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Abstract 
Customizing applications through program configuration options has been 
proved by many open-source and commercial projects as one of the best 
practices in software engineering. However, traditional performance testing is 
not in synch with this industrial practice. Traditional performance testing 
techniques consider program inputs as the only external factor. It ignores the 
performance influence of configuration options. This study aims to stimulate 
research interest in performance testing in the context of configurable soft-
ware systems by answering three research questions. That is, why it is neces-
sary to conduct research in performance testing, what are the state-of-the-art 
techniques, and how do we conduct performance testing research in confi-
gurable software systems. In this study, we examine the unique characteristics 
and challenges of performance testing research in configurable software sys-
tems. We review and discuss research topics on the performance bug study, 
performance anti-patterns, program analysis, and performance testing. We 
share the research findings from the empirical study and outline the opening 
opportunities for new and advanced researchers to contribute to the research 
community. 
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1. Introduction 

Software performance is an inseparable part of user experience. A natural ques-
tion to ask is why performance problems have not been given much attention. 
Manufacturers make faster processors every year to make programs run faster 
[1]. To that end, faster machines may cover up the performance problems. Do 
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faster machines always alleviate performance problems? Maybe not. For in-
stance, powerful web servers may not deliver a better user experience if the per-
formance bugs are caused by the client’s browser. To make things worse, the lack 
of a clear definition of performance bugs and measures makes it easy to overlook 
performance problems. It reveals the multiple facets of software performance 
problems that affect both business and end-users. 

Real-world performance problems can introduce an unresponsiveness expe-
rience to end-users [2]. It may cost businesses to lose customers. In certain cases, 
performance problems may even cause lawsuits [3]. Prior study shows that when 
performance bugs are reported to developers, it takes a long time to fix [4]. In 
general, performance bugs are harder to replicate [5] [6] and even more chal-
lenging to locate and fix [7] the root cause. Performance bugs may result from 
the lack of performance concerns, limited performance testing tools, and post-
poned performance testing in the software development life cycle (SDLC) [8]. 

Performance bugs may cause faster energy consumption. In recent decades, 
the computing power of consumer mobile devices is equal to or greater than 
personal desktop computers [9]. Unlike traditional devices, battery-powered de-
vices are more sensitive to performance bugs. End-users are more likely to no-
tice the performance bugs on mobile devices, especially when end-users’ mobile 
devices consume an unexpectedly large amount of energy [10]. 

Modern large-scale software systems offer the flexibility to fine-tuning system 
behaviors through configuration options [4]. However, the configuration op-
tions are overly complicated. It is easy to make mistakes [6]. Many techniques 
have been proposed to conduct functional testing on configurations [11] [12]. 
However, it remains an open challenge to detect performance bugs through con-
figuration options effectively. 

In this study, we aim to answer the following research questions. 
• Why do we conduct performance testing in configurable software systems? 

We examine the importance of performance testing and the uniqueness of 
performance testing research in configurable software systems. 

• What are the state-of-the-art performance testing techniques? We examine 
and summarize techniques used in recent research. 

• How to research performance testing for configurable software systems? We 
answer this question to show the road map for researchers interested in per-
formance testing. 

In this study, we make the following contributions. 
• We conduct a literature study of performance testing in the context of confi-

gurable software systems. 
• We share research study findings and suggest future performance testing re-

search directions. 
• We provide a research map to help researchers to navigate performance test-

ing research topics in configurable software systems. 
The rest of the paper is organized as follows. In Section 2, we study literature 

in performance testing related research. In Section 3, we discuss the research 
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questions and results. In Section 4, we discuss the limitation of existing research 
and outline future works. Lastly, we conclude the study in Section 5. 

2. Literature Study 

We conduct a literature study of performance testing in configurable software 
systems to provide background for further discussion. 

2.1. Performance Bug Study 

Performance bug study provides an overview of the characteristics of perfor-
mance bugs. It is necessary to understand performance bugs before attempting 
to conduct performance testing. 

Performance Bugs Jing et al. [13] study 109 real-world performance bugs to 
provide insights on performance bug detection, fixing, avoidance, and testing. 
Table 1 lists web servers used as research subjects [14]. 

Performance Bug Report Study Unlike previous bug studies that focus on 
the characteristics of performance bugs, Song et al. [15] study the diagnosis 
process of user-reported performance bugs. They point out that more than half 
of the reported bugs get developers’ attention from the noticeable differences 
between runs. This study also answers what bug reporters tend to include in 
their bug reports. 

Non-Performance V.S. Performance Bugs Zaman et al. [16] randomly select 
400 performance and non-performance web browser bug reports. They quantify 
the nature of performance bugs in comparison to the non-performance bugs. 
Table 2 lists web client subjects used in the prior research. Nistor et al. [17] 
study over 600 bugs from three open-source projects. They compare and con-
trast the difference of discovering, reporting, and fixing between performance 
bugs and non-performance bugs. Figure 1 shows some performance bug studies 
in the past decade. 

 
Table 1. Web server subjects. 

Subject Language Size Description 

Apache C++ L Hypertext transfer protocol server 

Lighttpd C S Lightweight web server 

Tomcat Java L Java Servlet, JSP Container 

Project size is measured in line of code (LOC). S (<100 K); M (100 K - 500 K); L (>500 K). 
 

Table 2. Web client subjects. 

Subject Language Size Description 

Firefox C++ L Web Browser 

Chrome C++ L Web Browser 

Thunderbird C++ L Email Client 

Mozilla C++ L Web Browser 
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Figure 1. Performance bug studies in 2010-2019. 

 
Findings 1: Performance bug definition is not thoroughly defined in the re-

search literature. Many research study relies on readers’ intuition of what a per-
formance bug is. 

It is necessary to define what a performance bug is to conduct performance 
bug studies1. However, defining performance bugs is not an easy task [18]. There 
are some performance bug definitions from prior research work. In terms of 
lines of code that need to fix, Jin et al. [13] define performance bugs as software 
defects where relatively simple source-code changes can significantly speed up 
the program. Zaman et al. [16] define performance bugs in terms of bug fixing. 
Performance bugs require not only experienced developers to fix but also take a 
longer time to fix. Foo et al. [19] define performance bugs in the context of re-
gression testing-performance bugs are those defects that cause noticeable degra-
dation of system performance when compared to previous release versions. At-
tariyan et al. [7] quantify performance bugs with performance metrics. Wert et 
al. [20] describe performance bugs as code defects that lead to low throughput, 
high response times, and high resource utilization. 

Prior research fails to deliver a clear definition of what performance bugs are. 
Instead, such work relies on readers’ intuition of what a performance bug is. The 
lack of an explicit description and a formal definition makes it harder to verify if 
a bug belongs to the performance bug category. 

We define a software performance bug as code defects that complete a given 
task beyond the established level of resource utilization. The definition can be 
further tested with the following three criteria. 

Assumption A performance bug is not a functional bug. It implies that the 
software system functions properly but may suffer from responsiveness. As such, 
bugs that cause systems to freeze or hang indefinitely are functional bugs first. 
Context A performance bug must be confirmed by developers. End-users may 
report a performance problem, but only developers have the authority to claim if 
the problem is indeed a performance bug. In many bug tracking systems, it is 
not unusual to see that some bug reporters confuse a performance improvement 
request with a performance bug. 

 

 

1This work uses terms like performance bugs and performance problems. They are often not inter-
changeable. 
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Symptom A performance bug uses more resources (e.g., CPU and memory 
utilization or a time constraint) than the software specification [21]. Depending 
on the different types of subject programs, developers may choose the measures 
listed in Table 3 to associate with performance bug symptoms. Performance is a 
subject matter. It is relevant to previous experience and is often judged based on 
previous experience by comparison. The most obvious observation of a typical 
performance bug is that the subject under test appears slower than expected. 

Besides performance bugs, it is necessary to understand the configuration 
space to follow performance testing research in configurable software systems. 

Configuration Space The configuration space has been studied in prior work 
[12] [22] [23]. Nair et al. [22] discuss the residual-based and rank-based ap-
proaches to sample the configuration space. Puoskari et al. [23] conduct a com-
binatorial testing case study in an industrial environment. Reisner et al. [12] 
conduct an empirical study of configuration space explosion in configurable 
software systems. 

Misconfigurations Yin et al. [24] undertake a study to find characteristics of 
misconfiguration bugs in open-source and commercial systems. This work stu-
dies the system reactions (e.g., reliability, performance) caused by misconfigura-
tion and reports the prevalence of different misconfiguration types. 

2.2. Performance Anti-Patterns 

Many performance analysis and testing tools [13] [25] [26] rely on matching 
specific performance bug patterns. In this section, we examine research focuses 
on software performance anti-patterns. 

Coding Patterns Smith et al. [26] [27] [28] illustrate a set of anti-patterns that 
could lead to performance degradation. Unlike prior work that targets reported 
performance bugs, this study provides insights from software architecture design 
and programming language best practices to avoid performance bugs. The stu-
died anti-pattens provide potential guidelines for rule-based [29] tools to  

 
Table 3. Performance measures. 

Performance Measure DB WS GUI Mobile 

CPU Utilization ✓ ✓ ✓ ✓ 

Memory Utilization ✓ ✓ ✓ ✓ 

Cache Hit Rate ✓ ✓   

I/O Utilization ✓ ✓ ✓ ✓ 

Socket Utilization ✓ ✓ ✓ ✓ 

Transactions ✓ ✓   

Lock Contention Rates ✓ ✓   

Response Time ✓ ✓ ✓ ✓ 

Concurrent Request Rates ✓ ✓   

Energy Consumption    ✓ 
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discover various performance bugs. 
ORM Anti-Patterns Chen et al. [25] propose a framework to find perfor-

mance anti-patterns in Object-Relational Mapping (ORM). By utilizing taint 
analysis, the framework identifies code path for data access and detect an-
ti-pattern using data flow and rule-based approaches. Performance assessment is 
done by statistically evaluating the performance gain associated with each type 
of predefined anti-pattern before and after the code fix. Table 4 lists database 
servers used as research subjects [4] [30] [31]. 

Anti-Pattern Detection Wert et al. [32] present a performance problem di-
anostics (PPD) method. This work combines search algorithms and decision tree 
algorithms to find known performance anti-patterns. Specifically, it provides a 
search hierarchy and a heuristic detection strategy to decide if performance an-
ti-patterns exist in the system. Another approach to detecting performance 
problems is to utilize rule-based patterns. Jin et al. [13] synthesize a rule-based 
checker [29] [33] that utilizes the characteristics of their performance bug study 
to find potential performance problems (PPPs). 

Findings 2: Detecting performance anti-patterns depend on developers’ ex-
pertise in a define-first-then-match approach. Many state-of-the-art tools are 
focusing on detecting rather than preventing performance anti-patterns in 
source code. 

Much research work relies on developers’ expertise to prevent introducing 
performance anti-patterns into source code. However, we have not discovered 
much research on detecting anti-patterns in the development environment. Such 
techniques may prevent performance bugs from getting into the codebase, thus 
reducing the overall project cost [34]. 

2.3. Performance Analysis 

Program analysis uses source code (static analysis) and code artifacts (dynamic 
analysis) to infer program properties such as correctness and performance. Static 
program analysis does not execute the project source code but requires source 
code to perform tasks like program flow analysis and impact analysis. Static 
analysis is language-specific. Popular static analysis tools include CodeSurfer 
[35], Clang [36], and FindBugs [37]. 

Dynamic program analysis, on the other hand, needs to run the subject pro-
gram. Dynamic analysis involves code instrumentation and trace analysis. Al-
though dynamic analysis incurs an execution overhead, it delivers much less  

 
Table 4. Database server subjects. 

Subject Language Size Description 

MySql C L DBMS 

PostgreSQL C L DBMS 

HBase Java L Non-relational DBMS 

Cassandra Java M NoSQL DB 
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false-positive analysis results. Some popular dynamic instrumentation tools in-
clude Intel Pin [38], BTrace [39], ASM [40], and Soot [41]. Table 5 compares the 
technical differences between static and dynamic program analysis. 

Loop Analysis Performance analysis uses both static and dynamic analysis. A 
few research work targets finding loops that lead to performance bottlenecks. 
Xiao et al. [42] present a delta inference technique (DeltaInference) for identify-
ing workload-dependent performance bottlenecks. DeltaInference monitors the 
order of magnitude changes to detect performance bottlenecks. Nistor et al. [43] 
study over 100 performance bugs and identify four types of nested loops per-
formance bugs. This work proposes an automated oracle (Toddler) for perfor-
mance problems caused by repetitive memory-access patterns. Toddler uses the 
instruction pointer and call stack (IPCS) to determine if two IPCS-sequences are 
comparable and finds unnecessary computations in a loop. Table 6 lists the API 
subject for performance studies. 

Idleness Analysis Enterprise-class applications have unique performance 
characteristics. For example, undesirable system idling may play a major role in 
slowing down system performance. Altman et al. [44] present a tool (WAIT) to 
find the root cause of system idling. WAIT is non-intrusive. It uses the sampling 
information readily available via Java Virtual Machines (JVM) and operating 
systems. 

Researchers have designed multiple techniques [5] [7] to ease the process of  
 

Table 5. Static v.s. dynamic program analysis. 

Measure 
Program Analysis 

Static Analysis Dynamic Analysis 

Compilation Cost 

Execution Overhead 

False-Positive Rate 

Analysis Input 

Slow 

Small 

High 

Source Code 

Fast 

Large 

Low 

Binary Code 

 
Table 6. Library/API Subjects. 

Subject Language Size Description 

Eclipse SWT Java M The Standard widget toolkit 

Hadoop Java L Distributed processing library 

Apache Collections Java S Utility libraries 

Guava Java M Google core libraries 

JFreeChart Java S Chart Library 

Lucene Java M Search engine library 

PDFBox Java S PDF library 

lbzip2 C S Block Compressor 

OpenLDAP C L LDAP libraries 
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diagnosing bugs and pinpoint the root cause of performance bugs. 
Pinpoint Root Cause Attariyan et al. [7] present X-ray for diagnosing per-

formance problems caused by configuration options in production environ-
ments. X-ray ranks a list of potential root cause configuration options based on 
their performance summarization. Dean et al. [5] present an online performance 
bug inference tool (PerfScope) to understand the occurrence of performance 
anomalies in cloud computing environments. PerfScope monitors and analyzes 
system call traces to identify inconsistent system call sequences. 

Findings 3: Choosing performance analysis strategies to detect performance 
problems depends on the software program types. Developers should balance 
factors such as false positive rate, execution cost, and the availability of source 
code before applying a specific performance analysis technique. 

2.4. Performance Testing 

The goal of performance testing is to detect performance bugs in software sys-
tems. Many research focuses on performance test case generation [2] [45] [46] 
and performance regression testing [19] [47]. 

Test Generation Pradel et al. [2] design a technique (EventBreak) to find 
event pairs in the graphical user interface (GUI) applications where trigging one 
event would increase the execution time in the other event. Luo et al. [46] pro-
pose a black-box approach to learn rules from the execution traces. Such rules 
are used to find performance bottlenecks with feedback-directed software test-
ing. Barna et al. [45] present a method to explore the workload space and pick a 
workload that leads to the worst performance. Nistor et al. [43] propose an au-
tomated oracle (Toddler) to detect performance problems. Unlike profilers 
which focus on a given metric and report the potential location where the hots-
pot resides purely based on ranked measurements, Toddler asserts performance 
when it finds unnecessary computations in the loop. 

Performance Regression Regression testing is a crucial part of the conti-
nuous integration (CI) process. Many research tries to improve software quality 
through performance regression testing. Foo et al. [19] focus on detecting per-
formance regression using historical data (logs files collected from heterogene-
ous testing environments) to build an ensemble performance prediction model. 
Unlike prior research, this approach challenges the traditional assumption that 
the test environment is consistent throughout the same organization. Huang et 
al. [47] propose a prioritized regression testing based on performance risk analy-
sis (PRA) via static code change analysis. The PRA design involves a cost model 
to assess expenses associated with the committed change as well as an estimation 
of the frequency of the changed instruction to evaluate the risk level. In perfor-
mance regression testing, it is important to setup the proper threshold using 
performance measurements. For instance, when performance is measured by 
benchmark tools, a tempting but false claim may be to say that if system perfor-
mance does not slow down by 2% when compared to its previous version, we do 
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not have a performance bug [48]. 
Findings 4: Performance test input generation can achieve a high-level of au-

tomation whereas test oracles are still labor-intensive. Performance testing 
oracle research is falling behind. 

Table 7 summarizes the miscellaneous subjects studied in prior work. 

3. Result 

In this section, we answer the research questions and discuss the study results. 
RQ1 Why do we conduct performance testing in configurable soft-ware 

systems? Testing is hard. Many developers are hesitant to do functional testing, 
let alone performance testing. However, performance testing is critical to the 
quality of software performance. Software systems that suffer from performance 
bugs could cost millions of dollars to fix [49]. 

Compared to the functional bugs, performance bugs are substantially more 
challenging to handle because they often manifest themselves with only large test-
ing inputs and specific execution environments [43]. Plus, many existing perfor-
mance testing approaches ignore configurations as a source of testing input. 

Configurable software systems complicate performance testing. Prior study 
[17] shows that performance bugs in configurable software systems are more 
complex and take a longer time to fix. The sheer size of the configuration space 
makes the quality of software even harder to achieve. 

Configuration-related performance bugs are prevalent. Prior work [4] finds 
that more than half of the performance bugs (59%) are due to configurations. 
We need more automated performance testing methods to handle the ev-
er-increasing prevalence of configuration-related performance bugs in compli-
cated configurable software systems. Performance testing research can improve 
the overall quality of software products and free developers from writing test 
cases manually. 

RQ2 What are the state-of-the-art performance testing techniques? Re-
search in performance testing is evolving at a fast speed. We examine the latest  

 
Table 7. Misc. subjects. 

Subject Language Size Description 

GCC Suite C++ L The GNU compiler collection 

Notepad++ C++ M Text editor 

7-Zip C++ S File manager 

Eclipse JDT Java M IDE 

Ant Java M Build automation tool 

Groovy Java M Dynamic language 

JMeter Java S Load testing tool 

Solr Java M Search engine 

Randoop Java L Unit test generation 
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techniques applied to performance testing-related research. As discussed in Sec-
tion 2, traditional program analysis techniques such as slicing [50], instrumenta-
tion [51], and taint analysis [52] have been widely adopted. Recent techniques 
take advantage of the advances in data mining and machine learning methods. 
We summarize performance testing techniques in Table 8. The “Technique” 
column shows the core algorithms or techniques used for the tool. For instance, 
DeltaInfer uses both instrumentation and machine learning techniques. Because 
instrumentation is used to extract code features to learn a prediction model with 
machine learning techniques, we only list “machine learning” as its core algorithm 
in the “Technique” column. The “Limitation” column outlines the constraints and 
underlining limitations associated with the technique. For instance, model checking 
techniques such as symbolic execution are notorious for scalability. 

RQ3 How to research performance testing for configurable software sys-
tems? As discussed in section 2, performance testing in configurable software 
systems research involves much more than just testing. Researchers need to have 
a background in various research areas. Researchers can get first-hand insights 
by studying projects that have performance bugs. One way to understand per-
formance bugs is through studying open-source projects with bug repositories 
[53] (i.e., issue trackers). Table 9 lists a few popular open-source projects with 
publicly accessible bug repositories. Researchers can gain insights into the root 
causes [13] of performance bugs by examining the bug reports. It lays out the 
ground for performance analysis. Performance analysis focuses on extracting the 
software performance properties. One type of performance analysis is based on 
performance anti-pattern matching. Researchers have broadly applied program 
analysis techniques to understand performance problems in the source code. 
Performance testing may use performance analysis techniques to generate intel-
ligent inputs. The goal of performance testing is to detect performance bugs. 
Unlike performance analysis, performance testing is often part of the CI. Figure 
2 provides a quick reference to research topics that are relevant to performance 
testing in configurable software systems. 

4. Discussion 

Performance testing in configurable software systems is in its infant stage. There  
 

Table 8. State-of-the-art performance analysis and testing techniques. 

Name Technique Limitation 

RuleChecker Data Mining High false negatives 

X-ray Taint Analysis Low path coverage 

Toddler Instrumentation High execution overhead 

DeltaInfer Machine Learning Limited model interpretability 

iTree Clustering Tuning hyper-parameters 

Mantis Static Slicing Sensitivity to inputs 
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Figure 2. Performance testing research tree. 
 

Table 9. Open-source bug repository. 

Project Project Bug Repository 

Chromium 

Lucene 

ASF 

Mozilla 

MySQL 

https://bugs.chromium.org/p/chromium/issues/list  

https://issues.apache.org/jira/browse/LUCENE  

http://issues.apache.org/bugzilla  

https://bugzilla.mozilla.org  

http://bugs.mysql.com  

 
are many research topics to discover and explore. In this section, we discuss the 
limitation of the existing approaches and provide some future research direc-
tions. 

4.1. Performance Bugs 

The bug report is essential for developers to keep track of the status of the soft-
ware system. Reporting performance bugs involve many manual efforts from 
both end-users and developers. In this section, we discuss how research in bug 
report automation can improve the efficiency in software development and the 
quality of software products. 

Bug Report Han et al. [6] conduct an empirical study to reproduce perfor-
mance bugs from bug reports. In their study, only less than 20% of the perfor-
mance bugs are reproduced successfully. The quality of the performance bug 
reports leaves much to be desired. Research in the bug repository platform could 
help to improve the quality of the bug report. For example, the bug repository 
should check the completeness of the bug report. Bug reports need to include 
both the steps to reproduce the performance bug and the observable bug symp-
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toms. Another research area is to study how to encourage end-users to report a 
performance problem. Many performance bugs are triggered under specific in-
put, and they are difficult to reproduce. End-users may have observed the 
symptom and noticed the performance bug for a short time. But they may lack 
the expertise or tools to recreate and report those performance bugs accurately. 
Bug Labeling When the bug study starts, the first step is to choose the correct 
categories of bugs. To categorize different bug types, much effort relies on ma-
nual inspections [4]. The bug study requires a large sampling size of bug reports 
to make a statistically significant conclusion that is not subject to generalization 
concerns. Thus, it is desirable to design approaches that can automate bug cate-
gorization. Some bug repositories (e.g., Apache) provide a tag field to ask bug 
reporters to specify the bug categorization. However, labeling a bug report is not 
required. There is no guarantee that bug reporters will provide the proper cate-
gorization of the bug. One solution may be to utilize supervised and unsuper-
vised machine learning techniques to classify the bug report, hence applying au-
tomated bug labeling. 

Performance Bug Study Performance bug studies are conducted by re-
searchers manually. It is time-consuming. For instance, Han et al. [6] spend 
800+ hours studying and reproducing performance bugs. Performance bug stu-
dies may become tedious over time and hurt the researcher’s productivity. As ar-
tificial intelligence technologies mature, researchers may utilize natural language 
processing and understanding to find a way to automate and streamline the bug 
study process. 

4.2. Configurations 

Research in software configurations addresses concerns like prioritization and 
sampling in the configuration space. 

Space Exploration For large-scale configurable software systems, it is not 
uncommon to have hundreds of configuration options. The configuration space 
is too large to explore extensively. Reisner et al. [12] conduct an empirical study 
on software configuration space explosion. With performance concerns, re-
searchers must answer two questions to explore the performance configuration 
space efficiently. The first question is about which configuration options are 
performance influential. The second question is about what configuration option 
values may trigger a performance bug. Existing research work [14] [54] tries to 
provide solutions for those questions, but the configuration space exploration 
still suffers from scalability and solving constraints among multiple options. 

Configuration Selection How to effectively get the configurations relevant to 
performance from a large space remains a research challenge. Applications of 
such techniques include selecting performance-sensitive configurations from a 
configuration space. Song et al. [55] propose iTree, a tool to achieve high code 
coverage configurations with decision trees. Unlike the combinatorial interac-
tion testing (CIT), iTree is not restricted to the lower dimensions (two-way/ 
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three-way samplings in CIT terms). Researchers may utilize similar strategies to 
find configurations that maximize performance-sensitive code coverage. The 
next step involves identifying an effective configuration option value range since 
performance bugs are triggered under a value range [42]. Most existing ap-
proaches restrict the configuration option value types and investigate only a low 
degree of configuration option interactions. More research efforts are also 
needed to associate what configuration options may lead to a performance bug 
under different scenarios. In prior work [4], researchers find that system-related 
configurations can cause significant performance degradations. As the cloud 
platform (e.g., AWS) and virtualization (e.g., VMware, Hyper-V) become preva-
lent, we need more studies to evaluate the performance influence of system-related 
configurations on those environments. 

4.3. Performance Testing 

Performance testing has been an important research topic. In this section, we 
discuss the desirable research areas that can advance performance testing re-
search. 

Performance Specifications Documentation like the software requirement is 
not always available. Performance specifications [56] may be even harder to find. 
Ideally, the performance specification should be used to establish a base-line for 
performance measurements. The performance measurement baseline is neces-
sary to construct performance testing oracles. One research direction is to design 
a procedure to establish a performance measurement baseline when the specifi-
cation is unavailable. For example, we may recreate the specification from valua-
ble release notes, design documentation, code comments, and source code. Re-
searchers may find an approach to compile and synthesize available documenta-
tions to construct decent performance specifications. 

Performance Regression Testing Regression testing provides an approach to 
preserve existing functionality as the program evolves [57]. However, perfor-
mance regression testing gets little attention. It is not unusual to see discussions 
in a bug report that a performance bug is introduced a few versions ago but only 
to surface in the bug report recently. The earlier that we can catch a performance 
bug, the cheaper it costs to fix the bug. We need better performance regression 
testing tools to detect performance bugs efficiently for fast-evolving large-scale 
applications. For example, when developers commit a code change, researchers 
may automate the process by analyzing the source code to determine if it is ne-
cessary to trigger the regression testing. It may potentially reduce the cost of ex-
ecuting expensive regression testing suites each time. 

Performance Benchmarks Publicly accessible performance benchmarks [58] 
are necessary to evaluate performance techniques. Han et al. [6] discuss chal-
lenges to replicate performance bugs from the bug repository. For those research 
work evaluated with private projects [24], it is challenging to apply new tech-
niques to the same projects due to security and privacy concerns. Most research 
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work uses the same subject projects since there are only a few publicly available 
performance benchmarks. 

Researchers need better subject program diversity in performance bench-
marks. Much work is needed to collect and publish real-world performance 
benchmarks. Besides performance benchmarks, we may also need a public repo-
sitory to host and share performance measurements. Yin et al. [24] study com-
mercial systems and examine if the open-source project study findings apply to 
the commercial software. A public performance measurements repository may 
be necessary to establish a cross-project baseline for comparing performance 
among different projects in the same domain. 

Bug Detection Nistor et al. [17] report that most (up to 57%) performance 
bugs are discovered with code reasoning. Code reasoning involves code under-
standing. Researchers may formulate the code reasoning problem as a machine 
learning problem. Another direction may be to utilize a record and replay me-
thod to employ code reasoning learned from one code block to apply to another 
code block in the same project. 

Besides the automated approaches, researchers may find innovative ways to 
take advantage of crowdsourcing. For instance, some projects recruit crowd-
source to mark labels for image processing through interactive games. Perfor-
mance testing researchers may come up with creative ways to attract people to 
participate in detecting performance anti-patterns. 

4.4. Performance Modeling 

Performance models are widely used for understanding software performance 
and predict performance outputs. In this section, we discuss research directions 
utilizing modeling techniques in performance testing. 

Performance Understanding Siegmund et al. [54] propose a black-box ap-
proach to build performance influence models for configurable software sys-
tems. The linear regression model is used to understand the performance influ-
ence of individual configuration options and their interactions. Han et al. [14] 
build location-level models to calculate the ranks of the performance influence 
of configuration options under different software usage scenarios. It is interest-
ing to see how existing performance test generation techniques can leverage the 
performance understanding methods to generate effective test inputs. 

Performance Prediction Kwon et al. [59] present a framework (Mantis) to 
predict the performance of Android applications. Mantis combines an offline 
and online approach to build a performance prediction model with executable 
program slices. Huang et al. [60] use sparse polynomial regression to predict 
software performance. Guo et al. [61] adopt a statistical learning approach to 
predict performance in configurable software systems. 

Most performance models use a considerable amount of time to build. For 
projects that evolve fast, rebuilding a performance model from scratch every 
time is not practical. It is especially true when part of the workflow might de-
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pend on the performance model (e.g., performance models may be used for per-
formance testing oracles). One potential research area may focus on how to 
build incremental performance models to reduce the cost. 

5. Conclusion 

We conduct a study of performance testing research in configurable software 
systems. Through this study, we address three essential research questions re-
garding performance testing in configurable software systems. The study covers 
a wide range of research topics in performance testing to guide new and ad-
vanced researchers. We share our study findings, discuss the boundary and li-
mitations of the state-of-the-art techniques, and suggest future directions in 
performance testing research. 
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