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Abstract 
Digital twin (DT) is drawing significant attention both from the academia, 
industry and government. However, people from different fields have differ-
ent understandings and cognitions about DT. In addition, most of the DT 
application scenarios discussed belong to discrete manufacturing and are not 
suitable for process manufacturing. Petrochemical industry is a typical process 
manufacturing with multi-scale hierarchical and functional structure in space 
and time. This contribution focuses on topics on the application of DT in pe-
trochemical industry including: 1) The specific DT definition by process in-
dustry. 2) The three key elements and design of chemical DT. 3) Features and 
application scenarios of chemical DT from the view of model precision, mod-
el scale and asset life cycle. 4) The Four P’s maturity framework of chemical 
DT, and 5) Prospects for the development of chemical DT. 
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1. Introduction 

After decades of development, China’s oil refining and ethylene production ca-
pacity has ranked second in the world. However, compared with the require-
ments of high-quality development, there is still facing challenges, mainly in-
cluding the low utilization rate of resources and energy, the overcapacity of oil 
refining, the serious homogeneity of chemical products, and the high environ-
mental protection pressures [1] [2]. Driven by the accelerating energy transition, 
national “carbon peak & carbon neutral” strategies, increasingly stringent regu-
latory requirements and changing market demands, environmental, social and 
governance (ESG) becomes a top priority. The petrochemical industry is devel-
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oping intelligent manufacturing, promoting sustainable development and circu-
lar economy, and accelerating green and high-quality development through the 
deep integration of innovative process technologies and new-generation infor-
mation and communication technology (ICT) [3]. 

Regarding intelligent manufacturing, two specialized terms are widely used in 
English, “Smart manufacturing” (SM) and “Intelligent manufacturing” (IM). 
Wang et al. [4] studied the origin, definition, development, key technologies, 
and reference architecture of SM and IM through bibliometric statistical analy-
sis. Refinery and petrochemical industries are typical process manufacturing, 
which uses a common set of separation, mixing, and conversion technologies 
called “Unit Operations” to turn raw materials into valuable products. The es-
sential characteristics of petrochemical manufacturing are: The process is large 
in scale and complex in structure, composed of multiple closely connected and 
interacting operational units, and has a multi-scale hierarchical and functional 
structure in space and time [5]. Viewed laterally, the process is a nonlinear, dy-
namically coupled process of a series of related, heterogeneous physical or 
chemical processes, such as mass transfer, heat transfer, momentum transfer and 
reaction process; viewed vertically, it is a nested-coupling system between these 
processes across time and space scales, and a petrochemical cyber-physical sys-
tem (HCPS) consisting of material flow, energy flow, and information flow net-
works that integrate complex physical input/output [6] [7] [8]. 

The challenges are in the heterogeneous nature of chemical reactions over 
multiple scales and in the heterogeneous nature of multiphase flows encountered 
in separations, mixing, and reaction systems, again over multiple scales. The op-
portunities are provided by process technology innovations, emerging high-fidelity 
computational and experimental techniques that make it possible to understand 
chemical processes and events at molecular-scale [9] [10]. One of the notable 
technologies is digital twins (DT). IT analysis and market research institute Gart-
ner has listed DT as one of the top ten emerging technologies for three consecu-
tive years from 2017 to 2019 [11], driving the conception of DT to widely spread 
and attract more attention from many scholars, industrial sectors and standar-
dization organizations. At the same time, thanks to the development of new 
generation information technologies such as Internet of Things (IoT), big data, 
cloud-based computing and artificial intelligence (AI), the implementation of 
DT has gradually become possible. In addition to aerospace where the origin of 
the concept of DT, digital twins are also used in energy, cities, agriculture, ship-
building, manufacturing, medical treatment, environmental protection and oth-
er industries [12] [13] [14] [15]. Especially in the field of intelligent manufac-
turing, DT is considered to be an effective means to realize the interactive inte-
gration of manufacturing information world and physical world [16]. It was 
found that asset integrity monitoring, project planning, and life cycle manage-
ment are the key application areas of DT in the oil and gas (O & G) industry 
while cyber security, lack of standardization, and uncertainty in scope and focus 
are the key challenges of DT deployment in the O & G industry [17]. 
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This paper primarily aims at the application of DT in petrochemical industry 
from an operation perspective. The rest of this paper is organized as follows: 
Section 2 discusses the definition and understanding of DT especially in process 
industry. Section 3 discusses the three key elements and design of chemical DT. 
Section 4 discusses the features and application scenarios of chemical DT from 
the view of model precision, model scale and asset life cycle. Section 5 discusses 
the Four P’s maturity framework of chemical DT. Then in Section 6, the future 
development and further work needed are prospected. 

2. Digital Twin Definition 

It is generally believed that the concept of digital twin originated from a concept 
proposed by Professor Michael grieves of the University of Michigan for product 
life cycle management (PLM) in 2002, which was called “mirrored space model” 
[18]. Since then, many different definitions of DTs have been proposed in the 
academic literature. However, although the research and number of publications 
on DTs are rapidly increasing, the DT concept is still rather fuzzy, and the 
boundary with some other related technologies is also more and more blurred 
[19]. The understanding and practice of digital twins are inseparable from spe-
cific objects, specific applications and specific needs [15] [20] [21]. 

Table 1 summarizes some of the most cited DT definitions by organization 
and suppliers. From these definitions it is clear that there are three important 
components in the digital twin of an entity or process: 
 A model of the entity or process; 
 An evolving set of data relating to the entity or process; 
 A means of dynamically updating or adjusting the model in accordance with 

the data. 
Digital Twin Consortium (DTC) has established a glossary of DT [22], and the 

definition and elaboration of DT are relatively rigorous. According to DTC, a 
digital twin is a virtual representation of real-world entities and processes, syn-
chronized at a specified frequency and fidelity. Digital Twin Systems (DTS) 
transform business by accelerating holistic understanding, optimal deci-
sion-making, and effective action. DTs use real-time and historical data to 
represent the past and present and simulate predicted futures. DTs are moti-
vated by outcomes, tailored to use cases, powered by integration, built on data, 
guided by domain knowledge, and implemented in IT/OT systems. You cannot 
buy a digital twin solution per se, as digital twin is more of a methodology for 
integrating and modeling across multiple solutions.  

3. Key Elements and Design of Chemical Digital Twin 

Tao Fei et al. [21] proposed a five-component framework of DT, which includes 
of physical entities, virtual entities, services systems, DT data fusion module, and 
connection/interaction between these four modules. This kind of understanding 
of DT as integrated system both of digital model and physical model can trace  
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Table 1. Definition of digital twins by different organization and suppliers. 

Organization Definition 

Digital Twin Consortium 
(DTC) [22] 

A digital twin is a virtual representation of real-world entities and processes, 
synchronized at a specified frequency and fidelity. 

Industrial Internet Consortium 
(IIC) [23] 

A digital twin is a formal digital representation of some asset, process or system that captures 
attributes and behaviors of that entity suitable for communication, storage, interpretation or 
processing within a certain context. 

ISO/LEC JTC 1/SC 41/WG 6 
[24] 

A Digital Twin is a digital representation of a particular physical entity or a process with data 
connections that enable convergence between the physical and digital states at an appropriate 
rate of synchronization, and provides an integrated view throughout the lifecycle of the 
physical entity or the process that helps optimize the overall performance. 

Industry 4.0 [25] 

Definition 1: Virtual digital representation on physical assets. 
Note 1: In future, the digital twin will be a synonym for the asset administration shell if the 
development will continue as before. 
Note 2: In the context of Industrie 4.0, the term asset administration shell is preferred. 
Definition 2: Simulation model. 

Siemens [26] 

A digital twin is a virtual representation of a physical product or process, used to understand 
and predict the physical counterpart’s performance characteristics. Digital twins are used 
throughout the product lifecycle to simulate, predict, and optimize the product and 
production system before investing in physical prototypes and assets. 

General Electric (GE) [27] 

Digital twins are software representations of assets and processes that are used to understand, 
predict, and optimize performance in order to achieve improved business outcomes. Digital 
twins consist of three components: a data model, a set of analytics or algorithms, and 
knowledge. 

Aspen Tech [28] 

Digital twin is an evolving digital profile of the historical, current and future behavior of a 
physical object or process that helps optimize business performance. It is based on models 
and real time data across multiple different dimensions, leading to actions in physical world 
such as a change in process operation, safety, maintenance and design. 

KBC [29] 

A digital twin works in the present, mirroring the actual device, system or process in 
simulated mode, but with full knowledge of its historical performance and accurate 
understanding of its future potential. The digital twin allows “what if?” and “what’s best?” 
scenarios to be run automatically to determine available strategies that maximize profitability. 

AVEVA [30] 

Digital twin is broadly defined as a digital replica of a physical object or process. Its value 
comes from using living data to help understand the behavior of the system or 
“state-of-work” in the following ways: 
What could happen in the long-term FUTURE? (via Design applications that help determine 
the boundaries of the operating envelope) 
What could happen in the near-term FUTURE? (via Planning & Simulation applications 
that help model different scenarios within the operating envelope) 
What is happening NOW? (via Monitoring applications) 

 
back to NASA’s Apollo 13 simulators [31]. However, most other definitions 
prefer to describe the digital twin as a pure digital model, such as, Digital Twin 
Consortium believes a digital twin has a corresponding physical twin and a digi-
tal twin considered together with its physical twin is an example of a cy-
ber-physical system(CPS) [22]. IIC believes that the core elements of digital twins 
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include model, data and services [23]. Meanwhile, GE’s digital twin also consists 
of three components: a data model, a set of analytics or algorithms, and know-
ledge [27]. 

This contribution proposes a three-components of chemical DTs which con-
sists of models representation of the physical asset (equipment, unit, or plant), 
data federation or continuously synchronized data transfer, and integration with 
related applications interface (API) for advanced data analysis, as showing in 
Figure 1 (adapted from [32]). 

3.1. DT Model 

A chemical process digital twin should contain computational or analytic models 
that are required to describe, understand and predict the chemical process’ states 
and behavioral aspects, and models that are used to prescribe actions based on 
business logic and objectives about plant operation. These models may include 
first-principles models (the integrated steady state, hydraulics, and dynamics) 
based on rigorous mathematical statements expressed more simply as algebraic 
equations or, with increasing complexity, as ordinary differential equations 
(ODEs) (for lumped parameter system modeling), differential algebraic equa-
tions (DAEs) or PDEs (for distributed parameter system modeling) [33]. It may 
include data-driven models based on statistics, machine learning (ML) and ar-
tificial intelligence (AI) [34] [35] [36] [37]. It may also include 3D models and  
 

 
Figure 1. The three-key components of chemical process digital twins. 
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augmented reality (AR) models for aiding human understanding of the opera-
tional states or behaviors of the plant. 

In general, a model for a digital twin should be sufficiently physics-based, ac-
curate and quick to run that decisions about the application can be made within 
the required timescale. These three criteria strongly affect which applications can 
most benefit from a digital twin, and also affect the ways in which physics-based 
models for digital twins differ from physics-based models for other purposes 
such as safety verification or performance modelling, where high accuracy may 
be more important than a short run time because the models are safety-critical 
but are run less frequently [38]. 

As the heterogeneous nature of chemical reactions over multiple scales and 
multiphase flows encountered in separations, mixing, and reaction operations, it 
is necessary to comprehensively combine the mechanistic, data-driven with ML 
algorithm for hybrid modeling that achieves more fidelity than either first-principles 
modeling or AI could alone [33] [39] [40]. 

3.2. DT Data 

In an asset-intensive industry, such as petrochemical manufacturing, the digital 
twin needs to encompass the entire asset lifecycle and value chains from design 
and operations through maintenance and strategic business planning. The data 
should include both historical data and real-time data generated during design & 
engineering, operation and maintenance. 

In order to achieve the desired levels of accuracy, source data must be ga-
thered in real-time, be validated and reconciled to ensure that all physical and 
chemical laws are respected, and electronic noise and dynamic effects eliminated 
through filtering. Only through this approach can data quality issues be identi-
fied and mitigated, and the digital twin can be trusted to reflect reality and relied 
on for quality and accuracy of its predictions. 

Many aspects of using data in process modeling are well-understood, from 
long experience in model validation and verification and from development of 
boundary, initial and loading conditions from measured values. However, many 
data issues still exist, some connected with the volume and speed of data acquisi-
tion, some connected with reliability and uncertainty, some to do with dynamic 
model updating, and others related to data sharing and exchange standards, all 
of these hindering the chemical process industry to efficiently apply data-driven 
technologies for their assets in large scale. There need improve the data integra-
tion across the whole asset life cycle from process design over the functional de-
sign and asset specification up to the operation of the actual assets, building an 
Industrial Internet of Things (IIoT) platform to harness data integration and 
enable mashup applications like digital twins [41]. 

3.3. DT Service 

A process digital twin should contain a set of application interfaces (API) for 
advanced analytical applications or other digital twins to access its data and in-
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voke its capabilities. There are four types of analytics, such as descriptive (what 
happened?), diagnostic (Why did it happen?), predictive (what will happen?) 
and prescriptive (what should do?). There are also different analytical technolo-
gies, such as graphical, statistical, ML/AI, process simulation, etc. The solution 
should be driven by the problem that needs solving, not how much analytics can 
be thrown at data in the hope it will both find the problem as well as solve it. The 
desired outcome should influence the type of analytics being sought and the 
available analytics technology that is fit-for-purpose. 

The digital twin allows “What if?” and “What’s best?” scenarios to be run au-
tomatically to determine available strategies that maximize profitability. Users 
can then review the recommended strategies to assess the impact of each rec-
ommended approach. With the in-depth use of advanced analysis technologies 
such as ML/AI, the proportion of manpower in a manufacturing system is grad-
ually decreasing, while the proportion of people’s knowledge and experience in a 
manufacturing system is gradually increasing, and eventually evolve into a fully 
autonomous system [42]. 

4. Features and Application Scenarios of Process Digital  
Twin 

Refinery, petrochemical or refinery-petrochemical integration, regardless of its 
scale, can be solved by a series of technologies called unit operation. All unit op-
erations can be decomposed into three transfer processes or their combination: 
momentum transfer, heat transfer, mass transfer and reactions [5]. So, chemical 
process composes of multiple closely connected and interacting operational 
units, and has a multi-scale hierarchical and functional structure in space and 
time, as showing in Figure 2. The scope and hierarchy of chemical process DT 
can be described from three dimensions: 1) System dimension reflect multi-scale 
chemical thermodynamic behavior of chemical process. 2) Space dimension re-
flects geometric model accuracy from 0, 1, 2 to 3D. 3) Time dimension reflect 
asset life cycle from R & D, engineering, operation maintenance to upgrading. In 
addition, there is another time scale corresponding to the model scale, which re-
flects the transfer characteristics of chemical processes or the time period cha-
racteristics of model objects (refer to Figure 3). 

4.1. DT Model Precision 

The spatial dimension of chemical process modeling can range from 0 to 3D, 
depending on the specific applications and specific needs of DTs. Some process 
modeling requires detailed 3D flow and transfer model. Some applications are 
relatively macro, and the modeling can be met with 2D. Some applications are 
relatively simple, do not need to achieve high fidelity, and the modeling can be 
satisfied fully with 1D or 0-dimensional models. 

The 0-dimension model also refers to system level simulation, a logical world 
with no spatial dimension and only time. In this stage, what needs to be solved is  
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Figure 2. Scope and hierarchy of chemical digital twins (modified from Siemens’ presentation). 
 

 

Figure 3. Chemical process of multi-scale in space and time. 
 
the dynamic characteristics of time response, rather than the specific physical 
size, such as equations of state on hydrodynamics or mass transfer, whiles, Li-
near Programming (LP) model is another example. 

The 1D model is a unidirectional model, where variables involved in the mod-
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el change with only one dimension. Such as in the design of tubular heat ex-
changer, if there is good reason to believe that the variation of radial variables is 
much smaller than that of axial, then the heat transfer process can be modeled 
into a 1-dimensional model.  

The 2D model can reflect spatial relationship and flow characteristics to a cer-
tain extent, and also has high computational efficiency. The 3D model can more 
intuitively and comprehensively reflect actual state of the object and study the 
actual changes in various physical processes. 3D model calculation is much more 
complicated. For example, the physical structure of the olefin reactor determines 
its internal gas-liquid-solid three-phase reactions. It is necessary to understand 
the characteristics of multiphase flow through 3D steady-state and dynamic si-
mulation, so as to optimize the equipment design. 

4.2. Relationships of Chemical DT in Systems 

As showing in Figure 3 (adapted from [5]). The level of abstraction of a digital 
twin is such that it is sufficient for the requirements of the use cases for which 
the digital twin is designed. Generally, the relationships of chemical DTs in sys-
tems can be classified mainly into four levels depending on the key functionali-
ties.  

The equipment-level digital twins are oriented to core and high-value equip-
ment, such as hyper-compressors (high economic cost of failure), large pumps 
and compressors (high cost of spare parts and maintenance), heat exchangers 
(impact on yield) and so forth, reflecting the current, future and historical per-
formance of the equipment. 

The unit-level digital twins are oriented to basic chemical unit operations, 
such as cracking, olefin reactor and distillation. They are high-value and high 
return areas for digital twins involving process, asset condition, control and op-
timization. 

The plant-level digital twins provide a digital representation of a plant, several 
plants or the whole site. They may cover a subset of the systems involved. For 
example, energy optimization, refinery and bulk chemical production planning, 
and special chemical production scheduling are optimized at this level. 

The enterprise-level digital twin is an important emerging field. This model 
can quickly analyze the profit opportunities of enterprises and effectively pro-
vide operable information to the executive level. Such as enterprise risk model, 
supply chain model or multi-scale planning model to optimize the utilization of 
plants, transportation and storage facilities network, maximize profits and im-
prove customer satisfaction.  

The unit-level twin is constructed by integrating the equipment-level twins 
into a single functioning unit. These unit-level twins are integrated to generate 
the plant-level twin and so on. The equipment-level twin should possess accurate 
engineering, manufacturing and design data. The plant-level twin includes an 
accurate representation of the aggregated operation of all of the equipment, op-
eration unit that the system is built upon. The inclusion and integration rela-
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tionship between different levels of DT follow the ISA106 standard [43]. 
As people at different levels of the organization have different concerns, it is 

natural to have different views and expectations of DTs throughout the organi-
zation. As discussed above, the strategies, priorities, methods and enabling tech-
nologies used to create and deploy digital twins will be different at various levels. 
However, the DTs must converge towards a holistic and unified vision. 

4.3. DT in Asset Life Cycle 

The process industry is characterized by two value chains of supply chain and 
asset life cycle, both of which come together in production [44]. A key aspect of 
successful digital twin adoption and application requires a “shift to the left” in 
thinking, which means users need to think more holistically about the chemical 
processes, plants and products to be managed by the digital twin in the early de-
sign stage (with the design stage at the left—or beginning stage—of the asset li-
fecycle). 

The DT System aims to be an accurate representation of an asset over its full 
range of operation and its full lifecycle. It will optimize engineering and project 
execution, provide end-to-end value chain visibility, ensure smooth handover to 
operation, improve operations and maintenance performance and provide oper-
ations sustainability in terms of Health, Safety, and Environment (HSE). It is 
ideally created during the initial study to evaluate the feasibility of the asset. It is 
used and further developed during the design, construction and commissioning 
of the asset. It facilitates the optimum design of the asset and the training of the 
staff that will operate the asset. It works in the present, mirroring the actual 
plant in simulated mode, but with full knowledge of its historical performance 
and accurate understanding of its future potential. With the development and 
unification of technology like lifecycle of process simulation [45] [46] and 3D 
CAD, this lifecycle conception of chemical DT system can be realized through a 
unified engineering platform [47], such as AVEVA Unified Engineering [48]. It 
integrates all process simulation and engineering (1D, 2D and 3D) data in one 
single asset data-centric model on cloud environment. Bi-directional informa-
tion flow creates the ability to execute concurrent, multi-disciplines engineering 
for greater control over change across the entire project, reducing project risk 
while simultaneously enhancing project efficiency and sustainability. 

As depicted in Figure 4 (modified from [48]), unlike traditional approaches, 
which rely on experimentation, design experience, and heuristics, digital design 
employs a model-based system engineering (MBSE) approach coupled closely 
with targeted experimentation [49]. Experimentation is used to support the con-
struction of a high-fidelity predictive model or DT of the process rather than di-
rectly establish performance aspects of the industrial-scale equipment. Once a 
model of sufficient accuracy is established, the process DT, rather than the expe-
rimental data, is used to optimize the process design and operation. the key to 
the approach is that the DT can be used to explore many aspects of the decision 
space for both design and operation, allowing a much more comprehensive,  
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Figure 4. Chemical DT across the process lifecycle. 
 
effective, and rapid exploration of the process design space than can be achieved 
by experimentation alone (refer to Table 2). It also allows technology risks to be 
quantified and addressed systematically. 

5. Maturity of Chemical Digital Twin 

Just as there is no unified definition of DT, there is also no unified method to 
evaluate the maturity of DT. In the field of modeling and simulation (M & S), 
there are generally two indicators to evaluate whether a model is credible: fideli-
ty and credibility (also known as confidence) [50]. However, the pursuit of high 
fidelity will bring unnecessary complexity, which will reduce the reliability, 
computability, maintainability and other important performance of the model. 
Credibility is an index to evaluate the trustworthiness of a model according to 
the specific purpose and requirements of simulation. In fact, a model that is va-
lid for one requirement may not be suitable for another, that is, the same model 
may show different credibility for different simulation requirements. For exam-
ple, a 3D CAD model of a plant may be of less value to a process engineer than a 
digital copy of the plant’s operating conditions and the way in which molecules 
behave and transform. Tao Fei, et al. [51] proposed a six-level of digital twin 
maturity framework, and use 19 factors for operational DT maturity evaluation.  

From an industrial perspective, the maturity can be broken down into a Four 
P’s of DTs (refer to Figure 5): 

Predictive: This is a type of pattern recognition and anomaly detection leve-
raging industrial big data, machine learning and process knowledge to create 
DTs of assets and processes, and then to detect both deviations and matching 
patterns that indicate early warning of pending problems and inefficiencies, as 
well as errors in the design process. The big data can come from a variety of 
sources, including sensors, data lakes, historians, calculated values, audio, video, 
etc. 

Performance: Based on thermodynamic simulation & machine learning, this is 
a type of optimization DT providing early warning detection of pending prob-
lems and inefficiencies when compared to actual operational values. This DT  
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Figure 5. The four P’s maturity of chemical DT. 
 
Table 2. Application and values of DT in digital process design. 

Digital Design Application & Values of DTs 

Digital 
R & D phase 

Reduce experimentation time & cost 
Optimize process & product design 
Streamline formulation-to-manufacturing 
Accelerate innovation 

Digital 
engineering phase 

Optimize CAPEX and time to market 
Optimal unit operation design 
Optimal process design & Debottleneck 
Virtual commissioning & Operator training 

Digital 
operation phase 

Exploit plant data, leverage high fidelity process models online 
Optimize OPEX by mirroring, soft-sense, forecast & optimize 
Digital twin tools for operation excellence, decision 
support & prescriptive maintenance 

 
combine both online and simulation technology that leverages machine learning 
to baseline performance through advanced pattern analysis in order to ensure 
the mathematical models accurately match operational reality. From there, devi-
ations can be quickly detected in order that early action is taken to rectify the 
situation. 

Prescriptive: Based on the issues detected in Predictive and Performance ana-
lytics, this provides root cause analysis, planning & decision-support, and prob-
abilistic courses of action to best remedy and optimize a given situation.  

Prognostics: Leveraging neural net, deep-learning, and reinforcement learning 
technologies, this DT provides a forecast of future events. It can be used in mon-
itoring/control and scheduling optimization as well as in determining how long 
an asset or process can continue to safely operate (after an anomaly has been de-
tected) before failure or significant loss of functionality occurs. It can also pro-
vide risk-based insight into decisions such as whether or not an operation should 
attempt to run to the next planned maintenance outage. 
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6. Conclusions and Outlook 

In recent years, although many process suppliers (AVEVA, AspenTech, KBC, 
Siemens, etc.) provide digital twin solutions, to a large extent, they are re-packaging 
their original advantages technologies that have been available in the market for 
a long period. For example, process modeling and simulation can be traced back 
to 1970s. As a result, there have been different interpretations of digital twins. 
It’s a barrier to proposing generic, yet abstract architectures, for chemical digital 
twins and their position in process industrial systems. 

In this paper, we took a step forward and provide the specific definition, core 
elements, features and applications scenarios of DT in petrochemical industry, 
and also discussed the multi-scale feature both in space and time, and life cycle 
of chemical DT. 

In the future, with the further application of digital twins in chemical indus-
try, there are still some issues that need further work, mainly in three aspects: 

1) Data governance. One of the biggest challenges of digital twin application is 
the often discussed problem of data silos. In petrochemical industry, a huge va-
riety of data is produced and has to be managed in several different software 
tools, databases and documents. This comes with the lack of harmonized data 
structures. There need to improve the data integration across the whole asset li-
fecycle and provide a unified data standard and a single data source of truth for 
exchange and sharing. 

2) Model alliance. While individual point solution of DT exists today, there 
should have one multi-purpose DT in the future which aligns asset lifecycle and 
value chain. One of the solutions is model alliance, which enables sharing of key 
master data and model components between different applications to maximize 
synergies throughout the organization, breaking down functional silos across 
engineering, manufacturing, supply chain and maintenance and streamlining 
application deployment and maintenance. 

3) Cloud-based platform. The Cloud is already the infrastructure of choice for 
most business applications. Cloud-based platform should be exploited, where 
possible, for hosting chemical DT for the following reasons: 
 Enables the DT to subscribe to external data feeds that can enrich its resolu-

tion. 
 Supports and nourishes agility with respect to the DT. It allows experimenta-

tion and rapid deployment of new solutions.  
 Makes solution updates trivial and significantly reduces infrastructure costs. 
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