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Abstract 
The Multiple Sequence Alignment problem is considered to be an NP-Hard 
problem, requiring initially a specific encoding schema and design, as for any 
other of its siblings, to implement and run any of the main categories of heu-
ristic. This paper intends to discuss our proposed generic implementation of 
the Tabu Search algorithm, a heuristic procedure proposed by Fred Glover to 
solve discrete combinatorial optimization problems. In this research, we try 
to coordinate and synchronize different designs/implementations discussed 
in many literatures, with some of the references mentioned in this paper. The 
basic idea is to avoid that the search for best solutions stops when a local op-
timum is found, by maintaining a list of non-acceptable or forbidden (taboo) 
solutions/costs, called Tabu list or Short-Term Memory (STM). In our algo-
rithm, we attempt to add some executions tracing functionalities in order to 
help later analysis for initial parameters tuning. On the other hand, we propose 
to include the concept of a list called Long-Term Memory (LTM), so that some 
of the best solutions found so far can be saved, for search diversification. 
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1. Introduction 
One of the many problems that are considered to be NP-Hard is the Multiple 
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Sequence Alignment one that initially requires, as for any other of its siblings, a 
specific encoding schema and design of the main functionalities of the heuristics 
algorithm being implemented and executed. This design was supported by ref-
erences [1] [2] [3] [4]. 

The main issue with that problem, as discussed in our ICeND2013 conference 
[1], was to come up with an encoding that would be suitable for the different 
Heuristics algorithms inspired by papers [5] [6] [7] [8]. Once the encoding is 
agreed on, the remaining part of designing and building the algorithm that will 
get a solution as close to the optimum as possible would be nonetheless as im-
portant. We have decided in our research to focus on the Tabu Search heuristic. 
However, we discovered that to be able to adjust some of the flaws of the stan-
dard algorithm, we improved it by adding functionalities like tracing the execu-
tions, so that later analysis could help tune the initial parameters better. 

In this paper, we’ll be discussing the implementation of an advanced version 
of the Tabu Search algorithm, adding to the standard version some modifica-
tions such as the tracing functionalities, mainly through the use of different kinds 
of memories, short-term (STM) and long-term (LTM) instead of one, for solu-
tions checked as Tabu or as good fit, along with some useful parameters. 

The problem in the standard algorithm would be that, despite “unfit” solu-
tions would be moved/marked as Tabu, so they won’t be handled in further ite-
ration, there is no guarantee that the algorithm would get out of a local optimum 
which could eventually be far from the effective best solution. 

2. Initial Algorithm 
Standard Algorithm 

Tabu Search (TS) is a heuristic procedure proposed by Fred Glover to solve discrete 
combinatorial optimization problems. The basic idea is to avoid that the search for 
best solutions stops when a local optimum is found, by maintaining a list of 
non-acceptable or forbidden (taboo) solutions/costs, called Tabu list or Short-Term 
Memory (STM). We have found many papers discussing different implementations 
of TS, amongst them references [9] [10] [11] [12] [13]. Other papers in literature 
suggest some hybrid or generic implementation of the initial heuristic procedure, as 
in reference [14]-[19], while keeping focus on the problem being tackled. 

Advanced TS algorithms suggest that some of the best solutions found so far 
be saved for search diversification in a list called Long-Term Memory (LTM). 

The use of these memory lists bring to light the fact that the updating process 
of the current and best solution does ignore those that were marked in the lists, 
which grow and shrink per iteration. Occasionally, moving the current solution 
to a “forbidden” one is allowed given a certain “aspiration” criteria, usually in-
volving an improvement in cost from the current one. 

As opposed to other algorithms, the current solution of the inner loop next itera-
tion is selected from a set of N neighbor solutions, deduced from the actual current 
one by perturbing it N times. This solution will be overwritten if, at the beginning 
of the next iteration, a better solution was previously acknowledged in memory. 
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Figure 1. Standard Tabu search general flow diagram. 

 
As shown in Figure 1, the standard algorithm starts from an initial solution and 

set of parameters then repeatedly, until a certain stopping condition is satisfied, 
creates a candidate list of solutions called neighbors, evaluates and chooses the best 
admissible one among them, updates the STM and acquisition components with 
the selection, then replace the current solution with the one newly selected. 

3. Proposed Algorithm 

The main idea behind Tabu Search algorithm was to simulate placing solution as 
Tabu, when their evaluation will be more costly to the algorithm in further itera-
tions, thus avoiding using them as potential neighbor. However, most literature 
about the standard algorithm don’t mention any approach to avoid getting stuck 
in a local optimum area, since that best solution is not going to be moved to Ta-
bu. Because of this gap in literature, we decided in our algorithm to give the op-
portunity to remember a previously best fit solution as a potential optimum in-
stead of the best one, into a long-term memory. Adding more memories into the 
algorithm came supported by the procedure that the human brain follows to 
shift selected information from its STM (also known as daily memory) into its 
LTM (mostly storing/recalling experiences from the past). 

The steps of our proposed algorithm are almost very similar to those of the 
basic standard algorithm, with the difference that some of them, highlighted in 
blue, offer the possibility to later on trace back each execution and allow bet-
ter analysis, thus resulting in eventual update of initial parameters. The words/ 
fragments highlighted in green are more of structure and/or behavior enhance-
ments that try to bridge the gap between the initial annealing process and our 
simulated annealing algorithm. 

3.1. Main Procedure 

Inputs: Initial Solution S0, Number of Iterations numIterations, 
  Number of Neighbors numNeighbors, 
Precondition: 0numIterations >   0numNeightbors >  
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Outputs:  Optimal Solution BestS, 
Algorithm: 
 Assign to “CurS” the value of the initial solution “S0” 
 Compute estimate of “CurS” into “CurEstimate” 
 Assign “CurS” and estimate to {“BestS”, “BestEstimate”} 
 Create a dynamic list “LTM” of solutions and estimates 
 Initialize index “i” to 1 
 While True do 
  If ( )stopLoop  or i numIterations>  then 
   Exit While 
  Update LTM with current and/or best solutions 
  Reset the STM memory 
  {{Current Solution and Estimate are selected}} 
  {{  from LTM first if possible}} 
  Select best fit between LTM and STM into “CurS” 
  Compute estimate of “CurS” into ( CurEstimate ) 
  Save in history “CurrS” {{history ≠  memory}} 
  Add to STM values of “CurS” and “CurEstimate” 
  Generate a list of “Neighbors” from “ CurS ” 
  For “j” from 1  to “numNeighbors” do 
   Assign to “Sol” neighbor solution at “j” 
   Compute estimate of “Sol” into “SolEstimate” 
   {{If neighbor is NOT tabu OR tabu}} 
   {{ but aspires to be better than CurS}} 
   {{Otherwise, consider the neighbor as Tabu}} 
   If ( ){ }NOT isTabu Sol  Or ( ),aspiration Sol CurS  Then 
    Assign “Sol” and “SolEstimate” to current 
    {{Update best solution so far}} 
    {{ if neighbor aspires to be the best}} 
    If ( ),aspiration Sol CurS  Then 
     Assign “Sol” and “SolEstimate” to best 
   Else-If ( ){ }NOT isTabu Sol  And ( ){ },NOT aspiration Sol CurS  
   Then 
    Add to STM value of “ SolEstimate ” 
  Save in history {“BestS”, “BestEtimate”, “CurS”, “CurEstimate” 
   “Neighbors”, “LTM”, “STM”} 
  Increment the index “i” by 1 
The proposed algorithm, discussed in the main steps mentioned above and in 

Figure 2, differs from the standard one mainly by the introduction two update 
steps before and after checking the stopping/iterating condition: first applies on 
the two running (current and best) solutions, while the other one modifying the 
different memory components is applied initially and after the condition check. 
Note that after updating those components, the algorithm will be able to switch  
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Figure 2. Advanced Tabu search general flow diagram. 
 
the current solution with a best fit previously evaluated and selected as a poten-
tial optimal solution. 

3.2. Object-Oriented Design 

In order to implement the algorithm steps in Figure 2, we designed our ob-
ject-oriented components in a simple way as shown below in Figure 3 with sug-
gested classes representing some problems in Figure 4, since the flexibility we 
are offering is much more in the steps themselves. In order to simplify the sug-
gested algorithm, we considered the memory components as lists of solutions, 
and the selection and/or memorization of solutions as procedures to be handled 
directly by the algorithm’s main steps. 

The main component “TSProblem”, on the upper-right, is intended to hold 
properties managing the different parameters, components and methods the al-
gorithm will need while executing its steps, whether generic and/or purpose- 
specific, as for ex: the ability to create a new solution or get a new neighbor. 

The class “TSSolution”, just at its left, is intended to hold properties managing 
the different values encapsulated in each solution handled during execution, 
mainly those related to the evaluation process. 

Last but not least, the “TabuSearch” base algorithm with its two base/super 
classes, show the main components being handled and functionalities being ex-
ecuted per iteration. The reason behind splitting them into three classes was to 
set the ground for potential use of some methodologies with other algorithms 
that might find some common grounds, and benefit from Object-Oriented de-
velopment as much as possible.  

In order to prove that our implementation is generic enough, we designed some 
basic problems, where we can have results to compare with those of the algorithm, 
in a simple way. For simplicity and efficiency, we chose to work with simple 
math formula “Formula” fed with values of radix {2, 8, 10 or 16}. We also have im-
plemented each radix-related problem as both minimization and maximization. 
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Figure 3. Suggested TS components class diagram. 

 
In this implementation, only the estimates are moved to the STM list, instead 

of the whole solution’s properties. Therefore, evaluating if a solution is tabu be-
comes as simple as evaluating its penalty. The aspiration method implemented 
relies on finding the minimal or maximal solution estimate. 

If the Tabu Search algorithm deals with minimization, the estimate of a solu-
tion should be the result of the evaluation function, mentioned in a previous 
chapter, and multiplied by –1 otherwise. For both approaches, the result of the 
neighbor function for a given solution is, in other words, a set of results of the 
perturbation of this solution. 

The fact that TS may deal, with either minimization or maximization, yields 
the obligation to implement, consequently, a method used during the aspiration, 
and that returns the best solution between 2 solutions fed as parameters. 

In order to illustrate the generic implementations applied on these problems, 
we have developed a quick straight forward windows application, in which we 
dynamically modified the parameters a default algorithm based on the suggested 
generic implementation, instead of writing many versions inheriting for our 
main implementation. 
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Figure 4. Some supporting problem implementations. 
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Figure 5 shows the first step in running the algorithm, which is the problem 
selection. In our windows application, we populated this drop-down dynamical-
ly from a folder containing problems included in our package. 

Next step, shown in Figure 6 and Figure 7, is about parametrization of the 
algorithm run, whether concerning properties of the problem (environment) it-
self or the execution’s methods. Even though default values were given to those 
parameters, we advise to modify them to be able to view effective results, and/or 
test different cooling schedules. 

The third and final step, as shown in Figure 8, is to simply run the algorithm. 
In the above screenshot, we are showing the generated result of an execution on 
problem Pb001, along with the actual value corresponding to the last current 
solution compared to the cost evaluated during the last iteration of the algorithm.  
 

 
Figure 5. Win App, TS execution—problem selection. 
 

 
Figure 6. Win App, TS exec.—problem parameterization. 
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Figure 7. Win App, TS exec.—algorithm parameterization. 

 

 
Figure 8. Win App, TS execution—sample run. 

 

 
Figure 9. TS Tracing functionality—initial iteration. 
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The next section of the screen shows the optimal solution it was able to detect 
with a cost of 0, which is mathematically the actual best cost. For more complex 
problems, running the algorithm for more time will most probably change the 
best cost value converging towards a more suitable optimum. 

Tracing back the execution of the execution mentioned we can see in Figure 9 
that the algorithm reached 80377 as the best solution at the end of the initial 
step. 

4. Conclusion 

This research can be developed by trying to design and implement solutions to 
the below issues raised during our research: 
 Fixed Input Parameters: 
○ “Tabu Search” explores the search space for a given number of iterations, and 

a number of neighbors per iteration. 
 Applying benchmarks for more accurate analysis and validation of the alter-

natives 
○ Use benchmarks for different problem encodings have to be applied. 
 Randomness doesn’t handle potentially repetitions: 
○ In Neighbor method 
 Initial solution may be far from the optimal one, thus the algorithm will take 

more time. 
 Moving a solution to and from Tabu lists is not dynamically efficient, as it 

doesn’t really account or take into consideration the potential effect of the 
values of some fields or variables induced by previous moves. 

 Inspired by references [10] [11] [14] and [16] amongst others, more efforts 
can be put into making more use of the LTM and possible introduction of 
other types of memory. 

 Another future work idea would be work on the memory components by 
making them more self-manageable through encapsulating the updating and 
selection procedure, then enriching the system with other types of memory 
components that would allow potential intensification and diversification 
during the algorithm run. This idea is further supported by references [20] to 
[28]. 

 A second future work could be to allow the main procedure of generating 
neighbors and selecting from memories “smart” enough to gain time and search 
further more. 
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