
Journal of Software Engineering and Applications, 2022, 15, 75-102
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2022.154004 Apr. 7, 2022 75 Journal of Software Engineering and Applications

Computer Integration within Problem
Solving Process

Teodor Rus

Department of Computer Science, The University of Iowa, Iowa City, USA

Abstract
The complexity of current software tools increases with the complexity of
problem solving tasks they are designed to assist and are mainly dedicated to
computer educated people. On the other hand current computer technology
is deeply involved in people’s everyday life. This gap deepens and stresses
software technology and computer education. The purpose of this paper is to
discuss the feasibility of a new computer based problem solving methodology
based on software tools that can be manipulated through the use of natural
language. By computational emancipation the natural language becomes a
family of non-ambiguous languages. This means that every problem solver
uses a non-ambiguous natural language, termed here as Domain Algorithmic
Language, DAL. Here we show how to develop software tools dedicated to the
problem domain and illustrate the methodology we propose with the software
tools required by teaching high school algebra.

Keywords
Computer, Ontology, Problem-Solving, Problem-Domain, Software-Tool

1. Preamble

The concept of computational emancipation of problem domain has been coined
in the paper [1]. It denotes the process of a problem domain formalization by
means of a domain ontology. The goal was the development of software tools
that would simplify computer usage in problem solving process and would allow
computer users to computationally emancipate their problem domains, thus
eliminating the fear of jobless society by automation. But these ideas did not
reach the targeted computer community. During the last 5 years the usage of
ontology as a computation mechanism in software development has taken a dif-
ferent path [2] which does not help making computer usage simpler. In addition,

How to cite this paper: Rus, T. (2022)
Computer Integration within Problem Solv-
ing Process. Journal of Software Engineer-
ing and Applications, 15, 75-102.
https://doi.org/10.4236/jsea.2022.154004

Received: January 20, 2022
Accepted: April 4, 2022
Published: April 7, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2022.154004
https://www.scirp.org/
https://doi.org/10.4236/jsea.2022.154004
http://creativecommons.org/licenses/by/4.0/

T. Rus

DOI: 10.4236/jsea.2022.154004 76 Journal of Software Engineering and Applications

some of the articles in the viewpoint section of Communications of the ACM
show that confusion about what is and what is not computer science deepens,
and the misunderstanding of artificial intelligence threatens to derail further de-
velopments of computer usage as a problem solving tool. Therefore I decided to
republish this paper thus hoping that its main ideas will reach computer com-
munity. The basis of these ideas is the assumption that computer is a brain tool
and computer science is simple the science of computer use during problem
solving process. Problem solving is characteristic to all human domains of activ-
ity and the human brain is the human organ in charge of performing it. Hence,
the computer needs to be seen as a brain assistant and natural language should
be the language a problem solver uses. In addition, any problem solver should be
able to employ the computer during problem solving process according to her
computation needs. That is, because all humans solve problems, all humans use
the natural language of their problems domains and consequently all humans
should be able to use their brain assistant, that is the computer, as a problem
solving tool. Computational emancipation of problem domain, that is using the
problem domain ontology, enables these desiderata because:

1) All concepts of problem domain can be stored in a file whose records are
both concept terms and term meanings.

2) Computational emancipation mimics the human learning process, where
knowledge is stored, both by terms and by meanings in a file, exactly like natural
learning stores concepts by terms and by meaning in the brain.

3) Problem domain ontology allows us to disambiguate natural language and
thus to develop software tools that make computer use as easy as the usage of
any other tool developed by humans to strengthen them during problem solving
activity.

4) Hence, computational emancipation is simple the process of natural learn-
ing using current computer technology.

This paper presents the methodology sketched in [3] towards this endeavor
and therefore deserves to be largely known.

2. Introduction

The problem we address in this paper is the integration of the computer as a
brain assistant within the human problem solving process. Original computers
have not been developed as problem solving tools. Rather, computers were de-
veloped as number crunching tools to be used by mathematicians and engineers.
The computer based problem solving methodology provided by the creators of
the original computer consists of:
 Formulate the problem;
 Develop a solution algorithm;
 Encode the algorithm and its data into a program in the language of the

computer;
 Let the computer execute the program;
 Decode the result and extract the solution of your problem.

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 77 Journal of Software Engineering and Applications

This problem solving methodology offers computer programming as an “one-
size-fits-all” pattern for computer use as a problem solving tool, independent of
the problem domain. Therefore one may say that this paradigm of computer use
integrates the problem solving process within the computer.

Successes of computer use during problem solving process have evolved soft-
ware tools at the level of information processing services [4]. Moreover, cur-
rently the networking technology allows software tools to be exchanged as stan-
dalone pieces of composeable tools called Web Services (WS). A new problem
solving paradigm based on WS-s emerges, where computer based problem solv-
ing process is split between problem domain expert and computer expert ac-
cording to their expertise as follows:
 Domain expert formulates the problem and the solution algorithm in terms

of problem domain concepts;
 Computer expert implements software tools and domain concepts as web

services using computer languages;
 Computer user acquires and manipulates WS-s in order to solve her prob-

lems.
The architecture of the problem solving software resulted depends upon the

problem domain and evolves as a Service Oriented Architecture (SOA). The
computer platform that runs it is transparent to the problem solver. Therefore,
one may say that with this problem solving methodology computer is integrated
within the human problem solving process. The problems raised by the intero-
perability of WS-s components of SOA-s are resolved using new standards. XML
technology led to the development of three main standards that are used for the
implementation of SOA-s:

1) Standard (Small) Object Access Protocol (SOAP), a standard that allows
applications to invoke WS-s irrespective of the computer architecture on which
they run.

2) Web Service Description Language (WSDL), a standard that allows soft-
ware developers to describe WS-s such that they can be discovered and used by
other developers.

3) Universal Description, Discovery, and Integration (UDDI), a standard re-
gistry that allows software developers to advertise, sell, and buy WS-s.

These standards transform computer based problem solving process into a
computer business where the exchange unit is the WS. Unfortunately this com-
puter business is not targeted to the computer user. By the contrary, in addition
to the language of the software tools, now computer user needs also to learn the
intricacies of Web Programming, the language of the WS-s and SOA-s.

The recent hype about Cloud Computing (CC) promises to bring computers
as problem solving tools to the masses. However, so far the main research on CC
[5] concerns mostly cloud infrastructure management, expressed in terms of
Virtual Machines (VM-s) populating the cloud at a given time. But current
VM-s in the cloud context are abstractions of computer architectures not ab-

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 78 Journal of Software Engineering and Applications

stractions of problem domains. Therefore CC is addressed to computer experts
not to problem domain experts. Moreover, the goal of CC is stated mostly in
terms of computer resource optimization and efficiency, not in terms of how
computer use can be addressed to masses. We believe that populating the cloud
with domain dedicated virtual machines CC becomes a problem solving tool
dedicated to masses.

3. Problem Solving Process

Problem and problem solving are among the few concepts computer scientists
use without defining them, under the assumption that everybody understands
them a priori. But for different domains of activity problem and problem solving
may mean different things. For example, for a high-school student solving the
equation 2 0a x b x c∗ + ∗ + = means the development of the formula

() ()2
1 2, 4 2x x b b a c a= − ± − ∗ ∗ ∗ which when fed with the coefficients
, ,a b c of the equation evaluates to the numbers 1 2,x x that satisfy the equality

2 = 0a x b x c∗ + ∗ + . On the other hand, for a computer expert this may mean
the development of a program that inputs the numbers , ,a b c and evaluates
the expression 2a x b x c∗ + ∗ + for all [],R Rx Min Max∈ , where RMin and

RMax are minimum and maximum real numbers representable in machine
memory, and outputs those x for which the value of 2a x b x c∗ + ∗ + is zero.
Teaching students the art of problem solving, Polya [6] has defined the concepts
of a problem and problem solving as follows:

To have a problem means to search consciously for some action appropriate
to attain a given aim. To solve a problem means to find such an action.

Notice that hidden here are three things: unknown, action, purpose. These
concepts are independent of problem domain, therefore Polya’s definition is ro-
bust. Polya’s problem solving process involves the operations: identify the un-
known, find the action that leads from the given data to the discovery of un-
known, and check that the unknown thus found satisfies the purpose, i.e., satis-
fies the condition that characterizes the problem. Unknown, action, and purpose
are natural language terms used to formulate and solve problems in any problem
domain. In any scientific domain the natural language ambiguities in problem
formulation and solution algorithm development are resolved by the domain
context. That is, for mathematician an unknown may denote a mathematical ab-
straction while for a chemist it may denote a concrete chemical substance; the
actions performed by the mathematician while developing a solution algorithm
perform operations with mathematical abstractions while the actions performed
by the chemist are operations with concrete physical instruments and chemical
substances. Scientists solving problems manipulate the objects of their sciences
whose meanings are different though their natural language notations may be
the same. That is, though the natural language is infinite through the infinity of
the discourse it manipulates, in any given domain the language used by the do-
main expert is unambiguous and is finitely generated by the mechanism of

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 79 Journal of Software Engineering and Applications

knowledge acquisition and use. Consequently, the problem solving process pro-
posed by Polya is linguistically unambiguous and domain independent. Focusing
on mathematical objects, Polya formulates it as the four steps problem solving
methodology:

1) Formalize the problem;
2) Develop a plan (an algorithm) to solve the problem;
3) Perform the algorithm on the data characterizing the problem;
4) Validate the solution by checking the validity of problem conditions.
The requirement to formalize the problem means to express the three charac-

teristic concepts components of the problem, unknown, condition, data, as ma-
thematical objects. The result of “problem formalization” step depends upon
mathematical knowledge and problem understanding. The requirement to de-
velop a solution algorithm asks the problem solver to discover a sequence of
well-coordinated operations which when applied to the data characterizing the
problem leads to the values of the requested unknowns. The requirement to
perform the algorithm asks the problem solver to actually execute the opera-
tions involved in the algorithm using her brain as a tool. This means to instan-
tiate the problem by appropriate data, conditions, and unknown and to ex-
ecute the operations defining the algorithm on the problem instance thus ob-
tained. The requirement to validate the solution means to shows that conditions
characterizing the problem are satisfied by the solution discovered by the algo-
rithm execution.

Computers evolved from tools that can help performing numerical operations
to tools that can perform any kind of well-defined operation. Hence, computer
can be used to help with algorithm execution irrespective of the problem and
problem solving algorithm. To straighten the mechanism used by computers to
perform operations during an algorithm execution, we give below an algebraic
specification of a computer [7]:

The essential part is the action Program Execution Loop (PEL) composed of
the functions Perform () and Next (). Perform () takes as the argument a control

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 80 Journal of Software Engineering and Applications

register called Program Counter (PC) and evaluates the operation encoded as its
contents; Next (PC) determines the operation of the algorithm to be performed
next. Computer Based Problem Solving Process (CBPSP) uses Polya methodol-
ogy where problem solving algorithm is performed by a computer. This requires
that problem characteristic components unknown, data, condition, as well as
problem solving algorithm, be encoded in computer memory. The process of
this encoding has been called the computer programming. In addition, a me-
chanism for activating the computer on a given program and for controlling
computer’s actions during program execution, must also be provided. This has
been called the program execution.

Computer programming and program execution are tedious and error prone
tasks, and they require problem solver to be a computer expert. So, to make
computers usable by the human, an evolving collection of programming tools
have been developed as the system software. According to services provided for
program development and execution, system software tools can be classified as
translators and operators. Translators allow programmers to use high level
mnemonic terms for machine operations during programming. Operators ma-
nipulate computer resources (memory, processor, devices, control, information)
and events (interrupts and exceptions) that occur during program execution. But
it doesn’t matter the abstraction level of the terms used to denote computer re-
sources, events, and system software tools, these terms represent computer ele-
ments and computer computation concepts. Software tools are not problem do-
main concepts. Therefore CBPSP actually embeds problem solving process into
the computer language, irrespective of the problem it solves. To bring computers
to masses it means to reverse this process, i.e., to embed the computer into the
problem solving process. This is achievable by letting computer user employ the
computer during the algorithm evaluation as a brain assistant that performs op-
erations required by the control flow of the algorithm evaluation. Current com-
puter technology makes this task feasible by developing software tools that allow
domain expert and computer expert to share the problem solving process ac-
cording to their domains of expertise, as follows:
 Domain expert formulates problems and develops solution algorithms using

the problem domain logic;
 Computer expert develops software tools and provides them to computer us-

ers as web service;
 Computer network experts develop tools that allow problem solvers to ask

computer networks to perform the tasks involved in their problem solving
processes.

Irrespective of their expertise, all of them can use the computer as a brain as-
sistant during their activity. The new software tools required by this computer
based problem solving methodology are:
 The Domain Algorithmic Language (DAL), a computational language to be

used by the problem solver to express problem solving algorithms.
 Computational Emancipation of the Application Domain (CEAD), which

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 81 Journal of Software Engineering and Applications

provides a data-representation of the problem domain that automates algo-
rithm evaluation using a Domain Dedicated Virtual Machine (DDVM);

 The DAL System that implements the DDVM (in the cloud) and offers com-
puter services to the computer user by subscription, without asking computer
knowledge in order to consume these services.

In this paper we illustrate these tools using the implementation of NLD Sys-
tem taking the Arithmetic as the problem domain [8].

4. Domain Algorithmic Language

Polya’s problem solving methodology is centered around problem formalization
and problem solving algorithm development, using problem domain concepts.
This is easily done for mathematical problems because mathematical well de-
fined concepts are implicitly formalized. But for other problem domains, prob-
lem formalization and algorithm development may not be so obvious. However,
whatever problem domain may be, problem formalization means define problem
concepts and methods in terms of well-understood concepts and methods. Us-
ing a mathematical say, “one cannot expect to be able to solve a problem one
does not understand”. Our conjecture here is that solvable problems of any
problem domain are expressible in terms of a finite number of well defined con-
cepts. This is trivially true for the common sense problems raised by the usual
real-life. A formal proof of this conjecture can actually be sought using decida-
bility theory [9].

We assume further that for a problem solver, the problem domain consists of
a set of well defined domain characteristic concepts, and is modeled by a tree as
shown in Figure 1.

The Primitive leaves of the modeling tree represent domain characteristic
concepts that are common to all domain experts. Primitive data are expressed by
the concepts of variable and value. Primitive actions are expressed by the simple
phrases of the form: ActionSubject Object→ , PropertySubject Object→ where
Subject and Object are data or actions (as appropriate), and Action→ and

Property→ are operations to perform or predicates to check, expressed by the
common linguistic jargon of the domain. The Defined leaves of the modeling
tree represent concepts created by problem solving and are specific to the prob-
lem solver. However, the mechanisms used to define new data and action con-
cepts during problem solving are specific to the domain. We assume here that
data definition mechanisms are formalized by mathematical concepts of pair,
vector, table, list, set, function. Linguistic expressions of these definitions are
domain characteristic, are tailored to the problem and, as appropriate, are for-
mulated by the problem solver. The action definition mechanisms are forma-
lized by mathematical rules that define the action-composition operations by
expression-well-formation, concatenation, choice, iteration. The linguistic ex-
pressions of these definitions are domain specific phrases. Figure 2 shows the
example of tree modeling of arithmetic.

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 82 Journal of Software Engineering and Applications

Figure 1. Tree modeling of a problem domain.

Figure 2. Arithmetic modeling tree.

This domain modeling implies that the solution (algorithm) of any problem
domain defines a new characteristic concept of that problem domain. Conse-
quently, by problem solving, a problem domain becomes a potentially infinite
collection of concepts usable to solve other potential problems of that domain.
Problem solutions (algorithms) are expressed in terms of concepts and opera-
tions characteristic to the domain. These are actually valid expressions in the
natural language of the problem solvers, which are understood by all domain
experts because these expressions use only concepts familiar to the domain ex-
perts.

For example, for a high-school student learning arithmetic, the problem do-
main may be characterized by the set I of integer numbers with the operations

: I I I+ × → , : I I I− × → , : I I I∗ × → . Then, solving the equation
0a x b∗ + = , ,a b I∈ , 0a ≠ means finding c I∈ such that 0a c b∗ + = .

Using the properties of equality, the problem solver develops the formula
c b a= − . But one can easily observe that b/a is not always an integer. Therefore,
problem solver concludes that = 0a x b∗ + is not always solvable over the set
of integers. However, if she extends I to R, the set of all real numbers, then the
equation 0a x b∗ + = is solvable and its solution is x b a= − . Since division
by zero is not defined, the problem solver requires the condition 0a ≠ .Thus, by
solving the problem a new well-defined concept, the set R of real numbers, has
been developed and problem domain was enlarged with the new concept, Figure
2.

The specification of the Domain Algorithmic Language (DAL) can be done
using a vocabulary that contains language terms used for few characteristic con-
cepts of the domain, and very simple rules for sentence formation. The potential
ambiguity of these terms is eliminated by their meaning in the domain. In other
words, though phrases containing these terms may be ambiguous as natural

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 83 Journal of Software Engineering and Applications

language expressions, these ambiguities are transparent for a domain expert.
That is, for a problem domain D, DAL (D) is the language spoken by an expert
of the domain D.

The problem solving process expands the vocabulary of DAL (D) with the
terms used to name problem solutions. In addition, problem solution expres-
sions (algorithms) expand the sentence formation rules with the rules provided
by the solution expression. This mimics the natural learning process that cha-
racterizes the problem domain. We should observe here the difference between
computer languages and DAL. Computer languages have a fixed vocabulary
(lexicon) and a fixed set of algorithm well formation rules. DAL’s vocabulary
(lexicon) and the concept terms well formation rules evolves dynamically with
the domain learning process.

Formally DAL may be specified using a pattern similar to the pattern used to
specify computer languages, which consists of given a finite set of BNF rules
specifying terms denoting domain characteristic concepts and few simple BNF
rules for statement formation. Further, DAL specification mechanism allows
both its vocabulary and formation rules to grow dynamically with domain learn-
ing process. We call this the process of DAL’s evolution. Since DAL terms and
algorithms are natural language concepts (though they may have machine re-
presentations) domain experts can freely reuse them as components of the new
concepts and solution algorithms developed during problem solving process,
while preserving the unambiguity of DAL.

Grammatically, the initial terms of the DAL vocabulary would be categorized
as nouns, verbs, adjectives, and adverbs. Here we choose the statement forma-
tion rules to fit the Resource Description Framework (RDF) used by the Seman-
tic Web [10] [11], ActionSubject Object→ , PropertySubject Object→ , where
Subject , Object , Action , Property are elements of the DAL vocabulary. But
for any problem domain these rules can be chosen by domain expert collaborat-
ing with computer expert to fit the advances of their domain evolution. Of
course, solution algorithms developed by the problem solving process are seen as
statement formation rules expressed in terms of the already defined statement
formation rules. The evolving DAL specification defined above could be best il-
lustrated by any of the formal systems provided by the axiomatic specification of
set theory [12].

Computational nature of DAL is obtained by DAL’s semantics specification
using a description logic [13] whose model is defined as follows:
 Implement every concept C of the DAL terminology as a web service WS (C).

Let URI (C) be the URL of the WS (C).
 Implement formation rules ActionSubject Object→ by web services WS

(Action) whose input and output are elements of Subject Object× .
 Implement formation rules PropertySubject Object→ by web services WS

(Property) that input tuples of Subject Object× and return true or false.
 Implement every solution algorithm by a web service obtained by the com-

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 84 Journal of Software Engineering and Applications

position of the web services employed in the algorithm using the following
rules:

1) Implement concept concatenation 1 2;C C by service concatenation
() ()1 2;WS C WS C ;

2) Implement concept composition ()1 2C C by service composition
() ()()1 2WS C WS C ;

3) For each domain specific operator, rator , implement concept composition

1 2C rator C by a domain specific web service composition operator
() () ()()1 2,WS rator WS C WS C .

In order to allow algorithm evaluation by the problem solver using the com-
puter as a brain assistant, we further structure DAL and its model using a do-
main ontology represented by a file in the Web Ontology Language, (OWL) [14].
For a problem domain D, let OWL (D) be the OWL file representing the DAL
(D). A solution algorithm in the domain D is then executed by the problem solver
using an approach similar to the usage of a calculator to evaluate an expression.
However, data and operations of the DAL algorithm are evaluated using com-
puters available on the Internet and the OWL (D) as follows. Let be a solu-
tion algorithm to be executed.

1) Map the expression of into an expression tree. A Polish-form (prefix or
postfix) can be used to express this tree. Let ()PF be the postfix form of the
DAL algorithm.

2) Evaluate ()PF using a stack and OWL (D), by the following rules:
a) Examine the ()PF from left to write.
b) If a data concept d is examined, search d in the OWL (D). Let URL (d) be

the web service implementing the concept d. Call the web service at URL (d) and
push the result on the stack;

c) If an action a (operation or property) is examined, search a in the OWL (D)
and let URL (a) be the web service implementing a. Call URL (a) taking as input
arguments the elements on top of the stack. Let r be the result. Delete the argu-
ments taken as input by URL (a) from the top of the stack and push r on the
stack;

d) The result of the DAL algorithm evaluation is on top-of the stack when the
()PF is completely examined.

This algorithm is well-known in compiler construction [15] and does not re-
quire any computer knowledge in order to perform it by a domain-expert.
However, in this context the ()PF algorithm interpretation assumes that: 1)
problem domain is represented as a data structure (the OWL file) that can be
searched by the computer user, and 2) domain concepts are implemented as web
services available on the Internet. Since computer user handles only domain
concepts, this paradigm of computer use integrates the computer within the prob-
lem solving process.

Note: though the DAL algorithm evaluation described above follows a se-
quential approach, it can be implemented by a distributed system, as we shall see

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 85 Journal of Software Engineering and Applications

in Section 5.

5. Computational Emancipation of a Problem Domain

The DAL algorithm execution discussed in Section 3 demonstrates that current
software technology allows computer integration within the problem solving
process, as a brain assistant. But this integration lacks the efficiency because
computer user spends all the time searching for web services in the OWL (D). In
addition, it imposes new complexities during problem solving determined by the
structure of the OWL (D) and by the web service calling mechanism. Therefore,
in order to be effective, this integration must be automated. How can this be
done?

CEAD is the process that transforms the DAL from a fragment of natural
language used by the problem solver into a computational language used to au-
tomate the problem solving process. Therefore CEAD can actually be seen as
a new step towards domain formalization described in Section 3 and can be
achieved by:

1) Software tools to automate the process of domain ontology creation and
implementations;

2) Software tools that automate WS generation and optimize the search for the
concept implementation in the domain ontology during the DAL algorithm ex-
ecution;

3) Software tools that automate the process of WS evaluation during DAL al-
gorithm execution;

4) Software tools that expand domain ontology with the terms denoting new
algorithms developed during problem solving process and with the formation
rules provided by these algorithms.

Many such software tools are already provided by current software technology.
However, these tools have not been designed with this goal in mind. Therefore,
while computer research creates tools dedicated to the goal set forth by the
CEAD process, the challenge is to use the existing software as appropriate, in the
context of the new problem solving methodology, which integrate the computer
in the human problem solving process, further referred to as the Web Based
Problem Solving Process (WBPSP).

5.1. Domain Ontology

In this paper, domain ontology is a mechanism that facilitates the goal of do-
main algorithm execution, by the domain expert, employing the computer as a
brain assistant, which uses web services to perform algorithm’s operations. There-
fore, while much of current work on ontology focuses on development and mod-
eling [16]-[22] we concentrate on a domain ontology structuring and represen-
tation that supports the automation of concept identification in the domain on-
tology and the execution of the web services implementing domain concepts.
Since WBPSP ensures domain evolution by the problem solving process, our on-

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 86 Journal of Software Engineering and Applications

tology structuring must be automatically updated with the new concepts re-
presenting problems and solution algorithms. Hence, the ontology structuring
we assume here is similar to that described in [23]. That is:

1) The domain ontology is specified by a taxonomy that is representable by a
collection of disjoint trees whose nodes are primitive concepts of the domain
and whose edges are relationships interpreted as logical subsumptions, that is to
say that if concept C1 subsumes concepts C2 then x∀ () ()1 2C x C x→ .

2) Ontology trees are of two kinds: DataConcept trees and ActionConcept
trees. The relations among them are explicitly specified by their definitions.
Examples of such definitions are the references to the input and the output of
actions used in the domain algorithms.

3) New concepts are constructed by domain specific tree constructors which
represent problem solving algorithms.

The methodology we use to build a domain ontology is similar to the “adap-
tive methodology” reported in [24] tailored to the goal of WBPSP. That is, the
domain ontology reflects the problem solving process which evolves the ontolo-
gy by the user learning process, and thus consists of two parts: a part that
represents the user own ontology and a part that represents the domain expert
ontology. Domain Expert Ontology (DEO) is built by hand, using a small tax-
onomy chosen from a textbook, is evolved by the process of domain expert edu-
cation, and is updated during problem solving process. This is performed by a
collaboration between domain expert and computer expert as shown in Figure
3.

The User Own Ontology (UOO) is built automatically by tools from the DEO,
thus extending automatically the TBox and the ABox during algorithm execu-
tion by the DDVMs. That is, initially UOO coincides with the DEO. Then, dur-
ing problem solving process UOO is automatically expanded with new concepts
representing problems and solution algorithms developed by the particular user.
Hence, at a given time, the domain ontology consists of the core DEO, that is
available to all domain users, and a private part (UOO) which is specific to a
given domain user. The DEO may be extended by the system to represent the
domain evolution containing the new domain discoveries developed by the ac-
tivity of the collection of domain users. This may be illustrated with the evolu-
tion of arithmetic ontology to a vector space.

Consider an application domain modeled by a tree as shown in Figure 1. Data
concepts represent data that can be used in a computational process such as in-
put and output of such a process. The three attributes of a data concept are: type,
value, literal. The type of a data concept is defined by the collection of operations

Figure 3. Domain ontology implementation and use.

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 87 Journal of Software Engineering and Applications

defined on that data; the value of the data concept is the abstraction it represents;
and the literal is a string representing that data value during problem solving
process. For example, Integer type is defined by the collection of operations
identified by +, −, *, / where +, −, * are total operations and/is a partial operation;
Integer values are decimal numbers and are formally defined as cardinals of sets;
Integer literals could be sequences of decimal digits (potentially prefixed by + or
−) representing integer numbers. Using appropriate definitions, one can extend
the primitive operations +, −, *, / to the operations add, subtract, multiply, di-
vide, which are defined on Number that subsumes both Integer and Rational.

The CEAD process associates both data concepts and action concepts of the
domain modeled with WS-s which represent their semantics. As suggested in
Figure 3, the WS-s are constructed by computer experts cooperating with do-
main experts. For example, the concepts in the arithmetic domain in Figure 2
are modeled by WS-s automatically generated from Java classes as we shall see
further.

Computationally domain ontology is a data base, such as a file. Further we use
the OWL file to represent a domain ontology where concepts are represented by
their properties. As seen above, a data concept such as Integer, has three main
attributes: type, value, and literal. These attributes are represented in OWL lan-
guage by three properties: hasType, hasValue, and hasLiteral. Here we use the
RDF triples to represent these properties which look like: Integer hasType→
URI (integerType), Integer hasValue→ URI (integerValue), and Integer

hasLiteral→ URI (integerLiteral). The action concepts like add, subtract, mul-
tiply, etc., are associated with WS-s which implements them via a Concept Agent.
There could be several WS instances that implement the same concept so that if
one instance is down other instances can take over. For example, the concept
add may have the agent addAgent implemented by two WS instances: addIns-
tance1, addInstance 2. The agent maintains the list of web services which it can
execute as implementations of the action it performs. Therefore, the RDF triples
that define an action concept a in the OWL file will look like: a hasAgent→ aA-
gent and aAgent implementedBy→ aInstance_1; …; aAgent implementedBy→ aIns-
tance_n. For example, the add action of the Integer type is represented in OWL
by the RDF triples: add hasAgent→ addAgent, and addAgent implementedBy→ add
Instance 1, add Instance 2. The signature addInteger Integer Integer× → of the
add action is represented in the OWL file using the three RDF triples: add

hasInput→ IntegerPair, add hasOutput→ Integer, and add hasAgent→ addA-
gent.

5.2. Using Protegé for OWL File Development

There are no software tools created to automatically generate an OWL file.
Therefore we use Protegé to create and update an OWL file reprezenting a do-
main ontology. Hence, an OWL file representing a domain ontology is com-
posed of a header and a body. The header tells us about the namespaces used in

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 88 Journal of Software Engineering and Applications

the ontology document and the ontology documents imported in the ontology
document. Each namespace is specified by a Prefix construct and each ontology
imported is specified by an Import construct. The body is basically composed of
entity declarations (classes, properties, objects, individuals, axioms). Such decla-
rations are in the form of RDF triples. We may use either XML syntax or OWL 2
Manchester Syntax [25] to express them. Though XML syntax is verbose, we be-
lieve that it is better understood by people and therefore we use XML syntax in
the examples that follow. Since the goal of this paper is to describe a system that
allows a computer user to perform problem solving using her computer as a
brain assistant, we simplify the concept representation in OWL language and
split the activity of OWL file creation in two steps. The first step is where the
domain concepts are represented in the OWL file without being associated with
web services implementing them, and the second step is where concepts in the
OWL file are associated with their semantics. The first step is automatically per-
formed by domain expert using Protégé tool [26], and second step is performed
by the computer expert collaborating with domain expert. So far there are no
tools assisting this activity. However, as we shall see in the next section, such
tools can be easily developed.

Protege is an ontology editor tool which provides Graphical User Interface
(GUI) so that the process of editing OWL files is easier. The user can create the
OWL file by entering each concept as a class via the Protégé GUI. The subsump-
tions relation present in the domain model is called the sub-class relation in
Protégé. The major benefit of using Protégé for the first step of the OWL file de-
velopment is automatic creation of the OWL ontology file header. An example
of an OWL file as created by Protégé is shown below. To gain space we collected
all constructs Class:concept on one line though Protégé would place each of
them on its own line.

5.3. Updating an OWL File with Web Services

The file created by Protégé in the first step of the CEAD process represents a
pure domain ontology where concepts are predefined (primitive) and are not
associated with their implementations. We denote this file by domainPURE.owl.
The second step of the CEAD process consists of creating the file domain-
CEAD.owl. This is initiated by including in the domainCEAD.owl the file do-
mainPURE.owl. Then the entities in the file domainCEAD.owl are associated

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 89 Journal of Software Engineering and Applications

with computer artifacts implementing them, thus performing the second step of
the CEAD process. This activity is standardized by the two kinds of knowledge
we are handling: data concepts and action concepts. The patterns used to specify
data concepts and action concepts consist of sequences of text lines where:

1) First line represents the domain term used to denote the concept;
2) Each line that follows represents a property (in the sense of OWL) of the

concept specified on its previous lines. We use indentation conventions for the
identification of the domain and range of the property, as follows:

Since we use WS-s as semantics of data concepts the primitive data are sup-
plied by XML schema and are: xsd:int, xsd:double, xsd:boolean, xsd:string,
xsd:time, etc., (see XML schema). All the other concepts are represented in terms
of the predefined or already defined concepts.

The two kinds of patterns that represent the two kinds of concepts are:
1) Data concepts are specified by the pattern:

Example data concept is the Integer which when fit in the above pattern be-
comes:

2) Properties of the concepts are defined as XML elements whose tags are
OWL properties ObjectProperty, DataProperty, FunctionProperty, whose ID
attribute identifies the property name, such as hasInput, hasOutput, etc., and the
XML element components define the domain, range, and the type of the prop-
erty. Example property definitions are:

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 90 Journal of Software Engineering and Applications

The description of namespaces, concepts, and properties in cead.owl follows a
standard pattern. Therefore the examples given above are sufficient to under-
stand the concept representation in arithmeticCEAD.owl that illustrates the do-
mainCEAD.owl file. Here we illustrate WS generation for domain’s primitive
concepts using the file ArithmeticsPure.owl. To simplify the matter we show
only the web services associated with the data concept Integer and action con-
cept add, and use XML syntax which we believe is more accessible to the reader.
The rest of the entities of the ArithmeticsPure.owl ontology are treated similarly.

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 91 Journal of Software Engineering and Applications

For convenience, the domain ontology file is associated with two dedicated
namespaces: a names space called vocabulary, where all basic terms of the do-
main are collected, and a name space where the URI-s of the WS-s implement-
ing the terms in teh vocabulary are collected. Since our example regards arith-
metic domain and the WS-s implementing its terms are performed on the com-
puter named bulai1 at the site cs.uiowa.edu using the sadl virtual machine, de-
scribed in Section 6, the terms we used for these spaces are:
http://bula1.cs.uiowa.edu/site/arithmeticCEAD.owl and
http://bula1.cs.uiowa.edu/site/sadl.owl.

The computer artifacts used to represent concept semantics in the domain-
CEAD.owl file are in general developed by computer experts collaborating with
domain experts. They can use any tools to implement them. The computer tech-
nology abounds of such tools [27] [28] [29] [30] and many other. These tools allow
computer experts to develop WS by hand or to automatically generate them from
conventional computer artifacts such as programs written in various programming
languages as are Java, C, C++, etc. Among these tools Apache Axis is a light-weight,
yet powerful tool for automatic WS generation from plain Java classes or C func-
tions. We develop WS-s used to CEAD a domain of interest using two approaches:

1) WS-s associated with primitive concepts are automatically generated from
Java programs using Apache Axis technology. The URL bula-site.documentation
shows how do we use Axis2 in this project.

2) WS-s associated with user concepts defined during problem solving process
are automatically developed by our own method as we shall see in Section 6.

6. Domain Dedicated Virtual Machine

The efficiency of the DAL algorithm execution by problem solver using the

https://doi.org/10.4236/jsea.2022.154004
http://bula1.cs.uiowa.edu/site/arithmeticCEAD.owl
http://bula1.cs.uiowa.edu/site/sadl.owl

T. Rus

DOI: 10.4236/jsea.2022.154004 92 Journal of Software Engineering and Applications

computer as a brain assistant is improved by associating each concept used in
the ()PF with the WS that implements it. This can be easily done by
hand, by the problem solver, or by an appropriate automaton that operates on

()PF and OWL (D). The result can be seen as a “program” in the language
of the brain assistant used by problem solver to execute the DAL algorithm.
However, since the operations performed by this automaton (the brain assistant)
are WS-s implementing the concepts of the problem domain, we call it the Do-
main Dedicated Virtual Machine (DDVM).

Formally, DDVM can be seen as a tuple DDVM = ConceptC, Execute, Next
where:
 ConceptC is a Concept Counter, that, for a given DAL algorithm , points

to the web service in the OWL (D), that implements the concept, to be per-
formed next during the algorithm execution;

 Execute () is the process that execute the computations in the WS pointed to
by ConceptC;

 Next () is a function which determines the next concept of the DAL algo-
rithm to be performed by Execute () during algorithm execution.

The DDVM performs similarly with the PEL (see Section 2) and therefore the
algorithm execution by DDVM can be described by the following Domain Algo-
rithm Execution Loop (DAEL):

On closer inspection one can easily see the similarity between DDVM and a
Virtual Monitor [31]. The ConceptC is an abstraction of the program counter,
the WS pointed to by the ConceptC is similar to the function executed by the OS
simulating instructions of the machine implemented by the VM, and Next () is
similar to the process that determines the next instruction of the program run by
the VM. The difference is that the memory of the machine implemented by
DDVM is the OWL (D), the processor of the DDVM is the collection of all pro-
cessors available on the Internet (in the cloud) that implement WS-s used in the
OWL (D), and the Next () is well defined by the relationship of the data and op-
erations in the Polish form of the DAL algorithm expression. Therefore, the
DDVM is a true domain dedicated virtual machine.

Once an application domain is CEAD-ed, the automation of DAL algorithm
execution is based on two main software components:

1) A translator that maps the DAL algorithm into an expression tree whose
nodes are labeled by domain concepts associated with the URL of the WS-s im-
plementing them, and

2) An interpreter operating on the expression tree generated by the translator,
executing WS-s encountered at the tree nodes.

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 93 Journal of Software Engineering and Applications

The translator is implemented by the conventional compiler construction
tools and the interpretor is implemented by a stack machine similar to Java Vir-
tual Machine (JVM).

For a given DAL algorithm the mapping of into the expression tree
()ET is automatically performed by the DAL parser, that transforms

into its parse tree, ()PT . A bottom-up traversal of the ()PT , that
searches the OWL (D) for the domain concepts used in the ()PT and asso-
ciates them with the URL of the WS-s implementing them, maps the parse tree

()PT into the expression tree ()ET . The automation of the DAL algo-
rithm execution using the WS-s available on the Internet requires the ()ET
to be transformed into an appropriate language that has WS-s as operations
performed by DDVM. For this purpose we use the Software Architecture De-
scription Language (SADL) [32] [33].

6.1. Software Architecture Description Language

Software Architecture Description Language (SADL), inspired by Armani [34],
has been conceived as a language suitable to describe functional behavior of
component-based software architectures, where components are standalone and
composeable pieces of software. Hence, its goal is similar to the goal of the In-
termediate Language (IL) used by Microsoft’s ASP.NET Framework. However,
SADL evolved as a language suitable to describe functional behavior of compo-
nent-based software architectures, where components are Web Services. Conse-
quently the SADL software is designed to run on the network, therefore compi-
ler construction technology provides a suitable mechanism to implement it.

As any language, SADL syntax has a three layer structure: vocabulary, simple
constructs, and composed constructs. SADL vocabulary is a dynamic collection
of terms used to denote problem domain concepts. Since SADL is meant as the
target for any DAL implementation, it needs to be implemented as a domain
dedicated namespace where each terms is associated with the collection of se-
mantic properties that defines it in the respective domain. For example the term
Integer in the SADL namespace of the High-School Arithmetic is specified by:

SADL vocabulary is the collection of DAL terms used by problem solvers in
their DAL algorithms during problem solving process. Thus, from a computa-
tional viewpoint SADL terms denote computer process names. The code ex-
ecuted by these processes is associated with the term in the SADL namespaces

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 94 Journal of Software Engineering and Applications

and specifies completely the WS implementing that term. For example, the
process executing the integer addition is associated with the term addI as fol-
lows:

The simple constructs of the SADL are simple XML elements: <tag attributes/>
where tag is a term in the SADL namespace and each attribute is a tuples of the
form property = “value” where property is a property of the process (data are
considered here as nulary operations) represented by the term tag. For example,
the process that perform the addition of two integers is specified by: <ari:addI
input = “x, y” output = “z”/> where ari is the prefix of the arithmetic vocabulary
namespace.

The composed constructs of the SADL language are XML constructs com-
posed with the terms: foreach, if, ifthen, next, etc. Example, the SDAL expression
of the formula: () ()2

1 4 2x b b a c a= − − − ∗ ∗ ∗ is represented by the follow-
ing XML code:

Note that SADL composition operators are provided as tags in the SADL na-
mespace, as any other term of the problem domain.

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 95 Journal of Software Engineering and Applications

SADL expressions are SADL representations of DAL algorithms.

6.2. SADL Interpreter

SADL interpreter inputs a SADL expression and interprets it on a stack, in a
manner similar to the byte-code interpretation of a Java code. Since each SADL
simple element composing a SADL expression represent a process executed on
interned, the flow of control during a SADL expression evaluation requires syn-
chronization of these processes. Thus, the SADL interpreter performs a distri-
buted implementation of the DAL algorithm. The simplest synchronization me-
chanism used to control the flow of processes performing a DAL algorithm is
provided by Unix wait and, signal primitives inserted in the SADL expression,
after each SADL simple element. While this SADL implementation performs
DAL algorithm distributed, on Internet, the algorithm execution is restricted to
being sequential, where the computation unit is the WS. This mechanism can be
extended to allow the processes performing a DAL algorithm to perform in pa-
rallel.

6.3. Evolving Domain Ontology

One of the key ideas of the DAL system is to provide a method that allows do-
main experts to create and extend their own CEAD-ed domain knowledge base.
The DAL system solves this problem by allowing domain experts to create new
action and data concepts.

6.3.1. Creating New Action Concepts
In order to create a new action concept, first of all, a domain expert expresses the
new concept by an DAL expressions which is then saved in a file. Then she adds
the concept to her UOO via an DAL Console program by executing “add2Onto
<file>” command. This command translates the DAL expression into a SADL
expression and sends it to her private space in the cloud, to which she subscribed.
An Ontology Manager in the cloud automatically analyzes the submitted SADL
expression and creates a new domain concept in the user’s UOO with a name
specified in the DAL expression. The Ontology Manager also creates a web ser-
vice broker which wraps around the SADL code so that the concept is available
on the Internet as a standalone, composeable software component. All the in-
formation about this concept’s web service is automatically linked back to the
user’s UOO so that newly created domain concept is CEAD-ed. From now on,
the user can use that new concept as any other CEAD-ed domain concepts such
as using it in a DAL Consoles or composing it with other CEAD-ed domain
concepts in an DAL expression to express the user’s new computation.

The above scenario is demonstrated with the example in high school algebra
that maps the algorithm solving quadratic equations into a new concept called
Solver. We assume that the DAL expression of the algorithm that solves qua-
dratic equations is written as follows and saved as the file solver.nld:

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 96 Journal of Software Engineering and Applications

Then using the DAL Console the user executes the command

With the help of user’s profile, including user’s CEAD-ed ontologies and dic-
tionaries, the DAL Console translates the above DAL expression into the fol-
lowing SADL expression:

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 97 Journal of Software Engineering and Applications

This SADL expression is then sent to the Ontology Manager in the cloud. The
Ontology Manager analyzes the SADL expression and creates a web service bro-
ker for this SADL expression at the URL address

The Ontology Manager also creates a new entry in the user private ontology
(<user> PURE.owl and <user> CEAD.owl) as follows:

Now the user can use the concept “Solver” as any other primitive concepts by
executing the command use Solver. The user can also use this concept in another
DAL expression as shown by the following example:

6.3.2. Creating New Data Concepts
DAL System is also provided with the mechanism that allows a user to add data
concepts to her UOO. New data concepts must be defined as compositions of
other known data concepts using such definition schemes as record, vector, set.
Since all the known data concepts are represented as some XML data type, the

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 98 Journal of Software Engineering and Applications

DAL system represents the new data concept using an appropriate constructor
record, vector, set that maps the user defined data concept into an XML data
type. The method for a user to create a new data concepts are described in the
following steps:

1) The user defines the new concept in an DAL expression as shown in the
above pattern.

2) The user uses a DAL Console to submit the DAL expression to her private
space in the cloud.

3) The Ontology Manager in the cloud receives the DAL expression and ana-
lyzes it.

4) When the Ontology Manager finds a data concept definition:
a) Creates the corresponding domain data concept and add to the user’s

UOO.
b) Creates a new XML Data type which represents the data concept following

the above pattern.
c) Automatically link the newly created data concept with the corresponding

XML Data type.
5) The CEAD-ing process for creating new data concept finished.
We illustrate the mechanism of extending domain ontology with new data

concepts with the example where a user defines the data concept Complex that
represents complex numbers in the high school arithmetic domain. Since a
complex number is a record of two real numbers the user defines the concept
Complex using the following DAL expression:

The XML schema used to transform this DAL expression into a SADL expres-
sion is:

In the case of the Complex concept, we have the following concrete XML data
type definition:

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 99 Journal of Software Engineering and Applications

7. DAL System

DAL System provides a user-dedicated implementation of a computer. That is, a
computer user who installs this system on her computer can further use the
computer as a brain-assistant dedicated to her problem domain. Since the com-
puter use lacks the efficiency when used in this manner we chose to describe
here the implementation of the system in the cloud. This manner of DAL System
implementation dedicates the system to a problem domain, thus allowing the
computer to be shared among many users, who in effect share the problem do-
main in a manner in which the students of a class share the class instructor’s
knowledge.

7.1. Cloud Implementation of DAL System

Cloud-implementation of the DAL System is described in Figure 4. The as-
sumption is that CC that accommodates the DAL System would have an admin-
istrator that manage the system allowing various users to register for DAL Sys-
tem use on a given problem domain. For that the CC is provided with a data
base where all the SEAD-ed domain ontologies are maintained. The user sub-
scription for a domain D is performed by an installation procedure that activates
DAL System with the domain ontology required.

Figure 4. Architecture of an DAL system.

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 100 Journal of Software Engineering and Applications

Figure 5. Interacting with an DAL system.

Further, as shown in Figure 4, the user customizes the system to her personal
use, evolving the problem domain she subscribed for with the concepts she
learned and/or created during her own problem solving process. When the user
decides to leave the system and cancel her subscription, the DAL System’s man-
ager my buy the knowledge developed by the user and update the domain, thus
ensuring domain evolution with the concepts developed by the respective user.
This ensures a domain evolution with the knowledge developed by problem
solving process of all domain experts.

7.2. User Interaction with DAL System

A user doesn’t need a computer in order to interact with the DAL System. An
iPad (or any other display) which provides a two-way communication using a
command language can be used in this purpose. We envision here a Unix shell
interaction as described in Figure 5.

The DAL System is not appropriate for iconic-language implementation be-
cause it manipulates concepts that can be created by the user. Since the system is
natural language based, and natural language is infinite through the infinite se-
quences of human generations speaking it, Window-implementation, though
possible, would not be appropriate.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Rus, T. (2013) Computer Integration within Problem Solving Process. Proceedings

https://doi.org/10.4236/jsea.2022.154004

T. Rus

DOI: 10.4236/jsea.2022.154004 101 Journal of Software Engineering and Applications

of RoEduNet 11th International Conference, Sinaia, 17-19 January 2013, 7-19.

[2] Falbo, R.A. (2016) An Ontology Pattern Language for Service Modeling. Proceed-
ings of the 31st Annual ACM Symposium on Applied Computing, Pisa, 4-8 April
2016, 321-326. https://doi.org/10.1145/2851613.2851840

[3] Rus, T. (2016) Milestones for Computing Future. Open Journal of Software Engi-
neering and Applications, 9, 52-56. https://doi.org/10.4236/jsea.2016.92003

[4] Software as a Service (SAAS). en.wikipedia.org/wiki/Software as a service, 2010.

[5] Srinivasan, N. and Getov, V. (2011) Navigating the Cloud Computing Landscape—
Technologies, Services, and Adopters. Computer, 44, 22-23.
https://doi.org/10.1109/MC.2011.91

[6] Polya, G. (1973) How to Solve It. Second Edition, Princeton University Press, Prin-
ceton.

[7] Rus, T. and Rus, D. (1993) Systems Methodology for Software. World Scientific,
Singapore.

[8] Bui, C.K. (2013) An Evolutional Domain Oriented Approach to Problem Solving
Based on Web Service Composition. PhD Thesis, The University of Iowa, Depart-
ment of Computer Science, Iowa City.

[9] Sipser, M. (2006) Introduction to the Theory of Computation. Second Edition, Thom-
son Course Technology, Boston.

[10] McBride, B. (2004) The Resource Description Framework (RDF) and Its Vocabu-
lary Description Language RDFS. Springer, Berlin, 51-65.
https://doi.org/10.1007/978-3-540-24750-0_3

[11] Kline, G. and Caroll, J. (2004) W3c, Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. http://www.w3.org/TR/rdf-concepts

[12] Takeuti, G. and Zaring, W. (1971) Introduction to Axiomatic Set Theory. Sprin-
ger-Verlag, Berlin. https://doi.org/10.1007/978-1-4684-9915-5

[13] Badder, F., Calvanese, D., McGuinnes, D., Nardi, D. and Patel-Schneider, P. (2005)
The Description Logic Handbook. Cambridge University Press, Cambridge.

[14] McGuinness, D. and van Harmelen, F. (2003) OWL Overview, OWL Web Ontology
Language Overview. W3C Proposed Recommendation, 15 December 2003.
http://www.w3.org/TR/2003/PR-owl-features-20031215

[15] Aho, A., Sethi, R. and Ullman, J. (1986) Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Boston.

[16] Guarino, N. and Welty, C. (2000) A Formal Ontology of Properties. In: Dieng, R.,
Ed., Proceedings of 12th International Conference on Knowledge Engineering and
Knowledge Management, Springer Verlag, Berlin, 97-112.
https://doi.org/10.1007/3-540-39967-4_8

[17] Guarino, N. and Welty, C. (2002) Evaluating Ontological Decisions with OntoC-
lean. Communications of the ACM, 45, 61-65.
https://doi.org/10.1145/503124.503150

[18] Welty, C. and Guarino, N. (2001) Supporting Ontological Analysis of Taxonomic
Relationship. Data & Knowledge Engineering, 39, 51-74.
https://doi.org/10.1016/S0169-023X(01)00030-1

[19] Hurby, P. (2005) Ontology-Based Domain-Driven Design. OOPSLA05 Workshop
on Best Practices for Model Driven Software Development, San Diego, 16-20 Octo-
ber 2005.

[20] Brusa, G., Chiotti, O., et al. (2006) A Process for Building a Domain Ontology: An

https://doi.org/10.4236/jsea.2022.154004
https://doi.org/10.1145/2851613.2851840
https://doi.org/10.4236/jsea.2016.92003
https://doi.org/10.1109/MC.2011.91
https://doi.org/10.1007/978-3-540-24750-0_3
http://www.w3.org/TR/rdf-concepts
https://doi.org/10.1007/978-1-4684-9915-5
http://www.w3.org/TR/2003/PR-owl-features-20031215
https://doi.org/10.1007/3-540-39967-4_8
https://doi.org/10.1145/503124.503150
https://doi.org/10.1016/S0169-023X(01)00030-1

T. Rus

DOI: 10.4236/jsea.2022.154004 102 Journal of Software Engineering and Applications

Experience in Developing a Government Budgetary Ontology. Proceedings, Aus-
tralian Ontology Workshop (AOW 2006), Vol. 72.

[21] Boyce, S. (2007) Developing Domain Ontologies for Course Content. International
Forum of Educational Technology & Society, 10, 275-288.

[22] Hernandez, N., Mothe, J., Chrisment, C. and Egret, D. (2007) Modeling Context
through Domainontology. Information Retrieval, 10, 143-172.
https://doi.org/10.1007/s10791-006-9018-0

[23] Rector, A. (2003) Modularisation of Domain Ontologies Implemented in Descrip-
tion Logics and Related Formalism Including Owl. Proceedings of the 2nd Interna-
tional Conference on Knowledge Capture (K-CAP 2003), Sanibel Island, 23-25 Oc-
tober 2003, 121-128.

[24] Lightweight, Domain Ontoloogy Development Methodology.
http://techwiki.openstructs.org/index.php

[25] Owl 2 Web Ontology Language Manchester Syntax. https://www.w3.org/TR

[26] Horridge, M. (2011) Protege-Owl Tutorial.
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial

[27] The Apache (2011) Axis2/Java. http://axis.apache.org/axis2/java/core

[28] The Apache CXF (2011) An Open Source Services Framework. http://cxf.apache.org

[29] T.F.E. Wikipedia (2011) EnterpriseJavaBean.
http://en.wikipedia.org/wiki/EnterpriseJavaBean

[30] Metro (2008) Web Services for Java Platform.
http://java.sun.com/webservices/reference/tutorials

[31] Popek, G. and Goldberg, R. (1974) Formal Requirements for Virtualizable Third
Generation Architectures. Communications of the ACM, 17, 412-421.
https://doi.org/10.1145/361011.361073

[32] Rus, T. and Curtis, D. (2007) Towards an Application Driven Software Technology.
The Proceedings of the 2007 International Conference on Software Engineering Re-
search & Practice, Las Vegas, 25-28 June 2007, 282-288.

[33] Rus, T. (2008) Liberate Computer User from Programming. In: Meseguer, J. and
Roşu, G., Eds., 12th International Conference, AMAST 2008, LNCS Vol. 5140, Sprin-
ger, Berlin, 16-35. https://doi.org/10.1007/978-3-540-79980-1_3

[34] Monroe, R. (2001) Capturing Software Architecture Design with Armani. Tech. Rep.
CMU-CS-163, Carnegie Mellon University, Pittsburgh.

https://doi.org/10.4236/jsea.2022.154004
https://doi.org/10.1007/s10791-006-9018-0
http://techwiki.openstructs.org/index.php
https://www.w3.org/TR
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial
http://axis.apache.org/axis2/java/core
http://cxf.apache.org/
http://en.wikipedia.org/wiki/EnterpriseJavaBean
http://java.sun.com/webservices/reference/tutorials
https://doi.org/10.1145/361011.361073
https://doi.org/10.1007/978-3-540-79980-1_3

	Computer Integration within Problem Solving Process
	Abstract
	Keywords
	1. Preamble
	2. Introduction
	3. Problem Solving Process
	4. Domain Algorithmic Language
	5. Computational Emancipation of a Problem Domain
	5.1. Domain Ontology
	5.2. Using Protegé for OWL File Development
	5.3. Updating an OWL File with Web Services

	6. Domain Dedicated Virtual Machine
	6.1. Software Architecture Description Language
	6.2. SADL Interpreter
	6.3. Evolving Domain Ontology
	6.3.1. Creating New Action Concepts
	6.3.2. Creating New Data Concepts

	7. DAL System
	7.1. Cloud Implementation of DAL System
	7.2. User Interaction with DAL System

	Conflicts of Interest
	References

