as a marketing tool to
promote their video games, while fostering a gaming culture [14].

During the 1990s, with the development of the internet and further multip-
layer capabilities, video games experienced significant growth, making it possible
not only to connect but to compete with external players [15]. Further multip-
layer tournaments began proliferating, as well as the tournament organizations
across the globe (i.e., Cyberathlete Professional League (CPL) and the AMD
Professional Gamers League (PGL) in the USA, the Deutsche Clanliga (DeCL) in
Germany, among many others in different countries and over the years) [16].
Asia-Pacific is easily the world’s biggest region by games revenues, with $88.2
billion in 2021 alone, making up 50.2% of all game revenues. With its contribu-
tion of $45.6 billion, China is by far the primary driver here. North America re-
mains 2021’s second-biggest region, boasting game revenues of $42.6 billion
(mainly from the U.S.) (See Figure 1(a)).

The recent pandemic has had a profound impact on game development and
publishing in terms of delays, which are affecting revenues across the board in
2021’ mostly on the console side but also on PC. Compared to mobile, console
and PC games tend to have bigger teams, higher production values, and more
cross-country collaborations (See Figure 1(b)).

There will be close to 3.0 billion players across the globe in 2021. This is up
+5.3% year on year from 2020, showcasing that 2020’s gaming boom has led to a
lasting increase in players, with room for further growth (See Figure 1(c)).

Looking ahead, the global number of players will pass the 3-billion milestone
next year in 2022. This number will continue to grow at a +5.6% of the com-
pound annual growth rate (2015-2024) to 3.3 billion by 2024 (See Figure 1(d)).

Along with the growth of the global gaming industry and advancements in AI
research, the need to figure out tough problems in existing game design and de-
velopment using current benchmarks for designing, developing and training AI
models (See Figure 1) has also increased. However, as these challenges are
“solved,” the need for novel interactive environments, engaging gameplay, and
smart NPCs arises. Yet, creating such environments is often time-intensive and
requires specialized computational and AI domain knowledge.

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 420 Journal of Software Engineering and Applications

Figure 1. An overview of the global gaming market over [1].

In the following section, we introduce the fundamental ML concepts aiming at
boosting the game design and development field.

3. Machine Learning Concepts
3.1. Machine Learning

ML is the art of making computer programs learned from experience. A com-
puter program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E [17]. For example, task T can be playing
checkers, experience E is playing thousands of checkers games, and the perfor-
mance P is the fraction of games won against human opponents. We can divide
the learning problems into three classes:
• Learning is called supervised if the experience E takes the form of a labeled

dataset (x,y), the task is to learn a function that maps x to y,
• Learning is called unsupervised if E takes the form of an unlabeled dataset.

The task is to learn underlying structure,
• Reinforcement learning (RL) is when the experience E takes the form of

state-action pairs and corresponding rewards. The task is to maximize future
rewards over a number of time steps.

Tasks are usually described in terms of how ML should process a data item

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 421 Journal of Software Engineering and Applications

(i.e., an example). If the desired behavior is to assign the input data item to one
category among several, this is a classification task, e.g., object recognition. Oth-
er examples of tasks are machine translation, transcription, anomaly detection,
etc [18] [19].

3.2. Reinforcement Learning (RL)

Reinforcement Learning (RL) is particularly interesting for playing games since
its task involves interaction with an environment, by committing actions and
receiving rewards for these actions [20]. In RL, the experience is a set of epi-
sodes. Each episode is a sequence of tuples (State, Action, Reward, Next State),
the performance measure is the discounted total reward, and the task basically
consists of playing (Figure 2). A more sophisticated description of playing is
adopting a policy that maps states of the game to actions. If this mapping takes
the form of a neural network, a deep one, we refer to Deep Reinforcement
Learning (DRL).

3.3. Deep Reinforcement Learning (DRL)

Given an agent that interacts with an environment through percepts (observa-
tions) and actions, the goal of reinforcement learning is to find an optimal policy

*π that maximizes the expected total sum of rewards the agent receives during
a run, while starting from an initial state 0s S∈ [22]. Usually, the performance
of a given policy π is evaluated as shown in Equation (1):

() () () () []0 1 0 0
0

eval | |t
t

t
s r s s

τ

ρ π ρ ππ γ +
=

 = =  
∑   (1)

where γ is a discount factor, and the expectation is over all the possible runs
(or traces) allowed by the policy π . 0 is the total reward for 0t = . Among
the most popular algorithms to reach an optimal policy in this context are value
iteration and Q-learning. Value iteration assumes that the reward model and the
transition model are known a priori. Q-learning actively learns a utility function
for (State, Action) pairs [9] as detailed in Equations (2) and (3):

() (), | ,t t t t tQ s a s a =    (2)

() ()* arg max ,as Q s aπ = (3)

By combining these ideas from reinforcement learning with the recently
re-invented neural networks a new set of algorithms emerges and is dubbed

Figure 2. Classic agent-environment loop [21].

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 422 Journal of Software Engineering and Applications

DRL. One of the seed contributions in this area is value learning. In [23], a
Convolutional Neural Network (CNN) was trained to play Atari with a variant
of Q-learning. The CNN approximates the utility function of Q-learning based
on raw pixels for input and an estimation of future reward as output. The loss
function for value learning is in Equation (4):

() ()real predicted, ,Q s a Q s a = −  (4)

where ()predicted ,Q s a is the output of the neural network and ()real ,Q s a is the
actual Q value is in Equation (5):

() ()real , ,Q s a r Q s aγ ′ ′= + (5)

Another approach is policy learning, where the policy is learned directly
through training a neural network and without passing through value learning.
Policy learning is shown to be very successful at addressing challenges of (1)
large or continuous action space such as in self-driving, and (2) stochastic tran-
sition and reward models. Policy learning is based on a set of policy gradient
methods with the goal of learning a probability distribution over the actions
given a state ()|P a s . The training is performed through continuous running
of episodes and simply increasing the probability of actions that resulted in high
reward, and decreasing the probability of actions that resulted in low reward.
The loss function in Equation (6):

()log | .P a s= −    (6)

3.4. Applications in Gaming

ML, RL and DRL are heavily used in gaming to develop not only competitive
agents but also collaborative agents and NPCs. Alpha Go beated the top human
player at Go in 2016. DeepMind introduced AlphaZero in 2017, a single system
that taught itself through self-play how to master the games of chess, shogi
(Japanese chess), and Go [24] [25]. MuZero, a general-purpose algorithm, was
able to master Go, chess, shogi and Atari without needing to be told the rules,
thanks to its ability to plan winning strategies in unknown environments [26]. A
summary of these algorithms as per [27] is depicted in Table 1.

Similarly, AlphaStar, a multi-agent RL system, was developed to play StarCraft

Table 1. Evolution of DRL for playing board games.

DRL

Domain Knowledge

Go Chess Shogi Atari
Human

Play
Domain

Knowledge
Known
Rules

ALpha Go [28] ⊗ ⊗ ⊗ ⊗

Alpha Go Zero [29] ⊗ ⊗

Alpha Zero [24] ⊗ ⊗ ⊗ ⊗

Mu Zero [26] ⊗ ⊗ ⊗ ⊗

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 423 Journal of Software Engineering and Applications

II at Grandmaster level [30]. OpenAI developed Dota 2 AI agents, called OpenAI
Five, and made them learn by playing over 10,000 years of games against them-
selves. The agents demonstrated the ability to defeat world champions in Dota 2
[31]. Using the same RL model as OpenAI Five boosted with additional tech-
niques, OpenAI trained a pair of neural networks to solve the Rubik’s Cube with
a human-like robot hand. Facebook and Carnegie Mellon built the first AI-based
game that beats pros in 6-player poker [32].

4. Reinforcement Learning Toolkits
4.1. Unity ML-Agents

The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source
project that enables games and simulations to serve as environments for training
intelligent agents [33] [34]. The training of agents is performed using ML tech-
niques including reinforcement learning, imitation learning, and neuroevolution
[35]. There are 3 main kinds of objects in a learning environment in Unity
ML-Agents:
• Agent: Each Agent can have a unique set of states and observations, take

unique actions within the environment, and receive unique rewards for
events within the environment. An agent’s actions are decided by the brain it
is linked to.

• Brain: Each Brain defines a specific state and action space, and is responsible
for deciding which actions each of its linked agents will take.

• Academy: Each environment contains a single academy which defines the
scope of the environment, in terms of engine configuration, frameskip, and
global episode length.

With the Unity ML-Agents toolkit, a variety of training scenarios are possible,
depending on how agents, brains, and rewards are connected. Despite the lack of
detailed studies on Unity ML-Agents, a few games have been implemented using
Unity and its ML-Agents package where the training has been done using rein-
forcement learning including imitation learning and self-play. Figure 3 illu-
strates the Unity ML-Agents Learning Environment [36]. An AI-based agent has
been implemented in Connect4 game using Unity ML-Agents [37]. The agent
training was performed using the Proximal Policy Optimization (PPO) algo-
rithm. Moreover, a RL model using Hierarchical Critics (RLHC) algorithm has
been implemented in Unity ML-Agents which performance was compared with
the PPO model using two different competitive games—Soccer and Tennis [38].

4.2. OpenAI

OpenAI is a research lab whose mission is to ensure that artificial general intelli-
gence benefits all of humanity [21]. OpenAI provides various tools to support ap-
plications of RL and ML in scientific research and game design and development.

4.2.1. OpenAI Gym
Gym is an open-source toolkit for developing and comparing reinforcement

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 424 Journal of Software Engineering and Applications

Figure 3. Unity ML-agents learning environment [36].

learning algorithms [39]. The OpenAI Gym toolkit encompasses a collection of
tasks, called environments, including Atari games, board games, as well as 2D
and 3D physical simulations for serious games [40]. It is used to train agents by
implementing and comparing various ML and RL algorithms using shared in-
terfaces. Therefore, OpenAI Gym is mainly used for standardization and ben-
chmarking purposes.

4.2.2. OpenAI Safety Gym
Safety Gym is a suite of environments and tools for RL agents with safety con-
straints implemented while training. While training the RL agents, safety is not
much focus, but in certain aspects, safety is an important concern and is to be
considered. To address the safety challenges while training the RL agents and to
accelerate the safe exploration research, OpenAI introduced Safety Gym. It con-
sists of two components:
• An environment builder for creating a new environment by choosing from a

wide range of physics elements, goals and safety requirements.
• Provides a suite of pre-configured benchmarks environments to choose from.

Safety Gym uses the OpenAI Gym for instantiating and interfacing with the RL
environments and MuJoCo physics simulator to construct and forward-simulate
each environment [41].

4.2.3. OpenAI Baselines
OpenAI Baselines is a set of high-quality implementations of RL algorithms.
These algorithms make it easier for the research community to replicate, refine,

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 425 Journal of Software Engineering and Applications

and identify new ideas, and create baselines to build research on top of. Such al-
gorithms include Deep Q-Network (DQN) and its variants, Actor Critic using
Kronecker-Factored Trust Region (ACKTR), Advantage Actor Critic (A2C), and
Asynchronous Advantage Actor Critic (A3C) [42].

4.2.4. OpenAI Universe
OpenAI universe is an extension of the gym. It provides the ability to train and
evaluate agents in a wide range of simple to real-time complex environments. It
has unlimited access to many gaming environments. Using Universe, any pro-
gram can be turned into a Gym environment without access to program inter-
nals, source code, API’s as universe works by launching the program automati-
cally behind a virtual network computing remote desktop. With support from
EA, Microsoft Studios, Valve, Wolfram, and many others, openAI has already
secured permission for Universe AI agents to freely access games and applica-
tions such as Portal, Fable Anniversary, World of Goo, RimWorld, Slime
Rancher, Shovel Knight, SpaceChem, Wing Commander III, Command & Con-
quer: Red Alert 2, Syndicate, Magic Carpet, Mirror’s Edge, Sid Meier’s Alpha
Centauri, and Wolfram Mathematica.

4.2.5. OpenAI Gym Retro
OpenAI Gym Retro enables the conversion of classic retro games into OpenAI
Gym compatible environments and has integration for around 1000 games. The
emulators used in OpenAI Gym Retro support Libretro API which allows the
creation of games and supports various emulators [43]. It is useful primarily as a
means to train RL on classic video games, though it can also be used to control
those video games using Python scripts.

4.3. Petting Zoo

Petting Zoo is a python library for conducting research in multi-agent environ-
ments. Petting Zoo is a multi-agent version of OpenAI Gym. What OpenAI
Gym has done with single agent reinforcement learning environments, Petting
Zoo was developed with the goal of doing the same with multi-agent environ-
ments. PettingZoo’s API, while inheriting many features of OpenAI Gym, is
unique amongst Multi Agent Reinforcement Learning (MARL) APIs. Petting-
Zoo models environments as Agent Environment Cycle (AEC) games, in order
to be able to cleanly support all types of multi-agent RL environments under one
API and to minimize the potential for certain classes of common bugs. Petting
Zoo includes 63 default environments [44].

4.4. Google Dopamine

Dopamine is a TensorFlow based research framework for the fast prototyping of
reinforcement learning algorithms. Dopamine supports multiple agents like
DQN, SAC and these are implemented using JAX which is a Python library for
high-performance ML research. Dopamine supports Atari environments and

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 426 Journal of Software Engineering and Applications

OpenAI’s MuJoCo environments [45].

5. Evaluation Methodology

In this study, we propose a qualitative evaluation methodology that uses a set of
eleven specific technical criteria (See the following subsections). Each candidate
ML/RL toolkit introduced in Section 1 is evaluated based on the following qua-
litative data collection techniques: 1) Game design and development experts in-
terviews; 2) Technical experimentation and observations; and 3) Documentation
including scientific publications and technical reports.

5.1. Portability

Portability in ML/RL toolkits is the usability of the same toolkit in different en-
vironments. The pre-requirement for portability is the generalized abstraction
between the toolkit logic and its interfaces. When a ML/RL toolkit with the same
functionality is developed for several environments, portability is the key issue
for development cost reduction.

5.2. Interoperability

Interoperability refers to the capability of different ML/RL toolkits to communi-
cate with one another and with game engines freely and easily. Toolkits that are
interoperable exchange information in real-time, without the need for specia-
lized or behind-the-scenes coding.

5.3. Performance

The training speed of agents in a ML/RL depends on the complexity and analysis
of the algorithm used to train that agent. Booth et al. provide a comparison
study of different algorithms including PPO in ML-Agents and A2C, ACKTR
and PPO2 algorithms of OpenAI Baselines [46].

5.4. Multitask Learning

Multi-task learning is an ML/RL approach in which we try to learn multiple
tasks simultaneously, optimizing multiple loss functions at once. Rather than
training independent models for each task, we allow a single model to learn to
complete all of the tasks at once. In this process, the model uses all of the availa-
ble data across the different tasks to learn generalized representations of the data
that are useful in multiple contexts.

5.5. Multi-Agent Environments

An environment might contain a single agent or multiple agents. In the case of
multiple agents, each agent might have a different set of actions to perform and
the agents might need interaction between them as the training goes on [47].
This requires a different training methodology from training a single agent (see
Figure 4).

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 427 Journal of Software Engineering and Applications

Figure 4. Multi-Agent Model [47].

5.6. Usability

Usability is a measure of how well a specific user in a specific context can use a
ML toolkit to design and develop games effectively, efficiently and satisfactorily.
Game designers usually measure a toolkit design’s usability throughout the de-
velopment process’ from wireframes to the final deliverable’ to ensure maximum
usability.

5.7. Documentation and Support

ML/RL toolkit documentation is written text or illustration that accompanies tool-
kits or is embedded in the source code. The documentation either explains how
the toolkit operates or how to use it. Documentation is an important part of game
design and development when using ML/RL toolkits. Types of documentation in-
clude; 1) Requirements—Statements that identify attributes, capabilities, characte-
ristics, or qualities of a toolkit, 2) Architecture/Design—Overview of the toolkit
design and includes relations to an environment and construction principles to be
used, 3) Technical—Documentation of code, algorithms, interfaces, and APIs, 4)
End user—Manuals for the end-user, administrators and support staff, and 5)
Marketing—How to market the product and analysis of the market demand.

5.8. Learning Strategies

The learning strategies are the different techniques ML/RL toolkits and frame-
works used to train the agents in game design and development. These strategies
are translated through machine learning algorithms including:
• Naïve Bayes Classifier Algorithm (Supervised Learning—Classification) based

on Bayes’ theorem and classifies every value as independent of any other val-
ue. It allows predicting a class/category, based on a given set of features, us-
ing probability.

• K Means Clustering Algorithm (Unsupervised Learning—Clustering) is a
type of unsupervised learning, which is used to categorize unlabelled data,

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 428 Journal of Software Engineering and Applications

i.e., data without defined categories or groups. The algorithm works by find-
ing groups within the data, with the number of groups represented by the va-
riable K. It then works iteratively to assign each data point to one of K groups
based on the features provided.

• Support Vector Machine Algorithm (Supervised Learning—Classification)
analyzes data used for classification and regression analysis. It essentially fil-
ters data into categories, which is achieved by providing a set of training ex-
amples, each set marked as belonging to one or the other of the two catego-
ries. This algorithm then works to build a model that assigns new values to
one category or the other.

• Linear Regression (Supervised Learning/Regression) is the most basic type of
regression. Simple linear regression allows us to understand the relationships
between two continuous variables.

• Logistic Regression (Supervised learning—Classification) focuses on esti-
mating the probability of an event occurring based on the previous data pro-
vided. It is used to cover a binary dependent variable that is where only two
values, 0 and 1, represent outcomes.

• Artificial Neural Networks (Reinforcement Learning) comprise “units” ar-
ranged in a series of layers, each of which connects to layers on either side.
ANNs are essentially a large number of interconnected processing elements,
working in unison to solve specific problems.

• Random Forests (Supervised Learning—Classification/Regression) is an en-
semble learning method, combining multiple algorithms to generate better re-
sults for classification, regression and other tasks. Each individual classifier is
weak, but when combined with others, it can produce excellent results. The al-
gorithm starts with a “decision tree” (a tree-like graph or model of decisions)
and an input is entered at the top. It then travels down the tree, with data being
segmented into smaller and smaller sets, based on specific variables.

• Nearest Neighbours (Supervised Learning) The K-Nearest-Neighbour algo-
rithm estimates how likely a data point is to be a member of one group or
another. It essentially looks at the data points around a single data point to
determine what group it is actually in.

5.9. Reward Strategy

Reward functions describe how the agent “ought” to behave. It is an incentive
mechanism that tells the agent what is correct and what is wrong using reward
and punishment. The goal of agents in RL is to maximize the total rewards.
Sometimes we need to sacrifice immediate rewards in order to maximize the to-
tal rewards. Reward strategy depends on the parameters a game developer setup
during the creation of a game environment.

5.10. Precision and Recall

Precision is one indicator of a machine learning model’s performance - the qual-

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 429 Journal of Software Engineering and Applications

ity of a positive prediction made by the model. Precision refers to the number of
true positives divided by the total number of positive predictions (i.e., the num-
ber of true positives plus the number of false positives). It helps us to measure
the ability to classify positive samples in the model. Precision and recall are two
important model evaluation metrics. While precision refers to the percentage of
relevant results, recall refers to the percentage of total relevant results correctly
classified by ML/RL algorithm. Recall helps measure how many positive samples
were correctly classified by the model.

5.11. Visual Observations

Visual observation extends ML/RL toolkits to allow both novice and expert game
developers to quickly and easily build and deploy highly accurate and explaina-
ble ML/RL models for agents in games using image-based data. Observation
gathers data through visual or technological means. Visual observation is ‘direct’
allowing game developers to witness the agents’ behaviors firsthand in their en-
vironment.

6. Evaluation Analysis

Table 2 illustrates the outcomes of the proposed qualitative evaluation analysis
with respect to the technical criteria detailed in Section 5. It is important to note
that OpenAI is an open-source platform and Unity is a commercial platform.
Nevertheless, Unity offers its ML Agent as an open-source toolkit. With respect
to the proposed set of eleven technical criteria, it is obvious that Unity ML-Agents
toolkit provides full support for most of these criteria with some limitations with
regard to Multitask Learning and Learning strategies. On the other hand, Ope-
nAI including its various tools, Petting Zoo, and Google Dopamino suffer from a
critical lack of Visual Observations support. Moreover, OpenAI and its tools fail
to fully support Multi-Agent Environments.

OpenAI Gym and Unity ML-Agents underlying software architectures are
very similar and both provide comparable functionalities to game developers.
In the scientific community, OpenAI has larger popularity compared to Unity
ML-Agents as it is developed with the intent of developing, analyzing and compar-
ing reinforcement learning algorithms whereas Unity’s main purpose is to develop

Table 2. Overview of the evaluation of reinforcement learning toolkits.

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 430 Journal of Software Engineering and Applications

and produce enterprise-level games. OpenAI Gym and Unity ML-Agents have
been used widely for implementation of RL algorithms in recent years. OpenAI
Gym doesn’t restrict itself to gaming, and has been used in various streams like
telecommunications, optical networks and other engineering fields. Because of
its wide range of options, OpenAI Gym has been used more widely than Unity
ML-Agents to perform research and establish ML/RL models related ben-
chmarking results.

The training of the game agents can be performed both in Gym and Unity. How-
ever, Gym only supports reinforcement learning for training the agents, whereas
with ML-Agents, it is possible to train the games using reinforcement learning, imi-
tation learning, and curriculum learning. The comparison between Unity
ML-Agents PPO and OpenAI Baselines’ PPO2 has proved this latter has scored 50%
higher while training 14% slower. The Actor Critic using Kronecker-Factored
Trust Region (ACKTR) algorithm and the Advantage Actor Critic (A2C) algo-
rithm of the OpenAI Baselines trained 33% faster than Unity ML Agent [46].

Unity has a rich visual platform which is most helpful in building the envi-
ronments even with a little programming experience. It has components de-
signed for each asset and can be easily configured. On the other hand, OpenAI
Gym is compatible with Tensorflow and provides rich graphs. To train more
robust agents that interact at real-time to dynamic variations of the environment
such as changes to the objects’ attributes, Unity provides randomly sampled pa-
rameters of the environment during training (also called Environment Parame-
ter Randomization). This technique is based on Domain Randomization which
enables training agents by randomized rendering. Unity ML-Agents also allow
the use of multiple cameras for visual observation. This enables agents to learn
and integrate information from multiple visual streams.

7. Discussion

Unity ML-Agents offers a rich visual interface to create environments and place
assets. It provides a rich panel or well established algorithms as part of ready to
use default environments as illustrated in Table 3. Consequently, it offers more
usability for game developers. Moreover, the abundant technical and functional
documentation, case studies, tutorials, and technical support increase the popu-
larity of this platform among the game design and development community. The
OpenAI Gym platform allows users to compare the performance of their ML/RL
algorithms. In fact, the aim of the OpenAI Gym scoreboards is not to design and
develop games, but rather to foster scientific community collaboration by shar-
ing projects and enabling meaningful ML/RL algorithm benchmark [21].

On the one hand, Unity ML-Agents toolkit allows multiple cameras to be used
for observations per agent. This enables agents to learn to integrate information
from multiple visual streams. This technique leverages CNN to learn from the
input images. The image information from the visual observations that are pro-
vided by the Camera Sensor is transformed into a 3D Tensor which can be fed

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 431 Journal of Software Engineering and Applications

Table 3. Default environments in unity ML-agents.

Environments Description Algorithms

3DBall: 3D
Balance Ball

A balance-ball task, where the agent balances the ball on it’s head. PPO & SAC

GridWorld A multi-goal version of the grid-world task. Scene contains agent, goal, and obstacles.
The agent must navigate the grid to the appropriate goal while avoiding the obstacles.

PPO & SAC

PushBlock A platforming environment where the agent can push a block around. Imitation & PPO & SAC

Wall Jump A platforming environment where the agent can jump over a wall. PPO & SAC

Crawler A creature with 4 arms and 4 forearms. Imitation & PPO & SAC

Worm A worm with a head and 3 body segments. PPO & SAC

Food Collector A multi-agent environment where agents compete to collect food. PPO & SAC

Hallway Environment where the agent needs to find information in a room, remember it, and
use it to move to the correct goal.

Imitation & PPO & SAC

Soccer Twos Environment where four agents compete in a 2 vs. 2 toy soccer game. MA-POCA

Strikers Vs.
Goalie

Environment where two agents compete in a 2 vs. 1 soccer variant. PPO & SAC

Walker Physics-based Humanoid agents with 26 degrees of freedom. The agents must move its
body toward the goal direction without falling.

PPO & SAC

Pyramids Environment where the agent needs to press a button to spawn a pyramid, then
navigate to the pyramid, knock it over, and move to the gold brick at the top.

Imitation & PPO & SAC

Match 3 Simple match-3 game. Matched pieces are removed, and remaining pieces drop down.
New pieces are spawned randomly at the top, with a chance of being “special”.

PPO

Sorter The Agent is in a circular room with numbered tiles placed randomly. The agent visits
all the tiles in ascending order.

PPO

Cooperative
Push Block

Similar to Push Block, the agents are in an area with blocks that need to be pushed into
a goal.

MA-POCA

Dungeon
Escape

Agents are trapped in a dungeon with a dragon, and must work together to escape. The
goal is to unlock the dungeon door and leave.

MA-POCA

into the CNN of the agent policy. This allows agents to learn from spatial regulari-
ties and terrain topology in the observation images. In addition, it is possible to use
visual and vector observations with the same agent with Unity ML-Agents. This
powerful feature provides access to vector observations such as raycasting, real
time visualization, and parallelization. Such a feature is designed with the intent
of rapid AI agents implementation in video games, not for scientific research.
This hinders its application to more realistic, complex and real-world use cases
and serious games.

OpenAI Gym lacks the ability to configure the simulation for multiple agents.
In contrast, Unity ML-Agents supports dynamic multi-agent interaction where
agents can be trained using RL models through a straightforward Python API. It
also provides MA-POCA (MultiAgent POsthumous Credit Assignment), which
is a novel multi-agent trainer.

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 432 Journal of Software Engineering and Applications

Petty-zoo provides a multi-agent policy gradient algorithm where agents learn
a centralized critique based on the observations and actions of all agents. How-
ever, it suffers from a performance limitation when dealing with large-scale mul-
ti-agent environments. In fact, the input space of Q grows linearly with the
number of agents N [48].

Finally, Table 4 provides a summary of common algorithms used in rein-
forcement learning gaming toolkits. Unity ML-Agents does not support multi-
task learning. However, it offers multiple interacting agents with independent
reward signals sharing common Behavior Parameters. This technique offers
game developers the ability to mimic multitask learning by implementing a sin-
gle agent model and encoding multiple behaviors using HyperNetworks.

8. Conclusions and Future Work

In this paper, we provided an overview of the main ML and RL toolkits for game
design and development. OpenAI and its rich suite of tools provide a solid op-
tion for AI-based agent implementation and training with respect to a large pan-
el of supported RL algorithms. Yet, Unity ML-Agents remains a recommended
toolkit for rapid AI-based game development using limited yet pre-trained RL
models. The proposed qualitative evaluation methodology used a set of specific
technical criteria. Each candidate toolkit has been evaluated based on the fol-
lowing qualitative data collection techniques including interviews, observations,
and documentation. Qualitative methodologies provide contextual data to ex-
plain complex issues by explaining the “why” and “how” behind the “what.”
However, the limitations of such a methodology include the lack of generaliza-
bility, the time-consuming and costly nature of data collection in addition to the
difficulty and complexity of objective data analysis and interpretation.

Table 4. Common algorithms used in reinforcement learning gaming toolkits.

Algorithms OpenAI Gym Unity ML-Agents Google Dopamine

A2C Yes

ACER Yes

ACKTR Yes

DDPG Yes

DQN Yes Yes

GAIL Yes Yes

PPO Yes Yes

HER Yes

SAC Yes Yes Yes

C51 Yes Yes

Rainbow Yes Yes

IQN Yes Yes

https://doi.org/10.4236/jsea.2022.1512024

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 433 Journal of Software Engineering and Applications

To address the limitations of our qualitative evaluation approach, our future
work will focus on empirical and quantitative evaluations to verify, validate, and
confirm our qualitative findings. A mixed method design with both qualitative
and quantitative data will involve statistical assessments of existing RL toolkits to
measure complexity, CPU and memory usage, scalability, and other relevant
software quality attributes.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Newzoo (2021) Global Games Market Report 2021.

[2] Tazouti, Y., Boulaknadel, S. and Fakhri, Y. (2022) Design and Implementation of
ImALeG Serious Game: Behavior of Non-Playable Characters (NPC). In: Saeed, F.,
et al., Eds., Advances on Smart and Soft Computing, Springer, Berlin, 69-77.
https://doi.org/10.1007/978-981-16-5559-3_7

[3] Yannakakis, G.N. (2012) Game AI Revisited. Proceedings of the 9th Conference on
Computing Frontiers, Caligari, 15-17 May 2012, 285-292.
https://doi.org/10.1145/2212908.2212954

[4] Yohanes, D.N. and Rochmawati, N. (2022) Implementasi Algoritma Collision De-
tection dan A*(A Star) pada Non Player Character Game World of New Normal.
Journal of Informatics and Computer Science, 3, 322-333.
https://doi.org/10.26740/jinacs.v3n03.p322-333

[5] Frank, A.B. (2022) Gaming AI without AI. The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology.
https://doi.org/10.1177/15485129221074352

[6] Lyle, D., et al. (2022) Chess and Strategy in the Age of Artificial Intelligence. In: Lai,
D., Ed., US-China Strategic Relations and Competitive Sports, Springer, Berlin,
87-126. https://doi.org/10.1007/978-3-030-92200-9_5

[7] Sweetser, P. and Wiles, J. (2002) Current AI in Games: A Review. Australian Journal
of Intelligent Information Processing Systems, 8, 24-42.

[8] Yannakakis, G.N. and Togelius, J. (2014) A Panorama of Artificial and Computa-
tional Intelligence in Games. IEEE Transactions on Computational Intelligence and
AI in Games, 7, 317-335. https://doi.org/10.1109/TCIAIG.2014.2339221

[9] Shao, K., Tang, Z., Zhu, Y., Li, N. and Zhao, D. (2019) A Survey of Deep Rein-
forcement Learning in Video Games.

[10] Palma-Ruiz, J.M., Torres-Toukoumidis, A., Gonzalez-Moreno, S.E. and Valles-Baca,
H.G. (2022) An Overview of the Gaming Industry across Nations: Using Analytics
with Power Bi to Forecast and Identify Key Influencers. Heliyon, 8, e08959.
https://doi.org/10.1016/j.heliyon.2022.e08959

[11] Bornemark, O. (2013) Success Factors for e-Sport Games. Umeå’s 16th Student
Conference in Computing Science, 1-12.

[12] Gonzalez-Moreno, M.S.E., Montalvo, J.A.C. and Palma-Ruiz, J.M. (2019) La indus-
tria cultural y la industria de los videojuegos. In: Juegos y Sociedad: Desde La Inte-
raccio’N a la Inmersion Para el Cambio Social, McGraw Hill, New York, 19-26.

[13] Li, R. (2017) Good Luck Have Fun: The Rise of eSports. Simon and Schuster, New
York.

https://doi.org/10.4236/jsea.2022.1512024
https://doi.org/10.1007/978-981-16-5559-3_7
https://doi.org/10.1145/2212908.2212954
https://doi.org/10.26740/jinacs.v3n03.p322-333
https://doi.org/10.1177/15485129221074352
https://doi.org/10.1007/978-3-030-92200-9_5
https://doi.org/10.1109/TCIAIG.2014.2339221
https://doi.org/10.1016/j.heliyon.2022.e08959

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 434 Journal of Software Engineering and Applications

[14] Borowy, M., et al. (2013) Pioneering eSports: The Experience Economy and the
Marketing of Early 1980s Arcade Gaming Contests. International Journal of Com-
munication, 7, 2254-2275.

[15] Saiz-Alvarez, J.M., Palma-Ruiz, J.M., Valles-Baca, H.G. and Fierro-Ramırez, L.A.
(2021) Knowledge Management in the eSports Industry: Sustainability, Continuity,
and Achievement of Competitive Results. Sustainability, 13, Article No. 10890.
https://doi.org/10.3390/su131910890

[16] Scholz, T.M., Scholz, T.M. and Barlow (2019) eSports Is Business. Springer, Berlin.
https://doi.org/10.1007/978-3-030-11199-1

[17] Jorda, M.I. and Mitchell, T.M. (2015) Machine Learning: Trends, Perspectives, and
Prospects. Science, 349, 255-260. https://doi.org/10.1126/science.aaa8415

[18] Bertens, P., Guitart, A., Chen, P.P. and Perianez, A. (2018) A Machine-Learning
Item Recommendation System for Video Games. 2018 IEEE Conference on Com-
putational Intelligence and Games, Maastricht, 14-17 August 2018, 1-4.
https://doi.org/10.1109/CIG.2018.8490456

[19] Vondrek, M., Baggili, I., Casey, P. and Mekni, M. (2022) Rise of the Metaverse’s Im-
mersive Virtual Reality Malware and the Man-in-the-Room Attack & Defenses.
Computers & Security, 238, Article ID: 102923.
https://doi.org/10.1016/j.cose.2022.102923

[20] Tucker, A., Gleave, A. and Russell, S. (2018) Inverse Reinforcement Learning for Video
Games.

[21] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J. and Za-
remba, W. (2016) Openai Gym.

[22] Duryea, E., Ganger, M. and Hu, W. (2016) Exploring Deep Reinforcement Learning
with Multi q-Learning. Intelligent Control and Automation, 7, 129-144.
https://doi.org/10.4236/ica.2016.74012

[23] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and
Riedmiller, M. (2013) Playing Atari with Deep Reinforcement Learning.

[24] Silver, D., Hubert, T., Schrittwieser, J., et al. (2018) A General Reinforcement Learning
Algorithm That Masters Chess, Shogi, and Go through Self-Play. Science, 362, 1140-
1144. https://doi.org/10.1126/science.aar6404

[25] Samara, F., Ondieki, S., Hossain, A.M. and Mekni, M. (2021) Online Social Network
Interactions (OSNI): A Novel Online Reputation Management Solution. 2021 IEEE
International Conference on Engineering and Emerging Technologies, Istanbul,
27-28 October 2021, 1-6. https://doi.org/10.1109/ICEET53442.2021.9659615

[26] Schrittwieser, J., Antonoglou, I., Hubert, T., et al. (2020) Mastering Atari, Go, Chess
and Shogi by Planning with a Learned Model. Nature, 588, 604-609.
https://doi.org/10.1038/s41586-020-03051-4

[27] Andrew, A.M. (1999) Reinforcement Learning: An Introduction by Richard S. Sut-
ton and Andrew G. Barto, Adaptive Computation and Machine Learning Series,
MIT Press (Bradford Book), Cambridge, Mass., 1998, xviii+ 322 pp, ISBN 0-262-
19398-1, (Hardback, £ 31.95). Robotica, 17, 229-235.
https://doi.org/10.1017/S0263574799211174

[28] Silver, D., Huang, A., Maddison, C.J., et al. (2016) Mastering the Game of Go with
Deep Neural Networks and Tree Search. Nature, 529, 484-489.
https://doi.org/10.1038/nature16961

[29] Silver, D., Schrittwieser, J., Simonyan, K., et al. (2017) Mastering the Game of Go
without Human Knowledge. Nature, 550, 354-359.

https://doi.org/10.4236/jsea.2022.1512024
https://doi.org/10.3390/su131910890
https://doi.org/10.1007/978-3-030-11199-1
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1109/CIG.2018.8490456
https://doi.org/10.1016/j.cose.2022.102923
https://doi.org/10.4236/ica.2016.74012
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1109/ICEET53442.2021.9659615
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1017/S0263574799211174
https://doi.org/10.1038/nature16961

M. Mekni et al.

DOI: 10.4236/jsea.2022.1512024 435 Journal of Software Engineering and Applications

https://doi.org/10.1038/nature24270

[30] Arulkumaran, K., Cully, A. and Togelius, J. (2019) Alphastar: An Evolutionary
Computation Perspective. Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, Prague, 13-17 July 2019, 314-315.
https://doi.org/10.1145/3319619.3321894

[31] Berner, C., Brockman, G., Chan, B., et al. (2019) Dota 2 with Large Scale Deep Rein-
forcement Learning.

[32] Sweeney, N. and Sinclair, D. (2012) Applying Reinforcement Learning to Poker.
Computer Poker Symposium, Quebec, 314-315.

[33] Nandy, A. and Biswas, M. (2018) Machine Learning Agents and Neural Network in
Unity. In: Nandy, A. and Biswas, M., Eds., Neural Networks in Unity, Springer, Ber-
lin, 69-111. https://doi.org/10.1007/978-1-4842-3673-4_3

[34] Jayaramireddy, C.S., Naraharisetti, S.V., Nassar, M. and Mekni, M. (2023) A Survey
of Reinforcement Learning Toolkits for Gaming: Applications, Challenges and Trends.
In: Arai, K., Ed., Proceedings of the Future Technologies Conference, Springer, Ber-
lin, 165-184. https://doi.org/10.1007/978-3-031-18461-1_11

[35] Lanham, M. (2018) Learn Unity ML-Agents-Fundamentals of Unity Machine
Learning: Incorporate New Powerful ML Algorithms Such as Deep Reinforcement
Learning for Games. Packt Publishing Ltd., Birmingham.

[36] Juliani, A., Berges, V.-P., Teng, E., et al. (2018) Unity: A General Platform for Intel-
ligent Agents.

[37] Baby, N. and Goswami, B. (2019) Implementing Artificial Intelligence Agent within
Connect 4 Using Unity3D and Machine Learning Concepts. International Journal
of Recent Technology and Engineering, 7, 193-200.

[38] Cao, Z. and Lin, C.-T. (2021) Reinforcement Learning from Hierarchical Critics.
IEEE Transactions on Neural Networks and Learning Systems, 1-8.
https://doi.org/10.1109/TNNLS.2021.3103642

[39] Borovikov, I., Harder, J., Sadovsky, M. and Beirami, A. (2019) Towards Inter-Active
Training of Non-Player Characters in Video Games.

[40] Silver, T. and Chitnis, R. (2020) Pddlgym: Gym Environments from Pddl Problems.

[41] Ray, A., Achiam, J. and Amodei, D. (2019) Benchmarking Safe Exploration in Deep
Reinforcement Learning. Vol. 7.

[42] Dhariwal, P., Hesse, C., Klimov, O., et al. (2022) OpenAI Baselines.

[43] Nichol, A., Pfau, V., Hesse, C., Klimov, O. and Schulman, J. (2018) Gotta Learn Fast:
A New Benchmark for Generalization in rl.

[44] Terry, J., Black, B., Grammel, N., et al. (2021) PettingZoo: Gym for Multi-Agent Rein-
forcement Learning. Proceedings of the 20th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2021), London, 3-7 May 2021, 441-470.

[45] Castro, P.S., Moitra, S., Gelada, C., et al. (2018) Dopamine: A Research Framework
for Deep Reinforcement Learning. http://arxiv.org/abs/1812.06110

[46] Booth, J. and Booth, J. (2019) Marathon Environments: Multi-Agent Continuous
Control Benchmarks in a Modern Video Game Engine.

[47] Nowe, A., Vrancx, P. and Hauwere, Y.-M.D. (2012) Game Theory and Multiagent
Reinforcement Learning. In: Wiering, M. and Otterlo, M., Eds., Reinforcement
Learning, Springer, Berlin, 441-470. https://doi.org/10.1007/978-3-642-27645-3_14

[48] Lowe, R., Wu, Y., Tamar, A., et al. (2017) Multi-Agent Actor-Critic for Mixed Co-
operative-Competitive Environments.

https://doi.org/10.4236/jsea.2022.1512024
https://doi.org/10.1038/nature24270
https://doi.org/10.1145/3319619.3321894
https://doi.org/10.1007/978-1-4842-3673-4_3
https://doi.org/10.1007/978-3-031-18461-1_11
https://doi.org/10.1109/TNNLS.2021.3103642
http://arxiv.org/abs/1812.06110
https://doi.org/10.1007/978-3-642-27645-3_14

	Reinforcement Learning Toolkits for Gaming: A Comparative Qualitative Analysis
	Abstract
	Keywords
	1. Introduction
	2. Gaming Industry
	3. Machine Learning Concepts
	3.1. Machine Learning
	3.2. Reinforcement Learning (RL)
	3.3. Deep Reinforcement Learning (DRL)
	3.4. Applications in Gaming

	4. Reinforcement Learning Toolkits
	4.1. Unity ML-Agents
	4.2. OpenAI
	4.2.1. OpenAI Gym
	4.2.2. OpenAI Safety Gym
	4.2.3. OpenAI Baselines
	4.2.4. OpenAI Universe
	4.2.5. OpenAI Gym Retro

	4.3. Petting Zoo
	4.4. Google Dopamine

	5. Evaluation Methodology
	5.1. Portability
	5.2. Interoperability
	5.3. Performance
	5.4. Multitask Learning
	5.5. Multi-Agent Environments
	5.6. Usability
	5.7. Documentation and Support
	5.8. Learning Strategies
	5.9. Reward Strategy
	5.10. Precision and Recall
	5.11. Visual Observations

	6. Evaluation Analysis
	7. Discussion
	8. Conclusions and Future Work
	Conflicts of Interest
	References

