
Journal of Software Engineering and Applications, 2021, 14, 474-492
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2021.149028 Sep. 13, 2021 474 Journal of Software Engineering and Applications

A Study of Performance Testing in Configurable
Software Systems

Xue Han

University of Southern Indiana, Evansville, Indiana, USA

Abstract
Customizing applications through program configuration options has been
proved by many open-source and commercial projects as one of the best
practices in software engineering. However, traditional performance testing is
not in synch with this industrial practice. Traditional performance testing
techniques consider program inputs as the only external factor. It ignores the
performance influence of configuration options. This study aims to stimulate
research interest in performance testing in the context of configurable soft-
ware systems by answering three research questions. That is, why it is neces-
sary to conduct research in performance testing, what are the state-of-the-art
techniques, and how do we conduct performance testing research in confi-
gurable software systems. In this study, we examine the unique characteristics
and challenges of performance testing research in configurable software sys-
tems. We review and discuss research topics on the performance bug study,
performance anti-patterns, program analysis, and performance testing. We
share the research findings from the empirical study and outline the opening
opportunities for new and advanced researchers to contribute to the research
community.

Keywords
Configurable Software Systems, Performance Testing, Software Configuration,
Performance Bug Study

1. Introduction

Software performance is an inseparable part of user experience. A natural ques-
tion to ask is why performance problems have not been given much attention.
Manufacturers make faster processors every year to make programs run faster
[1]. To that end, faster machines may cover up the performance problems. Do

How to cite this paper: Han, X. (2021) A
Study of Performance Testing in Confi-
gurable Software Systems. Journal of Soft-
ware Engineering and Applications, 14,
474-492.
https://doi.org/10.4236/jsea.2021.149028

Received: June 22, 2021
Accepted: September 10, 2021
Published: September 13, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2021.149028
https://www.scirp.org/
https://doi.org/10.4236/jsea.2021.149028
http://creativecommons.org/licenses/by/4.0/

X. Han

DOI: 10.4236/jsea.2021.149028 475 Journal of Software Engineering and Applications

faster machines always alleviate performance problems? Maybe not. For in-
stance, powerful web servers may not deliver a better user experience if the per-
formance bugs are caused by the client’s browser. To make things worse, the lack
of a clear definition of performance bugs and measures makes it easy to overlook
performance problems. It reveals the multiple facets of software performance
problems that affect both business and end-users.

Real-world performance problems can introduce an unresponsiveness expe-
rience to end-users [2]. It may cost businesses to lose customers. In certain cases,
performance problems may even cause lawsuits [3]. Prior study shows that when
performance bugs are reported to developers, it takes a long time to fix [4]. In
general, performance bugs are harder to replicate [5] [6] and even more chal-
lenging to locate and fix [7] the root cause. Performance bugs may result from
the lack of performance concerns, limited performance testing tools, and post-
poned performance testing in the software development life cycle (SDLC) [8].

Performance bugs may cause faster energy consumption. In recent decades,
the computing power of consumer mobile devices is equal to or greater than
personal desktop computers [9]. Unlike traditional devices, battery-powered de-
vices are more sensitive to performance bugs. End-users are more likely to no-
tice the performance bugs on mobile devices, especially when end-users’ mobile
devices consume an unexpectedly large amount of energy [10].

Modern large-scale software systems offer the flexibility to fine-tuning system
behaviors through configuration options [4]. However, the configuration op-
tions are overly complicated. It is easy to make mistakes [6]. Many techniques
have been proposed to conduct functional testing on configurations [11] [12].
However, it remains an open challenge to detect performance bugs through con-
figuration options effectively.

In this study, we aim to answer the following research questions.
• Why do we conduct performance testing in configurable software systems?

We examine the importance of performance testing and the uniqueness of
performance testing research in configurable software systems.

• What are the state-of-the-art performance testing techniques? We examine
and summarize techniques used in recent research.

• How to research performance testing for configurable software systems? We
answer this question to show the road map for researchers interested in per-
formance testing.

In this study, we make the following contributions.
• We conduct a literature study of performance testing in the context of confi-

gurable software systems.
• We share research study findings and suggest future performance testing re-

search directions.
• We provide a research map to help researchers to navigate performance test-

ing research topics in configurable software systems.
The rest of the paper is organized as follows. In Section 2, we study literature

in performance testing related research. In Section 3, we discuss the research

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 476 Journal of Software Engineering and Applications

questions and results. In Section 4, we discuss the limitation of existing research
and outline future works. Lastly, we conclude the study in Section 5.

2. Literature Study

We conduct a literature study of performance testing in configurable software
systems to provide background for further discussion.

2.1. Performance Bug Study

Performance bug study provides an overview of the characteristics of perfor-
mance bugs. It is necessary to understand performance bugs before attempting
to conduct performance testing.

Performance Bugs Jing et al. [13] study 109 real-world performance bugs to
provide insights on performance bug detection, fixing, avoidance, and testing.
Table 1 lists web servers used as research subjects [14].

Performance Bug Report Study Unlike previous bug studies that focus on
the characteristics of performance bugs, Song et al. [15] study the diagnosis
process of user-reported performance bugs. They point out that more than half
of the reported bugs get developers’ attention from the noticeable differences
between runs. This study also answers what bug reporters tend to include in
their bug reports.

Non-Performance V.S. Performance Bugs Zaman et al. [16] randomly select
400 performance and non-performance web browser bug reports. They quantify
the nature of performance bugs in comparison to the non-performance bugs.
Table 2 lists web client subjects used in the prior research. Nistor et al. [17]
study over 600 bugs from three open-source projects. They compare and con-
trast the difference of discovering, reporting, and fixing between performance
bugs and non-performance bugs. Figure 1 shows some performance bug studies
in the past decade.

Table 1. Web server subjects.

Subject Language Size Description

Apache C++ L Hypertext transfer protocol server

Lighttpd C S Lightweight web server

Tomcat Java L Java Servlet, JSP Container

Project size is measured in line of code (LOC). S (<100 K); M (100 K - 500 K); L (>500 K).

Table 2. Web client subjects.

Subject Language Size Description

Firefox C++ L Web Browser

Chrome C++ L Web Browser

Thunderbird C++ L Email Client

Mozilla C++ L Web Browser

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 477 Journal of Software Engineering and Applications

Figure 1. Performance bug studies in 2010-2019.

Findings 1: Performance bug definition is not thoroughly defined in the re-

search literature. Many research study relies on readers’ intuition of what a per-
formance bug is.

It is necessary to define what a performance bug is to conduct performance
bug studies1. However, defining performance bugs is not an easy task [18]. There
are some performance bug definitions from prior research work. In terms of
lines of code that need to fix, Jin et al. [13] define performance bugs as software
defects where relatively simple source-code changes can significantly speed up
the program. Zaman et al. [16] define performance bugs in terms of bug fixing.
Performance bugs require not only experienced developers to fix but also take a
longer time to fix. Foo et al. [19] define performance bugs in the context of re-
gression testing-performance bugs are those defects that cause noticeable degra-
dation of system performance when compared to previous release versions. At-
tariyan et al. [7] quantify performance bugs with performance metrics. Wert et
al. [20] describe performance bugs as code defects that lead to low throughput,
high response times, and high resource utilization.

Prior research fails to deliver a clear definition of what performance bugs are.
Instead, such work relies on readers’ intuition of what a performance bug is. The
lack of an explicit description and a formal definition makes it harder to verify if
a bug belongs to the performance bug category.

We define a software performance bug as code defects that complete a given
task beyond the established level of resource utilization. The definition can be
further tested with the following three criteria.

Assumption A performance bug is not a functional bug. It implies that the
software system functions properly but may suffer from responsiveness. As such,
bugs that cause systems to freeze or hang indefinitely are functional bugs first.
Context A performance bug must be confirmed by developers. End-users may
report a performance problem, but only developers have the authority to claim if
the problem is indeed a performance bug. In many bug tracking systems, it is
not unusual to see that some bug reporters confuse a performance improvement
request with a performance bug.

1This work uses terms like performance bugs and performance problems. They are often not inter-
changeable.

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 478 Journal of Software Engineering and Applications

Symptom A performance bug uses more resources (e.g., CPU and memory
utilization or a time constraint) than the software specification [21]. Depending
on the different types of subject programs, developers may choose the measures
listed in Table 3 to associate with performance bug symptoms. Performance is a
subject matter. It is relevant to previous experience and is often judged based on
previous experience by comparison. The most obvious observation of a typical
performance bug is that the subject under test appears slower than expected.

Besides performance bugs, it is necessary to understand the configuration
space to follow performance testing research in configurable software systems.

Configuration Space The configuration space has been studied in prior work
[12] [22] [23]. Nair et al. [22] discuss the residual-based and rank-based ap-
proaches to sample the configuration space. Puoskari et al. [23] conduct a com-
binatorial testing case study in an industrial environment. Reisner et al. [12]
conduct an empirical study of configuration space explosion in configurable
software systems.

Misconfigurations Yin et al. [24] undertake a study to find characteristics of
misconfiguration bugs in open-source and commercial systems. This work stu-
dies the system reactions (e.g., reliability, performance) caused by misconfigura-
tion and reports the prevalence of different misconfiguration types.

2.2. Performance Anti-Patterns

Many performance analysis and testing tools [13] [25] [26] rely on matching
specific performance bug patterns. In this section, we examine research focuses
on software performance anti-patterns.

Coding Patterns Smith et al. [26] [27] [28] illustrate a set of anti-patterns that
could lead to performance degradation. Unlike prior work that targets reported
performance bugs, this study provides insights from software architecture design
and programming language best practices to avoid performance bugs. The stu-
died anti-pattens provide potential guidelines for rule-based [29] tools to

Table 3. Performance measures.

Performance Measure DB WS GUI Mobile

CPU Utilization ✓ ✓ ✓ ✓

Memory Utilization ✓ ✓ ✓ ✓

Cache Hit Rate ✓ ✓

I/O Utilization ✓ ✓ ✓ ✓

Socket Utilization ✓ ✓ ✓ ✓

Transactions ✓ ✓

Lock Contention Rates ✓ ✓

Response Time ✓ ✓ ✓ ✓

Concurrent Request Rates ✓ ✓

Energy Consumption ✓

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 479 Journal of Software Engineering and Applications

discover various performance bugs.
ORM Anti-Patterns Chen et al. [25] propose a framework to find perfor-

mance anti-patterns in Object-Relational Mapping (ORM). By utilizing taint
analysis, the framework identifies code path for data access and detect an-
ti-pattern using data flow and rule-based approaches. Performance assessment is
done by statistically evaluating the performance gain associated with each type
of predefined anti-pattern before and after the code fix. Table 4 lists database
servers used as research subjects [4] [30] [31].

Anti-Pattern Detection Wert et al. [32] present a performance problem di-
anostics (PPD) method. This work combines search algorithms and decision tree
algorithms to find known performance anti-patterns. Specifically, it provides a
search hierarchy and a heuristic detection strategy to decide if performance an-
ti-patterns exist in the system. Another approach to detecting performance
problems is to utilize rule-based patterns. Jin et al. [13] synthesize a rule-based
checker [29] [33] that utilizes the characteristics of their performance bug study
to find potential performance problems (PPPs).

Findings 2: Detecting performance anti-patterns depend on developers’ ex-
pertise in a define-first-then-match approach. Many state-of-the-art tools are
focusing on detecting rather than preventing performance anti-patterns in
source code.

Much research work relies on developers’ expertise to prevent introducing
performance anti-patterns into source code. However, we have not discovered
much research on detecting anti-patterns in the development environment. Such
techniques may prevent performance bugs from getting into the codebase, thus
reducing the overall project cost [34].

2.3. Performance Analysis

Program analysis uses source code (static analysis) and code artifacts (dynamic
analysis) to infer program properties such as correctness and performance. Static
program analysis does not execute the project source code but requires source
code to perform tasks like program flow analysis and impact analysis. Static
analysis is language-specific. Popular static analysis tools include CodeSurfer
[35], Clang [36], and FindBugs [37].

Dynamic program analysis, on the other hand, needs to run the subject pro-
gram. Dynamic analysis involves code instrumentation and trace analysis. Al-
though dynamic analysis incurs an execution overhead, it delivers much less

Table 4. Database server subjects.

Subject Language Size Description

MySql C L DBMS

PostgreSQL C L DBMS

HBase Java L Non-relational DBMS

Cassandra Java M NoSQL DB

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 480 Journal of Software Engineering and Applications

false-positive analysis results. Some popular dynamic instrumentation tools in-
clude Intel Pin [38], BTrace [39], ASM [40], and Soot [41]. Table 5 compares the
technical differences between static and dynamic program analysis.

Loop Analysis Performance analysis uses both static and dynamic analysis. A
few research work targets finding loops that lead to performance bottlenecks.
Xiao et al. [42] present a delta inference technique (DeltaInference) for identify-
ing workload-dependent performance bottlenecks. DeltaInference monitors the
order of magnitude changes to detect performance bottlenecks. Nistor et al. [43]
study over 100 performance bugs and identify four types of nested loops per-
formance bugs. This work proposes an automated oracle (Toddler) for perfor-
mance problems caused by repetitive memory-access patterns. Toddler uses the
instruction pointer and call stack (IPCS) to determine if two IPCS-sequences are
comparable and finds unnecessary computations in a loop. Table 6 lists the API
subject for performance studies.

Idleness Analysis Enterprise-class applications have unique performance
characteristics. For example, undesirable system idling may play a major role in
slowing down system performance. Altman et al. [44] present a tool (WAIT) to
find the root cause of system idling. WAIT is non-intrusive. It uses the sampling
information readily available via Java Virtual Machines (JVM) and operating
systems.

Researchers have designed multiple techniques [5] [7] to ease the process of

Table 5. Static v.s. dynamic program analysis.

Measure
Program Analysis

Static Analysis Dynamic Analysis

Compilation Cost

Execution Overhead

False-Positive Rate

Analysis Input

Slow

Small

High

Source Code

Fast

Large

Low

Binary Code

Table 6. Library/API Subjects.

Subject Language Size Description

Eclipse SWT Java M The Standard widget toolkit

Hadoop Java L Distributed processing library

Apache Collections Java S Utility libraries

Guava Java M Google core libraries

JFreeChart Java S Chart Library

Lucene Java M Search engine library

PDFBox Java S PDF library

lbzip2 C S Block Compressor

OpenLDAP C L LDAP libraries

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 481 Journal of Software Engineering and Applications

diagnosing bugs and pinpoint the root cause of performance bugs.
Pinpoint Root Cause Attariyan et al. [7] present X-ray for diagnosing per-

formance problems caused by configuration options in production environ-
ments. X-ray ranks a list of potential root cause configuration options based on
their performance summarization. Dean et al. [5] present an online performance
bug inference tool (PerfScope) to understand the occurrence of performance
anomalies in cloud computing environments. PerfScope monitors and analyzes
system call traces to identify inconsistent system call sequences.

Findings 3: Choosing performance analysis strategies to detect performance
problems depends on the software program types. Developers should balance
factors such as false positive rate, execution cost, and the availability of source
code before applying a specific performance analysis technique.

2.4. Performance Testing

The goal of performance testing is to detect performance bugs in software sys-
tems. Many research focuses on performance test case generation [2] [45] [46]
and performance regression testing [19] [47].

Test Generation Pradel et al. [2] design a technique (EventBreak) to find
event pairs in the graphical user interface (GUI) applications where trigging one
event would increase the execution time in the other event. Luo et al. [46] pro-
pose a black-box approach to learn rules from the execution traces. Such rules
are used to find performance bottlenecks with feedback-directed software test-
ing. Barna et al. [45] present a method to explore the workload space and pick a
workload that leads to the worst performance. Nistor et al. [43] propose an au-
tomated oracle (Toddler) to detect performance problems. Unlike profilers
which focus on a given metric and report the potential location where the hots-
pot resides purely based on ranked measurements, Toddler asserts performance
when it finds unnecessary computations in the loop.

Performance Regression Regression testing is a crucial part of the conti-
nuous integration (CI) process. Many research tries to improve software quality
through performance regression testing. Foo et al. [19] focus on detecting per-
formance regression using historical data (logs files collected from heterogene-
ous testing environments) to build an ensemble performance prediction model.
Unlike prior research, this approach challenges the traditional assumption that
the test environment is consistent throughout the same organization. Huang et
al. [47] propose a prioritized regression testing based on performance risk analy-
sis (PRA) via static code change analysis. The PRA design involves a cost model
to assess expenses associated with the committed change as well as an estimation
of the frequency of the changed instruction to evaluate the risk level. In perfor-
mance regression testing, it is important to setup the proper threshold using
performance measurements. For instance, when performance is measured by
benchmark tools, a tempting but false claim may be to say that if system perfor-
mance does not slow down by 2% when compared to its previous version, we do

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 482 Journal of Software Engineering and Applications

not have a performance bug [48].
Findings 4: Performance test input generation can achieve a high-level of au-

tomation whereas test oracles are still labor-intensive. Performance testing
oracle research is falling behind.

Table 7 summarizes the miscellaneous subjects studied in prior work.

3. Result

In this section, we answer the research questions and discuss the study results.
RQ1 Why do we conduct performance testing in configurable soft-ware

systems? Testing is hard. Many developers are hesitant to do functional testing,
let alone performance testing. However, performance testing is critical to the
quality of software performance. Software systems that suffer from performance
bugs could cost millions of dollars to fix [49].

Compared to the functional bugs, performance bugs are substantially more
challenging to handle because they often manifest themselves with only large test-
ing inputs and specific execution environments [43]. Plus, many existing perfor-
mance testing approaches ignore configurations as a source of testing input.

Configurable software systems complicate performance testing. Prior study
[17] shows that performance bugs in configurable software systems are more
complex and take a longer time to fix. The sheer size of the configuration space
makes the quality of software even harder to achieve.

Configuration-related performance bugs are prevalent. Prior work [4] finds
that more than half of the performance bugs (59%) are due to configurations.
We need more automated performance testing methods to handle the ev-
er-increasing prevalence of configuration-related performance bugs in compli-
cated configurable software systems. Performance testing research can improve
the overall quality of software products and free developers from writing test
cases manually.

RQ2 What are the state-of-the-art performance testing techniques? Re-
search in performance testing is evolving at a fast speed. We examine the latest

Table 7. Misc. subjects.

Subject Language Size Description

GCC Suite C++ L The GNU compiler collection

Notepad++ C++ M Text editor

7-Zip C++ S File manager

Eclipse JDT Java M IDE

Ant Java M Build automation tool

Groovy Java M Dynamic language

JMeter Java S Load testing tool

Solr Java M Search engine

Randoop Java L Unit test generation

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 483 Journal of Software Engineering and Applications

techniques applied to performance testing-related research. As discussed in Sec-
tion 2, traditional program analysis techniques such as slicing [50], instrumenta-
tion [51], and taint analysis [52] have been widely adopted. Recent techniques
take advantage of the advances in data mining and machine learning methods.
We summarize performance testing techniques in Table 8. The “Technique”
column shows the core algorithms or techniques used for the tool. For instance,
DeltaInfer uses both instrumentation and machine learning techniques. Because
instrumentation is used to extract code features to learn a prediction model with
machine learning techniques, we only list “machine learning” as its core algorithm
in the “Technique” column. The “Limitation” column outlines the constraints and
underlining limitations associated with the technique. For instance, model checking
techniques such as symbolic execution are notorious for scalability.

RQ3 How to research performance testing for configurable software sys-
tems? As discussed in section 2, performance testing in configurable software
systems research involves much more than just testing. Researchers need to have
a background in various research areas. Researchers can get first-hand insights
by studying projects that have performance bugs. One way to understand per-
formance bugs is through studying open-source projects with bug repositories
[53] (i.e., issue trackers). Table 9 lists a few popular open-source projects with
publicly accessible bug repositories. Researchers can gain insights into the root
causes [13] of performance bugs by examining the bug reports. It lays out the
ground for performance analysis. Performance analysis focuses on extracting the
software performance properties. One type of performance analysis is based on
performance anti-pattern matching. Researchers have broadly applied program
analysis techniques to understand performance problems in the source code.
Performance testing may use performance analysis techniques to generate intel-
ligent inputs. The goal of performance testing is to detect performance bugs.
Unlike performance analysis, performance testing is often part of the CI. Figure
2 provides a quick reference to research topics that are relevant to performance
testing in configurable software systems.

4. Discussion

Performance testing in configurable software systems is in its infant stage. There

Table 8. State-of-the-art performance analysis and testing techniques.

Name Technique Limitation

RuleChecker Data Mining High false negatives

X-ray Taint Analysis Low path coverage

Toddler Instrumentation High execution overhead

DeltaInfer Machine Learning Limited model interpretability

iTree Clustering Tuning hyper-parameters

Mantis Static Slicing Sensitivity to inputs

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 484 Journal of Software Engineering and Applications

Figure 2. Performance testing research tree.

Table 9. Open-source bug repository.

Project Project Bug Repository

Chromium

Lucene

ASF

Mozilla

MySQL

https://bugs.chromium.org/p/chromium/issues/list

https://issues.apache.org/jira/browse/LUCENE

http://issues.apache.org/bugzilla

https://bugzilla.mozilla.org

http://bugs.mysql.com

are many research topics to discover and explore. In this section, we discuss the
limitation of the existing approaches and provide some future research direc-
tions.

4.1. Performance Bugs

The bug report is essential for developers to keep track of the status of the soft-
ware system. Reporting performance bugs involve many manual efforts from
both end-users and developers. In this section, we discuss how research in bug
report automation can improve the efficiency in software development and the
quality of software products.

Bug Report Han et al. [6] conduct an empirical study to reproduce perfor-
mance bugs from bug reports. In their study, only less than 20% of the perfor-
mance bugs are reproduced successfully. The quality of the performance bug
reports leaves much to be desired. Research in the bug repository platform could
help to improve the quality of the bug report. For example, the bug repository
should check the completeness of the bug report. Bug reports need to include
both the steps to reproduce the performance bug and the observable bug symp-

https://doi.org/10.4236/jsea.2021.149028
https://bugs.chromium.org/p/chromium/issues/list
https://issues.apache.org/jira/browse/LUCENE
http://issues.apache.org/bugzilla
https://bugzilla.mozilla.org/
http://bugs.mysql.com/

X. Han

DOI: 10.4236/jsea.2021.149028 485 Journal of Software Engineering and Applications

toms. Another research area is to study how to encourage end-users to report a
performance problem. Many performance bugs are triggered under specific in-
put, and they are difficult to reproduce. End-users may have observed the
symptom and noticed the performance bug for a short time. But they may lack
the expertise or tools to recreate and report those performance bugs accurately.
Bug Labeling When the bug study starts, the first step is to choose the correct
categories of bugs. To categorize different bug types, much effort relies on ma-
nual inspections [4]. The bug study requires a large sampling size of bug reports
to make a statistically significant conclusion that is not subject to generalization
concerns. Thus, it is desirable to design approaches that can automate bug cate-
gorization. Some bug repositories (e.g., Apache) provide a tag field to ask bug
reporters to specify the bug categorization. However, labeling a bug report is not
required. There is no guarantee that bug reporters will provide the proper cate-
gorization of the bug. One solution may be to utilize supervised and unsuper-
vised machine learning techniques to classify the bug report, hence applying au-
tomated bug labeling.

Performance Bug Study Performance bug studies are conducted by re-
searchers manually. It is time-consuming. For instance, Han et al. [6] spend
800+ hours studying and reproducing performance bugs. Performance bug stu-
dies may become tedious over time and hurt the researcher’s productivity. As ar-
tificial intelligence technologies mature, researchers may utilize natural language
processing and understanding to find a way to automate and streamline the bug
study process.

4.2. Configurations

Research in software configurations addresses concerns like prioritization and
sampling in the configuration space.

Space Exploration For large-scale configurable software systems, it is not
uncommon to have hundreds of configuration options. The configuration space
is too large to explore extensively. Reisner et al. [12] conduct an empirical study
on software configuration space explosion. With performance concerns, re-
searchers must answer two questions to explore the performance configuration
space efficiently. The first question is about which configuration options are
performance influential. The second question is about what configuration option
values may trigger a performance bug. Existing research work [14] [54] tries to
provide solutions for those questions, but the configuration space exploration
still suffers from scalability and solving constraints among multiple options.

Configuration Selection How to effectively get the configurations relevant to
performance from a large space remains a research challenge. Applications of
such techniques include selecting performance-sensitive configurations from a
configuration space. Song et al. [55] propose iTree, a tool to achieve high code
coverage configurations with decision trees. Unlike the combinatorial interac-
tion testing (CIT), iTree is not restricted to the lower dimensions (two-way/

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 486 Journal of Software Engineering and Applications

three-way samplings in CIT terms). Researchers may utilize similar strategies to
find configurations that maximize performance-sensitive code coverage. The
next step involves identifying an effective configuration option value range since
performance bugs are triggered under a value range [42]. Most existing ap-
proaches restrict the configuration option value types and investigate only a low
degree of configuration option interactions. More research efforts are also
needed to associate what configuration options may lead to a performance bug
under different scenarios. In prior work [4], researchers find that system-related
configurations can cause significant performance degradations. As the cloud
platform (e.g., AWS) and virtualization (e.g., VMware, Hyper-V) become preva-
lent, we need more studies to evaluate the performance influence of system-related
configurations on those environments.

4.3. Performance Testing

Performance testing has been an important research topic. In this section, we
discuss the desirable research areas that can advance performance testing re-
search.

Performance Specifications Documentation like the software requirement is
not always available. Performance specifications [56] may be even harder to find.
Ideally, the performance specification should be used to establish a base-line for
performance measurements. The performance measurement baseline is neces-
sary to construct performance testing oracles. One research direction is to design
a procedure to establish a performance measurement baseline when the specifi-
cation is unavailable. For example, we may recreate the specification from valua-
ble release notes, design documentation, code comments, and source code. Re-
searchers may find an approach to compile and synthesize available documenta-
tions to construct decent performance specifications.

Performance Regression Testing Regression testing provides an approach to
preserve existing functionality as the program evolves [57]. However, perfor-
mance regression testing gets little attention. It is not unusual to see discussions
in a bug report that a performance bug is introduced a few versions ago but only
to surface in the bug report recently. The earlier that we can catch a performance
bug, the cheaper it costs to fix the bug. We need better performance regression
testing tools to detect performance bugs efficiently for fast-evolving large-scale
applications. For example, when developers commit a code change, researchers
may automate the process by analyzing the source code to determine if it is ne-
cessary to trigger the regression testing. It may potentially reduce the cost of ex-
ecuting expensive regression testing suites each time.

Performance Benchmarks Publicly accessible performance benchmarks [58]
are necessary to evaluate performance techniques. Han et al. [6] discuss chal-
lenges to replicate performance bugs from the bug repository. For those research
work evaluated with private projects [24], it is challenging to apply new tech-
niques to the same projects due to security and privacy concerns. Most research

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 487 Journal of Software Engineering and Applications

work uses the same subject projects since there are only a few publicly available
performance benchmarks.

Researchers need better subject program diversity in performance bench-
marks. Much work is needed to collect and publish real-world performance
benchmarks. Besides performance benchmarks, we may also need a public repo-
sitory to host and share performance measurements. Yin et al. [24] study com-
mercial systems and examine if the open-source project study findings apply to
the commercial software. A public performance measurements repository may
be necessary to establish a cross-project baseline for comparing performance
among different projects in the same domain.

Bug Detection Nistor et al. [17] report that most (up to 57%) performance
bugs are discovered with code reasoning. Code reasoning involves code under-
standing. Researchers may formulate the code reasoning problem as a machine
learning problem. Another direction may be to utilize a record and replay me-
thod to employ code reasoning learned from one code block to apply to another
code block in the same project.

Besides the automated approaches, researchers may find innovative ways to
take advantage of crowdsourcing. For instance, some projects recruit crowd-
source to mark labels for image processing through interactive games. Perfor-
mance testing researchers may come up with creative ways to attract people to
participate in detecting performance anti-patterns.

4.4. Performance Modeling

Performance models are widely used for understanding software performance
and predict performance outputs. In this section, we discuss research directions
utilizing modeling techniques in performance testing.

Performance Understanding Siegmund et al. [54] propose a black-box ap-
proach to build performance influence models for configurable software sys-
tems. The linear regression model is used to understand the performance influ-
ence of individual configuration options and their interactions. Han et al. [14]
build location-level models to calculate the ranks of the performance influence
of configuration options under different software usage scenarios. It is interest-
ing to see how existing performance test generation techniques can leverage the
performance understanding methods to generate effective test inputs.

Performance Prediction Kwon et al. [59] present a framework (Mantis) to
predict the performance of Android applications. Mantis combines an offline
and online approach to build a performance prediction model with executable
program slices. Huang et al. [60] use sparse polynomial regression to predict
software performance. Guo et al. [61] adopt a statistical learning approach to
predict performance in configurable software systems.

Most performance models use a considerable amount of time to build. For
projects that evolve fast, rebuilding a performance model from scratch every
time is not practical. It is especially true when part of the workflow might de-

https://doi.org/10.4236/jsea.2021.149028

X. Han

DOI: 10.4236/jsea.2021.149028 488 Journal of Software Engineering and Applications

pend on the performance model (e.g., performance models may be used for per-
formance testing oracles). One potential research area may focus on how to
build incremental performance models to reduce the cost.

5. Conclusion

We conduct a study of performance testing research in configurable software
systems. Through this study, we address three essential research questions re-
garding performance testing in configurable software systems. The study covers
a wide range of research topics in performance testing to guide new and ad-
vanced researchers. We share our study findings, discuss the boundary and li-
mitations of the state-of-the-art techniques, and suggest future directions in
performance testing research.

Acknowledgements

This work is funded by the University of Southern Indiana 2020 Faculty Re-
search and Creative Work Grant.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this
paper.

References
[1] Webb, G.K. (2004) Predicting Processor Performance. Issues in Information Sys-

tems, 5, 340-346.

[2] Pradel, M., Schuh, P., Necula, G. and Sen, K. (2014) EventBreak: Analyzing the
Responsiveness of User Interfaces through Performance-Guided Test Generation.
ACM SIGPLAN Notices, 49, 33-47. https://doi.org/10.1145/2714064.2660233

[3] Hollister, S. (2020) Apple Will Pay $113 Million for Throttling Older iPhones in
New “Batterygate” Settlement.
https://www.theverge.com/2020/11/18/21573710/apple-battery-gate-throttle-iphone
s-settlement-amount

[4] Han, X. and Yu, T. (2016) An Empirical Study on Performance Bugs for Highly
Configurable Software Systems. Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, Ciudad Real,
September 2016, Article No. 23. https://doi.org/10.1145/2961111.2962602

[5] Dean, D.J., Nguyen, H., Gu, X., Zhang, H., Rhee, J., Arora, N. and Jiang, G. (2014)
Perfscope: Practical Online Server Performance Bug Inference in Production Cloud
Computing Infrastructures. Proceedings of the ACM Symposium on Cloud Com-
puting, Seattle, 3-5 November 2014, 1-13. https://doi.org/10.1145/2670979.2670987

[6] Han, X., Carroll, D. and Yu, T. (2019) Reproducing Performance Bug Reports in
Server Applications: The Researchers’ Experiences. Journal of Systems and Soft-
ware, 156, 268-282. https://doi.org/10.1016/j.jss.2019.06.100

[7] Attariyan, M., Chow, M. and Flinn, J. (2012) X-Ray: Automating Root-Cause Di-
agnosis of Performance Anomalies in Production Software. 10th USENIX Sympo-
sium on Operating Systems Design and Implementation, Hollywood, 7-10 October

https://doi.org/10.4236/jsea.2021.149028
https://doi.org/10.1145/2714064.2660233
https://www.theverge.com/2020/11/18/21573710/apple-battery-gate-throttle-iphones-settlement-amount
https://www.theverge.com/2020/11/18/21573710/apple-battery-gate-throttle-iphones-settlement-amount
https://doi.org/10.1145/2961111.2962602
https://doi.org/10.1145/2670979.2670987
https://doi.org/10.1016/j.jss.2019.06.100

X. Han

DOI: 10.4236/jsea.2021.149028 489 Journal of Software Engineering and Applications

2012, 307-320.

[8] Molyneaux, I. (2009) The Art of Application Performance Testing: Help for Pro-
grammers and Quality Assurance. O’Reilly Media, Inc., Sebastopol.

[9] Samsung for Business (2020) Your Phone Is Now More Powerful than Your PC.
https://insights.samsung.com/2020/08/07/your-phone-is-now-more-powerful-than-
your-pc-2/

[10] Pathak, A., Hu, Y.C. and Zhang, M. (2011) Bootstrapping Energy Debugging on
Smartphones: A First Look at Energy Bugs in Mobile devices. Proceedings of the
10th ACM Workshop on Hot Topics in Networks, Cambridge, 14-15 November
2011, Article No. 5. https://doi.org/10.1145/2070562.2070567

[11] Computer Security Resource Center (2016) Automated Combinatorial Testing for
Software. http://csrc.nist.gov/groups/SNS/acts/index.html.

[12] Reisner, E., Song, C., Ma, K.-K., Foster, J.S. and Porter, A. (2010) Using Symbolic
Evaluation to Understand Behavior in Configurable Software Systems. 2010
ACM/IEEE 32nd International Conference on Software Engineering, Cape Town, 1-8
May 2010, 445-454. https://doi.org/10.1145/1806799.1806864

[13] Jin, G., Song, L., Shi, X., Scherpelz, J. and Lu, S. (2012) Understanding and Detect-
ing Real-World Performance Bugs. ACM SIGPLAN Notices, 47, 77-88.
https://doi.org/10.1145/2345156.2254075

[14] Han, X., Yu, T. and Pradel, M. (2021) Confprof: White-Box Performance Profiling
of Configuration Options. Proceedings of the ACM/SPEC International Conference
on Performance Engineering, Virtual Event, 19-23 April 2021, 1-8.
https://doi.org/10.1145/3427921.3450255

[15] Song, L. and Lu, S. (2014) Statistical Debugging for Real-World Performance Prob-
lems. Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, Portland, 20-24 October 2014,
561-578. https://doi.org/10.1145/2660193.2660234

[16] Zaman, S., Adams, B. and Hassan, A.E. (2012) A Qualitative Study on Performance
Bugs. 2012 9th IEEE Working Conference on Mining Software Repositories (MSR),
Zurich, 2-3 June 2012, 199-208. https://doi.org/10.1109/MSR.2012.6224281

[17] Nistor, A., Jiang, T. and Tan, L. (2013) Discovering, Reporting, and Fixing Perfor-
mance Bugs. 2013 10th Working Conference on Mining Software Repositories
(MSR), San Francisco, 18-19 May 2013, 237-246.
https://doi.org/10.1109/MSR.2013.6624035

[18] Koenig, A. (2013) Performance Bugs: Not Just Hard to Detect, but Hard to Define.
http://www.drdobbs.com/cpp/performance-bugs-not-just-hard-to-detect/24016444
8

[19] Foo, K.C., Jiang, Z.M.J., Adams, B., Hassan, A.E., Zou, Y. and Flora, P. (2015) An
Industrial Case Study on the Automated Detection of Performance Regressions in
Heterogeneous Environments. 2015 IEEE/ACM 37th IEEE International Confe-
rence on Software Engineering, Florence, 16-24 May 2015, 159-168.
https://doi.org/10.1109/ICSE.2015.144

[20] Wert, A., Happe, J. and Happe, L. (2013) Supporting Swift Reaction: Automatically
Uncovering Performance Problems by Systematic Experiments. 2013 35th Interna-
tional Conference on Software Engineering (ICSE), San Francisco, 18-26 May 2013,
552-561. https://doi.org/10.1109/ICSE.2013.6606601

[21] Alagar, V.S. and Periyasamy, K. (2011) Specification of Software Systems. Springer
Science & Business Media, London. https://doi.org/10.1007/978-0-85729-277-3

https://doi.org/10.4236/jsea.2021.149028
https://insights.samsung.com/2020/08/07/your-phone-is-now-more-powerful-than-your-pc-2/
https://insights.samsung.com/2020/08/07/your-phone-is-now-more-powerful-than-your-pc-2/
https://doi.org/10.1145/2070562.2070567
http://csrc.nist.gov/groups/SNS/acts/index.html.
https://doi.org/10.1145/1806799.1806864
https://doi.org/10.1145/2345156.2254075
https://doi.org/10.1145/3427921.3450255
https://doi.org/10.1145/2660193.2660234
https://doi.org/10.1109/MSR.2012.6224281
https://doi.org/10.1109/MSR.2013.6624035
http://www.drdobbs.com/cpp/performance-bugs-not-just-hard-to-detect/240164448
http://www.drdobbs.com/cpp/performance-bugs-not-just-hard-to-detect/240164448
https://doi.org/10.1109/ICSE.2015.144
https://doi.org/10.1109/ICSE.2013.6606601
https://doi.org/10.1007/978-0-85729-277-3

X. Han

DOI: 10.4236/jsea.2021.149028 490 Journal of Software Engineering and Applications

[22] Nair, V., Menzies, T., Siegmund, N. and Apel, S. (2017) Using Bad Learners to Find
Good Configurations. Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, Paderborn, 4-8 September 2017, 257-267.
https://doi.org/10.1145/3106237.3106238

[23] Puoskari, E., Vos, T.E.J., Condori-Fernandez, N. and Kruse, P.M. (2013) Evaluating
Applicability of Combinatorial Testing in an Industrial Environment: A Case Study.
Proceedings of the 2013 International Workshop on Joining AcadeMiA and Indus-
try Contributions to testing Automation, Lugano, 15 July 2013, 7-12.
https://doi.org/10.1145/2489280.2489287

[24] Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N. and Pasupathy, S. (2011)
An Empirical Study on Configuration Errors in Commercial and Open Source Sys-
tems. Proceedings of the 23rd ACM Symposium on Operating Systems Principles,
Cascais, 23-26 October 2011, 159-172. https://doi.org/10.1145/2043556.2043572

[25] Chen, T.-H., Shang, W., Jiang, Z.M., Hassan, A.E., Nasser, M. and Flora, P. (2014) De-
tecting Performance Anti-Patterns for Applications Developed Using Object-Relational
Mapping. Proceedings of the 36th International Conference on Software Engineering,
Hyderabad, 31 May-7 June 2014, 1001-1012.
https://doi.org/10.1145/2568225.2568259

[26] Smith, C.U. and Williams, L.G. (2000) Software Performance Antipatterns. Pro-
ceedings of the 2nd International Workshop on Software and Performance, Ottawa,
September 2000, 127-136. https://doi.org/10.1145/350391.350420

[27] Smith, C.U. and Williams, L.G. (2002) New Software Performance Antipatterns:
More Ways to Shoot Yourself in the Foot. Proceedings 28th International Confe-
rence Computer Measurement Group, Reno, 8-13 December 2002, 667-674.

[28] Smith, C.U. and Williams, L.G. (2003) More New Software Performance Antipat-
terns: Even More Ways to Shoot Yourself in the Foot. 29th International Computer
Measurement Group Conference, Dallas, 7-12 December 2003, 717-725.

[29] Li, Z. and Zhou, Y. (2005) PR-Miner: Automatically Extracting Implicit Program-
ming Rules and Detecting Violations in Large Software Code. ACM SIGSOFT
Software Engineering Notes, 30, 306-315. https://doi.org/10.1145/1095430.1081755

[30] Han, X., Yu, T. and Lo, D. (2018) Perflearner: Learning from Bug Reports to Un-
derstand and Generate Performance Test Frames. 2018 33rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), Montpellier, 3-7
September 2018, 17-28. https://doi.org/10.1145/3238147.3238204

[31] Yu, T., Wen, W., Han, X. and Hayes, J.H. (2016) Predicting Testability of Concur-
rent Programs. 2016 IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST), Chicago, 11-15 April 2016, 168-179.
https://doi.org/10.1109/ICST.2016.39

[32] Wert, A. (2013) Performance Problem Diagnostics by Systematic Experimentation.
Proceedings of the 18th International Doctoral Symposium on Components and
Architecture, Vancouver, 17 June 2013, 1-6.
https://doi.org/10.1145/2465498.2465499

[33] Hovemeyer, D. and Pugh, W. (2004) Finding Bugs Is Easy. ACM SIGPLAN Notices,
39, 92-106. https://doi.org/10.1145/1052883.1052895

[34] Boehm, B.W. (1984) Software Engineering Economics. IEEE Transactions on Soft-
ware Engineering, SE-10, 4-21. https://doi.org/10.1109/TSE.1984.5010193

[35] (2016) Codesurfer, a Code Browser That Understands Pointers, Indirect Function
Calls, and whole-Program Effects.

https://doi.org/10.4236/jsea.2021.149028
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1145/2489280.2489287
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/2568225.2568259
https://doi.org/10.1145/350391.350420
https://doi.org/10.1145/1095430.1081755
https://doi.org/10.1145/3238147.3238204
https://doi.org/10.1109/ICST.2016.39
https://doi.org/10.1145/2465498.2465499
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1109/TSE.1984.5010193

X. Han

DOI: 10.4236/jsea.2021.149028 491 Journal of Software Engineering and Applications

https://www.grammatech.com/products/codesurfer

[36] (2016) Clang Static Analyzer. http://clang-analyzer.llvm.org/

[37] FindBugs (2016). http://findbugs.sourceforge.net/

[38] Levi, O. (2021) Pin—A Dynamic Binary Instrumentation Tool.
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-to
ol

[39] (2016) Btrace. https://kenai.com/projects/btrace

[40] (2016) ASM 4 Guide.
http://download.forge.objectweb.org/asm/asm4-guide.pdf

[41] (2016) Soot. https://sable.github.io/soot/

[42] Xiao, X., Han, S., Zhang, D. and Xie, T. (2013) Context-Sensitive Delta Inference for
Identifying Workload-Dependent Performance Bottlenecks. Proceedings of the
2013 International Symposium on Software Testing and Analysis, Lugano, 15-20
July 2013, 90-100. https://doi.org/10.1145/2483760.2483784

[43] Nistor, A., Song, L., Marinov, D. and Lu, S. (2013) Toddler: Detecting Performance
Problems via Similar Memory-Access Patterns. 2013 35th International Conference
on Software Engineering (ICSE), San Francisco, 18-26 May 2013, 562-571.
https://doi.org/10.1109/ICSE.2013.6606602

[44] Altman, E., Arnold, M., Fink, S. and Mitchell, N. (2010) Performance Analysis of
idle Programs. Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, Reno, 17-21 October
2010, 739-753. https://doi.org/10.1145/1869459.1869519

[45] Barna, C., Litoiu, M. and Ghanbari, H. (2011) Model-Based Performance Testing
(Nier Track). Proceedings of the 33rd International Conference on Software Engi-
neering, Waikiki, May 2011, 872-875. https://doi.org/10.1145/1985793.1985930

[46] Luo, Q., Nair, A., Grechanik, M. and Poshyvanyk, D. (2016) FOREPOST: Finding
Performance Problems Automatically with Feedback-Directed Learning Software
Testing. Proceedings of the 38th International Conference on Software Engineering
Companion, Austin, 14-22 May 2016 593-596.
https://doi.org/10.1145/2889160.2889164

[47] Huang, P., Ma, X., Shen, D. and Zhou, Y. (2014) Performance Regression Testing
Target Prioritization via Performance Risk Analysis. Proceedings of the 36th Inter-
national Conference on Software Engineering, Hyderabad, 31 May 2014-7 June
2014, 60-71. https://doi.org/10.1145/2568225.2568232

[48] Smaalders, B. (2006) Performance Anti-Patterns. Queue, 4, 44-50.
https://doi.org/10.1145/1117389.1117403

[49] Anthopoulos, L., Reddick, C.G., Giannakidou, I. and Mavridis, N. (2016) Why
E-Government Projects Fail? An Analysis of the Healthcare.gov Website. Govern-
ment Information Quarterly, 33, 161-173. https://doi.org/10.1016/j.giq.2015.07.003

[50] Weiser, M. (1984) Program Slicing. IEEE Transactions on Software Engineering,
SE-10, 352-357. https://doi.org/10.1109/TSE.1984.5010248

[51] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Red-
di, V.J. and Hazelwood, K. (2005) Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. ACM SIGPLAN Notices, 40, 190-200.
https://doi.org/10.1145/1064978.1065034

[52] Schwartz, E.J., Avgerinos, T. and Brumley, D. (2010) All You Ever Wanted to Know
about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have
Been Afraid to Ask). 2010 IEEE Symposium on Security and Privacy, Oakland,

https://doi.org/10.4236/jsea.2021.149028
https://www.grammatech.com/products/codesurfer
http://clang-analyzer.llvm.org/
http://findbugs.sourceforge.net/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://kenai.com/projects/btrace
http://download.forge.objectweb.org/asm/asm4-guide.pdf
https://sable.github.io/soot/
https://doi.org/10.1145/2483760.2483784
https://doi.org/10.1109/ICSE.2013.6606602
https://doi.org/10.1145/1869459.1869519
https://doi.org/10.1145/1985793.1985930
https://doi.org/10.1145/2889160.2889164
https://doi.org/10.1145/2568225.2568232
https://doi.org/10.1145/1117389.1117403
https://doi.org/10.1016/j.giq.2015.07.003
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/1064978.1065034

X. Han

DOI: 10.4236/jsea.2021.149028 492 Journal of Software Engineering and Applications

16-19 May 2010, 317-331. https://doi.org/10.1109/SP.2010.26

[53] Anvik, J., Hiew, L. and Murphy, G.C. (2006) Who Should Fix This Bug? Proceed-
ings of the 28th International Conference on Software Engineering, Shanghai, 20-28
May 2006, 361-370. https://doi.org/10.1145/1134285.1134336

[54] Siegmund, N., Grebhahn, A., Apel, S. and Kästner, C. (2015) Performance-Influence
Models For highly Configurable Systems. Proceedings of the 2015 10th Joint Meet-
ing on Foundations of Software Engineering, Bergamo, 30 August-4 September
2015, 284-294. https://doi.org/10.1145/2786805.2786845

[55] Song, C., Porter, A. and Foster, J.S. (2014) Itree: Efficiently Discovering
High-Coverage Configurations Using Interaction trees. IEEE Transactions on Soft-
ware Engineering, 40, 251-265. https://doi.org/10.1109/TSE.2013.55

[56] Sitaraman, M., Kulczycki, G., Krone, J., Ogden, W.F. and Reddy, A.N. (2001) Per-
formance Specification of software Components. ACM SIGSOFT Software Engi-
neering Notes, 26, 3-10. https://doi.org/10.1145/379377.375223

[57] Wong, W.E., Horgan, J.R., London, S. and Agrawal, H. (1997) A Study of Effective
Regression Testing in Practice. Proceedings of the 8th International Symposium on
Software Reliability Engineering, Albuquerque, 2-5 November 1997, 264-274.
https://doi.org/10.1109/ISSRE.1997.630875

[58] Dixit, K.M. (1991) The Spec Benchmarks. Parallel Computing, 17, 1195-1209.
https://doi.org/10.1016/S0167-8191(05)80033-X

[59] Kwon, Y., Lee, S., Yi, H., Kwon, D., Yang, S., Chun, B.-G., Huang, L., Maniatis, P.,
Naik, M. and Paek, Y. (2013) Mantis: Automatic Performance Prediction for
Smartphone Applications. 2013 USENIX Annual Technical Conference, San Jose,
26-28 June 2013, 297-308.

[60] Huang, L., Jia, J., Yu, B., Chun, B.-G., Maniatis, P. and Naik, M. (2010) Predicting
Execution Time of Computer Programs Using Sparse Polynomial Regression. Pro-
ceedings of the 23rd International Conference on Neural Information Processing
Systems, Vol. 1, Vancouver, 6-9 December 2010, 883-891.

[61] Guo, J., Czarnecki, K., Apel, S., Siegmund, N. and Wasowski, A. (2013) Variabili-
ty-Aware Performance Prediction: A Statistical Learning Approach. 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
Silicon Valley, 11-15 November 2013, 301-311.
https://doi.org/10.1109/ASE.2013.6693089

https://doi.org/10.4236/jsea.2021.149028
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1109/TSE.2013.55
https://doi.org/10.1145/379377.375223
https://doi.org/10.1109/ISSRE.1997.630875
https://doi.org/10.1016/S0167-8191(05)80033-X
https://doi.org/10.1109/ASE.2013.6693089

	A Study of Performance Testing in Configurable Software Systems
	Abstract
	Keywords
	1. Introduction
	2. Literature Study
	2.1. Performance Bug Study
	2.2. Performance Anti-Patterns
	2.3. Performance Analysis
	2.4. Performance Testing

	3. Result
	4. Discussion
	4.1. Performance Bugs
	4.2. Configurations
	4.3. Performance Testing
	4.4. Performance Modeling

	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

