
Journal of Software Engineering and Applications, 2022, 15, 262-273
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2022.157016 Jul. 28, 2022 262 Journal of Software Engineering and Applications

Generic Tabu Search

Chadi Kallab1, Samir Haddad1* , Imad El-Zakhem1, Jinane Sayah2, Mohamad Chakroun3,
Nisrine Turkey4, Jinan Charafeddine5, Hani Hamdan6, Wafaa Shakir7

1Department of Computer Science and Mathematics, Faculty of Arts and Sciences, University of Balamand, Koura, Lebanon
2Department of Telecom and Networks, Issam Fares Faculty of Technology, University of Balamand, Koura, Lebanon
3Faculty of Computer Science and Electrical Engineering, Universität Rostock, Rostock, Germany
4Faculty of Engineering, Notre Dame University, Jounieh, Lebanon
5Université Paris-Saclay, Pôle scientifique et technologique de Vélizy, Laboratoire d’Ingénierie des Systèmes de Versailles (LISV
EA4048), Vélizy, France
6Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire des Signaux et Systèmes (L2S UMR CNRS 8506), Gif-sur-Yvette,
France
7Department of Computer Systems, Faculty of Engineering, Al-Furat Al-Awsat Technical University, Babil, Iraq

Abstract
The Multiple Sequence Alignment problem is considered to be an NP-Hard
problem, requiring initially a specific encoding schema and design, as for any
other of its siblings, to implement and run any of the main categories of heu-
ristic. This paper intends to discuss our proposed generic implementation of
the Tabu Search algorithm, a heuristic procedure proposed by Fred Glover to
solve discrete combinatorial optimization problems. In this research, we try
to coordinate and synchronize different designs/implementations discussed
in many literatures, with some of the references mentioned in this paper. The
basic idea is to avoid that the search for best solutions stops when a local op-
timum is found, by maintaining a list of non-acceptable or forbidden (taboo)
solutions/costs, called Tabu list or Short-Term Memory (STM). In our algo-
rithm, we attempt to add some executions tracing functionalities in order to
help later analysis for initial parameters tuning. On the other hand, we propose
to include the concept of a list called Long-Term Memory (LTM), so that some
of the best solutions found so far can be saved, for search diversification.

Keywords
Generic, Heuristics, Bio-Informatics, NP-Hard, Tabu Search, STM, LTM

1. Introduction
One of the many problems that are considered to be NP-Hard is the Multiple

How to cite this paper: Kallab, C., Had-
dad, S., El-Zakhem, I., Sayah, J., Chakroun,
M., Turkey, N., Charafeddine, J., Hamdan,
H. and Shakir, W. (2022) Generic Tabu
Search. Journal of Software Engineering and
Applications, 15, 262-273.
https://doi.org/10.4236/jsea.2022.157016

Received: June 15, 2021
Accepted: July 25, 2022
Published: July 28, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2022.157016
https://www.scirp.org/
https://orcid.org/0000-0003-0292-2765
https://doi.org/10.4236/jsea.2022.157016
http://creativecommons.org/licenses/by/4.0/

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 263 Journal of Software Engineering and Applications

Sequence Alignment one that initially requires, as for any other of its siblings, a
specific encoding schema and design of the main functionalities of the heuristics
algorithm being implemented and executed. This design was supported by ref-
erences [1] [2] [3] [4].

The main issue with that problem, as discussed in our ICeND2013 conference
[1], was to come up with an encoding that would be suitable for the different
Heuristics algorithms inspired by papers [5] [6] [7] [8]. Once the encoding is
agreed on, the remaining part of designing and building the algorithm that will
get a solution as close to the optimum as possible would be nonetheless as im-
portant. We have decided in our research to focus on the Tabu Search heuristic.
However, we discovered that to be able to adjust some of the flaws of the stan-
dard algorithm, we improved it by adding functionalities like tracing the execu-
tions, so that later analysis could help tune the initial parameters better.

In this paper, we’ll be discussing the implementation of an advanced version
of the Tabu Search algorithm, adding to the standard version some modifica-
tions such as the tracing functionalities, mainly through the use of different kinds
of memories, short-term (STM) and long-term (LTM) instead of one, for solu-
tions checked as Tabu or as good fit, along with some useful parameters.

The problem in the standard algorithm would be that, despite “unfit” solu-
tions would be moved/marked as Tabu, so they won’t be handled in further ite-
ration, there is no guarantee that the algorithm would get out of a local optimum
which could eventually be far from the effective best solution.

2. Initial Algorithm
Standard Algorithm

Tabu Search (TS) is a heuristic procedure proposed by Fred Glover to solve discrete
combinatorial optimization problems. The basic idea is to avoid that the search for
best solutions stops when a local optimum is found, by maintaining a list of
non-acceptable or forbidden (taboo) solutions/costs, called Tabu list or Short-Term
Memory (STM). We have found many papers discussing different implementations
of TS, amongst them references [9] [10] [11] [12] [13]. Other papers in literature
suggest some hybrid or generic implementation of the initial heuristic procedure, as
in reference [14]-[19], while keeping focus on the problem being tackled.

Advanced TS algorithms suggest that some of the best solutions found so far
be saved for search diversification in a list called Long-Term Memory (LTM).

The use of these memory lists bring to light the fact that the updating process
of the current and best solution does ignore those that were marked in the lists,
which grow and shrink per iteration. Occasionally, moving the current solution
to a “forbidden” one is allowed given a certain “aspiration” criteria, usually in-
volving an improvement in cost from the current one.

As opposed to other algorithms, the current solution of the inner loop next itera-
tion is selected from a set of N neighbor solutions, deduced from the actual current
one by perturbing it N times. This solution will be overwritten if, at the beginning
of the next iteration, a better solution was previously acknowledged in memory.

https://doi.org/10.4236/jsea.2022.157016

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 264 Journal of Software Engineering and Applications

Figure 1. Standard Tabu search general flow diagram.

As shown in Figure 1, the standard algorithm starts from an initial solution and

set of parameters then repeatedly, until a certain stopping condition is satisfied,
creates a candidate list of solutions called neighbors, evaluates and chooses the best
admissible one among them, updates the STM and acquisition components with
the selection, then replace the current solution with the one newly selected.

3. Proposed Algorithm

The main idea behind Tabu Search algorithm was to simulate placing solution as
Tabu, when their evaluation will be more costly to the algorithm in further itera-
tions, thus avoiding using them as potential neighbor. However, most literature
about the standard algorithm don’t mention any approach to avoid getting stuck
in a local optimum area, since that best solution is not going to be moved to Ta-
bu. Because of this gap in literature, we decided in our algorithm to give the op-
portunity to remember a previously best fit solution as a potential optimum in-
stead of the best one, into a long-term memory. Adding more memories into the
algorithm came supported by the procedure that the human brain follows to
shift selected information from its STM (also known as daily memory) into its
LTM (mostly storing/recalling experiences from the past).

The steps of our proposed algorithm are almost very similar to those of the
basic standard algorithm, with the difference that some of them, highlighted in
blue, offer the possibility to later on trace back each execution and allow bet-
ter analysis, thus resulting in eventual update of initial parameters. The words/
fragments highlighted in green are more of structure and/or behavior enhance-
ments that try to bridge the gap between the initial annealing process and our
simulated annealing algorithm.

3.1. Main Procedure

Inputs: Initial Solution S0, Number of Iterations numIterations,
 Number of Neighbors numNeighbors,
Precondition: 0numIterations > 0numNeightbors >

https://doi.org/10.4236/jsea.2022.157016

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 265 Journal of Software Engineering and Applications

Outputs: Optimal Solution BestS,
Algorithm:
 Assign to “CurS” the value of the initial solution “S0”
 Compute estimate of “CurS” into “CurEstimate”
 Assign “CurS” and estimate to {“BestS”, “BestEstimate”}
 Create a dynamic list “LTM” of solutions and estimates
 Initialize index “i” to 1
 While True do
 If ()stopLoop or i numIterations> then
 Exit While
 Update LTM with current and/or best solutions
 Reset the STM memory
 {{Current Solution and Estimate are selected}}
 {{ from LTM first if possible}}
 Select best fit between LTM and STM into “CurS”
 Compute estimate of “CurS” into (CurEstimate)
 Save in history “CurrS” {{history ≠ memory}}
 Add to STM values of “CurS” and “CurEstimate”
 Generate a list of “Neighbors” from “ CurS ”
 For “j” from 1 to “numNeighbors” do
 Assign to “Sol” neighbor solution at “j”
 Compute estimate of “Sol” into “SolEstimate”
 {{If neighbor is NOT tabu OR tabu}}
 {{ but aspires to be better than CurS}}
 {{Otherwise, consider the neighbor as Tabu}}
 If (){ }NOT isTabu Sol Or (),aspiration Sol CurS Then
 Assign “Sol” and “SolEstimate” to current
 {{Update best solution so far}}
 {{ if neighbor aspires to be the best}}
 If (),aspiration Sol CurS Then
 Assign “Sol” and “SolEstimate” to best
 Else-If (){ }NOT isTabu Sol And (){ },NOT aspiration Sol CurS
 Then
 Add to STM value of “ SolEstimate ”
 Save in history {“BestS”, “BestEtimate”, “CurS”, “CurEstimate”
 “Neighbors”, “LTM”, “STM”}
 Increment the index “i” by 1
The proposed algorithm, discussed in the main steps mentioned above and in

Figure 2, differs from the standard one mainly by the introduction two update
steps before and after checking the stopping/iterating condition: first applies on
the two running (current and best) solutions, while the other one modifying the
different memory components is applied initially and after the condition check.
Note that after updating those components, the algorithm will be able to switch

https://doi.org/10.4236/jsea.2022.157016

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 266 Journal of Software Engineering and Applications

Figure 2. Advanced Tabu search general flow diagram.

the current solution with a best fit previously evaluated and selected as a poten-
tial optimal solution.

3.2. Object-Oriented Design

In order to implement the algorithm steps in Figure 2, we designed our ob-
ject-oriented components in a simple way as shown below in Figure 3 with sug-
gested classes representing some problems in Figure 4, since the flexibility we
are offering is much more in the steps themselves. In order to simplify the sug-
gested algorithm, we considered the memory components as lists of solutions,
and the selection and/or memorization of solutions as procedures to be handled
directly by the algorithm’s main steps.

The main component “TSProblem”, on the upper-right, is intended to hold
properties managing the different parameters, components and methods the al-
gorithm will need while executing its steps, whether generic and/or purpose-
specific, as for ex: the ability to create a new solution or get a new neighbor.

The class “TSSolution”, just at its left, is intended to hold properties managing
the different values encapsulated in each solution handled during execution,
mainly those related to the evaluation process.

Last but not least, the “TabuSearch” base algorithm with its two base/super
classes, show the main components being handled and functionalities being ex-
ecuted per iteration. The reason behind splitting them into three classes was to
set the ground for potential use of some methodologies with other algorithms
that might find some common grounds, and benefit from Object-Oriented de-
velopment as much as possible.

In order to prove that our implementation is generic enough, we designed some
basic problems, where we can have results to compare with those of the algorithm,
in a simple way. For simplicity and efficiency, we chose to work with simple
math formula “Formula” fed with values of radix {2, 8, 10 or 16}. We also have im-
plemented each radix-related problem as both minimization and maximization.

https://doi.org/10.4236/jsea.2022.157016

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 267 Journal of Software Engineering and Applications

Figure 3. Suggested TS components class diagram.

In this implementation, only the estimates are moved to the STM list, instead

of the whole solution’s properties. Therefore, evaluating if a solution is tabu be-
comes as simple as evaluating its penalty. The aspiration method implemented
relies on finding the minimal or maximal solution estimate.

If the Tabu Search algorithm deals with minimization, the estimate of a solu-
tion should be the result of the evaluation function, mentioned in a previous
chapter, and multiplied by –1 otherwise. For both approaches, the result of the
neighbor function for a given solution is, in other words, a set of results of the
perturbation of this solution.

The fact that TS may deal, with either minimization or maximization, yields
the obligation to implement, consequently, a method used during the aspiration,
and that returns the best solution between 2 solutions fed as parameters.

In order to illustrate the generic implementations applied on these problems,
we have developed a quick straight forward windows application, in which we
dynamically modified the parameters a default algorithm based on the suggested
generic implementation, instead of writing many versions inheriting for our
main implementation.

https://doi.org/10.4236/jsea.2022.157016

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 268 Journal of Software Engineering and Applications

Figure 4. Some supporting problem implementations.

https://doi.org/10.4236/jsea.2022.157016

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 269 Journal of Software Engineering and Applications

Figure 5 shows the first step in running the algorithm, which is the problem
selection. In our windows application, we populated this drop-down dynamical-
ly from a folder containing problems included in our package.

Next step, shown in Figure 6 and Figure 7, is about parametrization of the
algorithm run, whether concerning properties of the problem (environment) it-
self or the execution’s methods. Even though default values were given to those
parameters, we advise to modify them to be able to view effective results, and/or
test different cooling schedules.

The third and final step, as shown in Figure 8, is to simply run the algorithm.
In the above screenshot, we are showing the generated result of an execution on
problem Pb001, along with the actual value corresponding to the last current
solution compared to the cost evaluated during the last iteration of the algorithm.

Figure 5. Win App, TS execution—problem selection.

Figure 6. Win App, TS exec.—problem parameterization.

https://doi.org/10.4236/jsea.2022.157016

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 270 Journal of Software Engineering and Applications

Figure 7. Win App, TS exec.—algorithm parameterization.

Figure 8. Win App, TS execution—sample run.

Figure 9. TS Tracing functionality—initial iteration.

https://doi.org/10.4236/jsea.2022.157016

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 271 Journal of Software Engineering and Applications

The next section of the screen shows the optimal solution it was able to detect
with a cost of 0, which is mathematically the actual best cost. For more complex
problems, running the algorithm for more time will most probably change the
best cost value converging towards a more suitable optimum.

Tracing back the execution of the execution mentioned we can see in Figure 9
that the algorithm reached 80377 as the best solution at the end of the initial
step.

4. Conclusion

This research can be developed by trying to design and implement solutions to
the below issues raised during our research:
 Fixed Input Parameters:
○ “Tabu Search” explores the search space for a given number of iterations, and

a number of neighbors per iteration.
 Applying benchmarks for more accurate analysis and validation of the alter-

natives
○ Use benchmarks for different problem encodings have to be applied.
 Randomness doesn’t handle potentially repetitions:
○ In Neighbor method
 Initial solution may be far from the optimal one, thus the algorithm will take

more time.
 Moving a solution to and from Tabu lists is not dynamically efficient, as it

doesn’t really account or take into consideration the potential effect of the
values of some fields or variables induced by previous moves.

 Inspired by references [10] [11] [14] and [16] amongst others, more efforts
can be put into making more use of the LTM and possible introduction of
other types of memory.

 Another future work idea would be work on the memory components by
making them more self-manageable through encapsulating the updating and
selection procedure, then enriching the system with other types of memory
components that would allow potential intensification and diversification
during the algorithm run. This idea is further supported by references [20] to
[28].

 A second future work could be to allow the main procedure of generating
neighbors and selecting from memories “smart” enough to gain time and search
further more.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Kallab, C. (2013) Generic Encoding and Phylogenies. Proceedings of the ICeND Con-

https://doi.org/10.4236/jsea.2022.157016

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 272 Journal of Software Engineering and Applications

ference, Kuala Lumpur, 4-6 March 2013, 142.

[2] Kim, J. and Warnow, T. (1999) Tutorial on Phylogenetic Tree Estimation.
https://scholar.google.com/scholar?q=Kim%20J.,%20Warnow%20T.%20Tutorial%2
0on%20phylogenetic%20tree%20estimation,%201999

[3] Moret, B., Bader, D. and Warnow, T. (2002) High-Performance Algorithm Engineer-
ing for Computational Phylogenetics. The Journal of Supercomputing, 22, 99-111.
https://link.springer.com/article/10.1023/A:1014362705613
https://doi.org/10.1023/A:1014362705613

[4] Opper, D. (2005) Parsimony Phylogenetic Trees.
http://www.icp.ucl.ac.be/~opperd/private/parsimony.html

[5] Stamatakis, A., Ott, M. and Ludwig, T. (2005) RAxML-OMP: An Efficient Program
for Phylogenetic Inference on SMPs. In: Malyshkin, V., Ed., Parallel Computing Tech-
nologies. PaCT 2005, Lecture Notes in Computer Science, Vol. 3606, Springer, Ber-
lin, 288-302. https://doi.org/10.1007/11535294_25

[6] Felsenstein, J. (1982) Numerical Methods for Inferring Evolutionary Trees. The Quar-
terly Review of Biology, 57, 379-404. https://doi.org/10.1086/412935

[7] Fitch, W. (1971) Toward Defining the Course of Evolution: Minimum Change for a
Specified Tree Topology. Systematic Zoology, 20, 406-416.
https://doi.org/10.2307/2412116

[8] Hendy, M.D. and Penny, D. (1982) Branch and Bound Algorithms to Determine Mi-
nimal Evolutionary Trees. Mathematical Biosciences, 59, 277-290.
https://www.sciencedirect.com/science/article/abs/pii/002555648290027X
https://doi.org/10.1016/0025-5564(82)90027-X

[9] Battiti, R. and Tecchiolli, G. (1994) The Reactive Tabu Search. ORSA Journal on
Computing, 6, 126-140. https://doi.org/10.1287/ijoc.6.2.126

[10] Burke, E., De Causmaecker, P. and Vanden Berghe, G. (1999) A Hybrid Tabu Search
Algorithm for the Nurse Rostering Problem. 2nd Asia-Pacific Conference on Simu-
lated Evolution and Learning, Vol. 1585, 187-194.
https://doi.org/10.1007/3-540-48873-1_25

[11] Crainic, T.G. and Gendreau, M. (1999) Towards an Evolutionary Method—Coop-
erative Multi-Thread Parallel Tabu Search Heuristic Hybrid. In: Voss, S., Martello,
S., Osman, I.H. and Roucairol, C., eds., Meta-Heuristics: Advances and Trends in
Local Search Paradigms for Optimization, Kluwer, Dordrecht, 331-344.
https://doi.org/10.1007/978-1-4615-5775-3_23

[12] Crainic, T.G., Gendreau, M. and Farvolden, J.M. (2000) A Simplex-Based Tabu
Search for the Multicommodity Capacitated Fixed Charge Network Design Prob-
lem. INFORMS Journal on Computing, 12, 223-236.
https://doi.org/10.1287/ijoc.12.3.223.12638

[13] Crainic, T.G., Gendreau, M., Soriano, P. and Toulouse, M. (1993) A Tabu Search
Procedure for Multicommodity Location/Allocation with Balancing Requirements.
Annals of Operations Research, 41, 359-383. https://doi.org/10.1007/BF02023001

[14] Gendreau, M. (2002) Recent Advances in Tabu Search. In: Ribeiro, C.C. and Han-
sen, P., Eds., Essays and Surveys in Metaheuristics, Kluwer, Dordrecht, 369-377.
https://doi.org/10.1007/978-1-4615-1507-4_16

[15] Basu, S. (2012) Tabu Search Implementation on Traveling Salesman Problem and
Its Variations: A Literature Survey. American Journal of Operations Research, 2,
Article No. 19930. https://doi.org/10.4236/ajor.2012.22019

[16] Schweiger, K. and Sahamie, R. (2013) A Hybrid Tabu Search Approach for the De-

https://doi.org/10.4236/jsea.2022.157016
https://scholar.google.com/scholar?q=Kim%20J.,%20Warnow%20T.%20Tutorial%20on%20phylogenetic%20tree%20estimation,%201999
https://scholar.google.com/scholar?q=Kim%20J.,%20Warnow%20T.%20Tutorial%20on%20phylogenetic%20tree%20estimation,%201999
https://link.springer.com/article/10.1023/A:1014362705613
https://doi.org/10.1023/A:1014362705613
http://www.icp.ucl.ac.be/%7Eopperd/private/parsimony.html
https://doi.org/10.1007/11535294_25
https://doi.org/10.1086/412935
https://doi.org/10.2307/2412116
https://www.sciencedirect.com/science/article/abs/pii/002555648290027X
https://doi.org/10.1016/0025-5564(82)90027-X
https://doi.org/10.1287/ijoc.6.2.126
https://doi.org/10.1007/3-540-48873-1_25
https://doi.org/10.1007/978-1-4615-5775-3_23
https://doi.org/10.1287/ijoc.12.3.223.12638
https://doi.org/10.1007/BF02023001
https://doi.org/10.1007/978-1-4615-1507-4_16
https://doi.org/10.4236/ajor.2012.22019

C. Kallab et al.

DOI: 10.4236/jsea.2022.157016 273 Journal of Software Engineering and Applications

sign of a Paper Recycling Network. Transportation Research Part E: Logistics and
Transportation Review, 50, 98-119. https://doi.org/10.1016/j.tre.2012.10.006

[17] Sujitjorn, S., Kluabwang, J., Puangdownreong, D. and Sarasiri, N. (2009) Adaptive
Tabu Search and Management Agent. The ECTI Transactions on Electrical Engineer-
ing, Electronics, and Communications (ECTI-EEC), 8, 1-10.

[18] Devarenne, I., Mabed, H. and Caminada, A. (2006) Intelligent Neighborhood Explo-
ration in Local Search Heuristics. 18th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’06), Washington DC, 13-15 November 2006, 144-150.
https://doi.org/10.1109/ICTAI.2006.68

[19] Schaerf, A. (1996) Tabu Search Techniques for Large High-School Timetabling Prob-
lems. IEEE Transactions on Systems Man and Cybernetics—Part A Systems and Hu-
mans, 29, 368-377. https://doi.org/10.1109/3468.769755

[20] Fink, A. and Voss, S. (2002) Generic Application of Tabu Search Methods to Man-
ufacturing Problems. SMC’98 Conference Proceedings. 1998 IEEE International Con-
ference on Systems, Man, and Cybernetics (Cat. No.98CH36218), San Diego, 14 Oc-
tober 1998, 2385-2390.

[21] Glover, F. and Laguna, M. (1997) Tabu Search (Vol. 22). Kluwer Academic Pub-
lishers, Boston. https://doi.org/10.1007/978-1-4615-6089-0

[22] Santos, H.G., Ochi, L.S. and Souza, M.J. (2005) A Tabu Search Heuristic with Effi-
cient Diversification Strategies for the Class/Teacher Timetabling Problem. Journal
of Experimental Algorithmics (JEA), 10, 2-9.
https://doi.org/10.1145/1064546.1180621

[23] Glover, F., Lü, Z.P. and Hao, J.-K. (2010) Diversification-Driven Tabu Search for
Unconstrained Binary Quadratic Problems. Springer, Berlin.
https://doi.org/10.1007/s10288-009-0115-y

[24] James, T., Rego, C. and Glover, F. (2009) Multistart Tabu Search and Diversification
Strategies for the Quadratic Assignment Problem. IEEE Transactions on Systems, Man,
and Cybernetics—Part A: Systems and Humans, 39, 579-596.
https://doi.org/10.1109/TSMCA.2009.2014556

[25] Duarte, A. and Martí, R. (2007) Tabu Search and GRASP for the Maximum Diver-
sity Problem. European Journal of Operational Research, 178, 71-84.
https://doi.org/10.1016/j.ejor.2006.01.021

[26] Laporte, G., Potvin, J.-Y. and Quilleret, F. (1997) A Tabu Search Heuristic Using Ge-
netic Diversification for the Clustered Traveling Salesman Problem. Journal of Heu-
ristics, 2, 187-200. https://doi.org/10.1007/BF00127356

[27] Santos, H.G., Ochi, L.S. and Souza, M.J.F. (2005) A Tabu Search Heuristic with Effi-
cient Diversification Strategies for the Class/Teacher Timetabling Problem. ACM
Journal of Experimental Algorithmics, 10, 2.9.
https://doi.org/10.1145/1064546.1180621

[28] Liu, G.-Y., He, Y., Fang, Y.H. and Qiu, Y.H. (2004) A Novel Adaptive Search Strat-
egy of Intensification and Diversification in Tabu Search. International Conference
on Neural Networks and Signal Processing, Nanjing, 14-17 December 2003, 428-
431.

https://doi.org/10.4236/jsea.2022.157016
https://doi.org/10.1016/j.tre.2012.10.006
https://doi.org/10.1109/ICTAI.2006.68
https://doi.org/10.1109/3468.769755
https://doi.org/10.1007/978-1-4615-6089-0
https://doi.org/10.1145/1064546.1180621
https://doi.org/10.1007/s10288-009-0115-y
https://doi.org/10.1109/TSMCA.2009.2014556
https://doi.org/10.1016/j.ejor.2006.01.021
https://doi.org/10.1007/BF00127356
https://doi.org/10.1145/1064546.1180621

	Generic Tabu Search
	Abstract
	Keywords
	1. Introduction
	2. Initial Algorithm
	Standard Algorithm

	3. Proposed Algorithm
	3.1. Main Procedure
	3.2. Object-Oriented Design

	4. Conclusion
	Conflicts of Interest
	References

